

Advances in Mathematics: Scientific Journal 9 (2020), no.3, 807–817

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.3.9

$\delta^* \mathbf{g} \alpha$ -CLOSED SETS IN TOPOLOGICAL SPACES

K. DAMODHARAN AND M. VIGNESHWARAN¹

ABSTRACT. In this paper, the authors introduce a new class of sets called $\delta^*g\alpha$ -closed set in Topological spaces. Some of their properties and characterizations are investigated. Also we introduce and study a new class of space namely $_{\alpha\delta}T_{\frac{3}{4}}^{**}g\alpha$ -space, $_{\delta}T_{c}^{**}$ -space, $_{\delta\alpha}^{*}T_{\frac{1}{2}}$ -space and $_{\delta\alpha}T_{c}^{**}$ -space.

1. Introduction

Levine [13], Mashhour et al. [2], Njastad [15] and Velicko [14] introduced semi - open sets, pre-open sets, α -open sets and δ -closed sets respectively. Levine [12] introduced generalized closed (briefly g-closed) sets and studied their basic properties. Bhattacharya and Lahiri [16], Arya and Nour [17], Maki et a [6,7], Dontchev and Ganster [8] introduced generalized semi-closed (briefly gs-closed) sets, α -generalized closed (briefly α g-closed) sets and δ -generalized closed (briefly δ g-closed) sets respectively. M.Vigneshwaran and R.Devi [10] introduced *generalized α -closed (briefly * $g\alpha$ -closed) sets. The purpose of this paper is to define a new class of closed sets called δ * $g\alpha$ -closed sets and also we obtain some basic properties of δ * $g\alpha$ closed sets in topological spaces. Applying this set, we obtain some new spaces such as $\alpha \delta T_{\frac{3}{4}}^{**}g\alpha$ -space, δT_c^{**} -space, δT_c^{**} -space and δT_c^{**} -space.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54Dxx.

Key words and phrases. $\delta^*g\alpha$ - closed set, ${}_{\alpha\delta}T^{**}_{\frac{3}{4}}g\alpha$ -space, ${}_{\delta}T^{**}_{c}$ -space, ${}_{\delta\alpha}T_{\frac{1}{2}}$ -space and ${}_{\delta\alpha}T^{**}_{c}$ -space.

2. Preliminaries

Throughout this paper (X, τ) (or simply X) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A), int(A) and X- A denote the closure of A, the interior of A and the complement of A respectively. Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of (X, τ) is said to be

- (i) semi-open set [13] if $A \subseteq cl(int(A))$.
- (ii) pre-open set [2] if $A\subseteq int(cl(A))$.
- (iii) semi-preopenset [1] if $A \subseteq cl(int(cl(A)))$.
- (iv) α -open set [15] if $A\subseteq int(cl(int(A)))$.
- (v) regular open set [11] if A=int(cl(A)).

The complement of a semi-open (resp. pre-open, α -open, regular open)set is called semi-closed (resp. semi-closed, α -closed, regular closed).

Definition 2.2. The δ -interior [14] of a subset A of X is the union of all regular open set of X contained in A and is denoted by $Int_{\delta}(A)$. The subset A is called δ -open [14] if $A = Int_{\delta}(A)$, i.e. a set is δ -open if it is the union of regular open sets. The complement of a δ -open is called δ -closed. Alternatively, a set $A \subseteq (X, \tau)$ is called δ -closed [14] if $A = cl_{\delta}(A)$, where

$$cl_{\delta}(A) = \{x \in X : int(cl(U)) \neq \phi, U \in \tau \text{ and } x \in U\}.$$

Definition 2.3. A subset A of (X, τ) is called

- (i) a generalized closed (briefly g-closed) set [12] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open set in (X, τ) .
- (ii) a generalized semi-closed (briefly gs-closed) set [17] if $scl(A)\subseteq U$ whenever $A\subseteq U$ and U is open set in (X,τ) .
- (iii) a α -generalized closed (briefly αg -closed) set [6] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ) .
- (iv) a δ -generalized closed (briefly δg -closed) set [8] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ) .
- (v) a generalized preclosed (briefly gp-closed) set [5] if $pcl(A)\subseteq U$ whenever $A\subseteq U$ and U is open set in (X,τ) .
- (vi) a generalized semi-preclosed (briefly gsp-closed) set [3] if $\operatorname{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in (X, τ) .

- (vii) a *generalized α -closed (briefly * $g\alpha$ -closed) set [10] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is $g\alpha$ -open set in (X,τ) .
- (viii) a generalized- δ closed (briefly $g\delta$ -closed) set [4] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is δ -open set in (X, τ) .
 - (ix) a δ generalized*-closed (briefly δ g*-closed) set [21] if $cl_{\delta}(A)\subseteq U$ whenever $A\subseteq U$ and U is δ -open set in (X,τ) .
 - (x) a generalized- δ semi closed (briefly $g\delta s$ -closed) set [9] if $scl(A)\subseteq U$ whenever $A\subseteq U$ and U is δ -open set in (X,τ) .
 - (xi) a δ -generalized b-closed (briefly δgb -closed) set [19] if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is δ -open set in (X, τ) .

The complement of a g-closed (resp. gs-closed, α g-closed, δ g-closed, gp-closed, gsp-closed, $g\delta$ -closed, $g\delta$ -closed, $g\delta$ -closed, $g\delta$ -closed and δ gb-closed) set is called g-open (resp. gs-open, α g-open, δ g-open, gp-open, gsp-open, $g\delta$ -open, $g\delta$ -open, $g\delta$ -open and δ gb-open).

Definition 2.4. A space (X, τ) is called a

- (i) $T_{1/2}$ -space [12] if every g-closed set in it is closed.
- (ii) $T_{3/4}$ -space [8] if every δg -closed set in it is δ -closed.
- (iii) $_{\delta}T_{3/4}$ -space [18] if every $g\delta s$ -closed set in it is δ -closed.
- (iv) $_{\delta}T_{\delta ab}$ -space [20] if every δgb -closed set in it is δ -closed.
- (v) $_{\alpha}T_d$ -space [7] if every αg -closed set in it is g-closed.

3. Properties of $\delta^* \mathbf{g} \alpha$ -closed sets in Topological Spaces

Definition 3.1. A subset A of a space (X, τ) is called $\delta^* g \alpha$ -closed if $\operatorname{cl}_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is a *g α -open set in (X, τ) .

Theorem 3.1. Every δ -closed set is * $g\alpha$ -closed.

Proof. Let A be δ -closed and U be any $g\alpha$ -open set containing A. Since A is δ -closed, $\operatorname{cl}_{\delta}(A) = A$. Therefore $\operatorname{cl}_{\delta}(A) \subseteq A \subseteq U$. We know that $\operatorname{cl}(A) \subseteq \operatorname{cl}_{\delta}(A) \subseteq U$. Hence A is * $g\alpha$ -closed.

Theorem 3.2. Every δ -closed set is $\delta^* g \alpha$ -closed set. Converse is not true is showed through an example.

Proof. Let A ⊆ U and U is $*g\alpha$ -open set. Since A is δ-closed $cl_{\delta}(A) = A$, then $cl_{\delta}(A) \subseteq U$ therefore A is $\delta *g\alpha$ -closed set.

Example 1. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$; Here $\{a, c\}$ is $\delta^* g \alpha$ -closed but not δ -closed in (X, τ) .

Theorem 3.3. Every $\delta^* g \alpha$ -closed set is gs-closed. Converse is not true is showed through an example.

Proof. Let $A\subseteq U$ and U is open set. Since every open set is $*g\alpha$ -open[9], then U is $*g\alpha$ -open set. Since A is $\delta *g\alpha$ -closed, then $cl_{\delta}(A)\subseteq U$. But $scl(A)\subseteq cl_{\delta}(A)$, then $scl(A)\subseteq U$, Therefore A is gs-closed set.

Example 2. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{c\}, \{a, c\}\}$; Here $\{a\}$ is gs-closed but not $\delta^* g \alpha$ -closed in (X, τ) .

Theorem 3.4. Every $\delta^* g \alpha$ -closed set is αg -closed. Converse is not true is showed through an example.

Proof. Let $A\subseteq U$ and U is open set. Since every open set is $*g\alpha$ -open, then U is $*g\alpha$ -open set. Since A is $\delta *g\alpha$ -closed, then $cl_{\delta}(A)\subseteq U$. But $\alpha cl(A)\subseteq cl_{\delta}(A)$, then $\alpha cl(A)\subseteq U$, Therefore A is αg -closed set.

Example 3. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$; Here $\{b\}$ is αg -closed but not $\delta^* g \alpha$ -closed in (X, τ) .

Theorem 3.5. Every $\delta^* g \alpha$ -closed set is gsp-closed. Converse is not true is showed through an example.

Proof. Let $A\subseteq U$ and U is open set. Since every open set is $*g\alpha$ -open, then U is $*g\alpha$ -open set. Since A is $\delta *g\alpha$ -closed, then $cl_{\delta}(A)\subseteq U$. But $spcl(A)\subseteq cl_{\delta}(A)$, then $spcl(A)\subseteq U$, Therefore A is gsp-closed set.

Example 4. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$; Here $\{a\}$ and $\{b\}$ are gsp-closed but not $\delta^* g \alpha$ -closed in (X, τ) .

Theorem 3.6. Every $\delta^*g\alpha$ -closed set is gp-closed. Converse is not true is showed through an example.

Proof. Let $A\subseteq U$ and U is open set. Since every open set is $*g\alpha$ -open, then U is $*g\alpha$ -open set. Since A is $\delta *g\alpha$ -closed, then $cl_{\delta}(A)\subseteq U$. But $pcl(A)\subseteq cl_{\delta}(A)$, then $pcl(A)\subseteq U$, Therefore A is gp-closed.

Example 5. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{b, c\}\}$; Here $\{b\}$ and $\{c\}$ are gp-closed but not $\delta^* g \alpha$ -closed in (X, τ) .

Theorem 3.7. Every $\delta^* g \alpha$ -closed set is δgp -closed. Converse is not true is showed through an example.

Proof. Let $A\subseteq U$ and U is δ -open set. Since every δ -open set is $*g\alpha$ -open, then U is $*g\alpha$ -open set. Since A is $\delta *g\alpha$ -closed, then $cl_{\delta}(A)\subseteq U$. But $pcl(A)\subseteq cl_{\delta}(A)$, then $pcl(A)\subseteq U$, Therefore A is δgp -closed.

Example 6. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a, b\}\}$; Here $\{a\}, \{b\}$ and $\{a, b\}$ is δgp -closed but not $\delta^* g \alpha$ -closed in (X, τ) .

Theorem 3.8. Every $\delta^* g \alpha$ -closed set is $g \delta$ -closed. Converse is not true is showed through an example.

Proof. Let $A\subseteq U$ and U is δ -open set. Since every δ -open set is ${}^*g\alpha$ -open, then U is ${}^*g\alpha$ -open set. Since A is $\delta {}^*g\alpha$ -closed, then $\operatorname{cl}_{\delta}(A)\subseteq U$. But $\operatorname{cl}(A)\subseteq\operatorname{cl}_{\delta}(A)$, then $\operatorname{cl}(A)\subseteq U$, Therefore A is $g\delta$ -closed.

Example 7. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}\}$; Here $\{a\}$ is $g\delta$ -closed but not $\delta^* g\alpha$ -closed in (X, τ) .

Theorem 3.9. Every $\delta^* g \alpha$ -closed set is δg^* -closed. Converse is not true is showed through an example.

Proof. Let A⊆U and U is δ -open set. Since δ -every open set is $*g\alpha$ -open, then U is $*g\alpha$ -open set. Since A is $\delta *g\alpha$ -closed, then $\operatorname{cl}_{\delta}(A)\subseteq U$. hence A is $g\delta *$ -closed.

Example 8. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a, b\}\}$; Here $\{a\}, \{b\}$ and $\{a, b\}$ are $g\delta^*$ -closed but not $\delta^*g\alpha$ -closed in (X, τ) .

Theorem 3.10. Every $\delta^* g \alpha$ -closed set is $g \delta s$ -closed. Converse is not true is showed through an example.

Proof. Let A⊆U and U is δ-open set. Since every δ-open set is $*g\alpha$ -open, then U is $*g\alpha$ -open set. Since A is $\delta *g\alpha$ -closed, then $cl_{\delta}(A)$ ⊆U. But scl(A)⊆ $cl_{\delta}(A)$, then scl(A)⊆U, Therefore A is $g\delta s$ -closed.

Example 9. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}\}$; Here $\{a\}, \{b\}$ and $\{a, b\}$ are $g\delta s$ -closed but not $\delta^* g\alpha$ -closed in (X, τ) .

Theorem 3.11. Every $\delta^* g \alpha$ -closed set is δgb -closed. Converse is not true is showed through an example.

Proof. Let $A\subseteq U$ and U is δ -open set. Since every δ -open set is $*g\alpha$ -open, then U is $*g\alpha$ -open set. Since A is $\delta *g\alpha$ -closed, then $cl_{\delta}(A)\subseteq U$. But $bcl(A)\subseteq cl_{\delta}(A)$, then $bcl(A)\subseteq U$, Therefore A is δgb -closed.

Example 10. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{c\}, \{a, c\}\}$; Here $\{a\}, \{c\}$ and $\{a, c\}$ are δgb -closed but not $\delta^* g\alpha$ -closed in (X, τ) .

Theorem 3.12. The finite union of $\delta^* g \alpha$ -closed sets is $\delta^* g \alpha$ -closed.

Proof. Let $\{A_i/i=1,2,...n\}$ be a finite class of $\delta^*g\alpha$ -closed subsets of a space (X,τ) . Then for each $^*g\alpha$ -open set U_i in X containing $A_i, cl_\delta(A_i) \subseteq ?U_i, i \in \{1,2,...n\}$. Hence $\bigcup_i A_i \subseteq \bigcup_i U_i = V$. Since arbitrary union of $^*g\alpha$ -open sets in (X,τ) is also $^*g\alpha$ -open set in (X,τ) , V is $^*g\alpha$ -open in (X,τ) . Also $\bigcup_i cl_\delta(A_i) = cl_\delta(\bigcup_i A_i) \subseteq V$. Therefore $U_i A_i$ is $\delta^*g\alpha$ -closed in (X,τ) .

Remark 3.1. Intersection of any two $\delta^*g\alpha$ -closed sets in (X, τ) need not be $\delta^*g\alpha$ -closed in (X, τ) , it can be seen by the following example.

Example 11. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}; \{b, c\}$ and $\{b, d\}$ are $\delta^* g \alpha$ -closed sets but their intersection $\{b\}$ is not $\delta^* g \alpha$ -closed.

Theorem 3.13. Let A be a $\delta^* g \alpha$ -closed set of (X, τ) , then $cl_{\delta}(A)$ -A does not contain a non-empty $*g \alpha$ -closed set.

Proof. Suppose that A is $\delta^*g\alpha$ -closed, let F be a $^*g\alpha$ -closed set contained in $\operatorname{cl}_{\delta}(A)$ -A. Now F^c is $^*g\alpha$ -open set of (X,τ) such that $A\subseteq F^c$. Since A is $\delta^*g\alpha$ -closed set of (X,τ) , then $\operatorname{cl}_{\delta}(A)\subseteq F^c$. Thus $F\subseteq (cl_{\delta}(A))^c$. Also $F\subseteq cl_{\delta}(A)-A$. Therefore $F\subseteq (cl_{\delta}(A))\subset \bigcap (cl_{\delta}(A))=\phi$. Hence $F=\phi$.

Theorem 3.14. If A is $*g\alpha$ -open and $\delta *g\alpha$ -closed subset of (X, τ) then A is an δ -closed subset of (X, τ) .

Proof. Since A is $g\alpha$ -open and $\delta^*g\alpha$ -closed, $cl_\delta(A) \subseteq A$. Hence A is δ -closed. \square

Theorem 3.15. The intersection of a $\delta^*g\alpha$ -closed set and a δ -closed set is always $\delta^*g\alpha$ -Closed.

Proof. Let A be $\delta^*g\alpha$ -Closed and let F be δ -closed. If U is an $^*g\alpha$ -open set with $A \cap F \subseteq U$, then $A \subseteq U \cap F^c$ and so $\operatorname{cl}_{\delta}(A) \subseteq U \cap F^c$. Now $\operatorname{cl}_{\delta}(A \cap F) \subseteq \operatorname{cl}_{\delta}(A) \cap F \subseteq U$. Hence $A \cap F$ is $\delta^*g\alpha$ -closed.

Theorem 3.16. In a $T_{3/4}$ -space every $\delta^* g \alpha$ -closed set is δ -closed.

Proof. Let X be $T_{3/4}$ -space. Let A be $\delta^*g\alpha$ -closed set of X. We know that every $\delta^*g\alpha$ -closed set is δg -closed. Since X is $T_{3/4}$ -space, A is δ -closed.

Theorem 3.17. If A is a $\delta^* g \alpha$ -closed set in a space (X, τ) and $A \subseteq B \subseteq cl_{\delta}(A)$, then B is also a $\delta^* g \alpha$ -closed set.

Proof. Let U be a $*g\alpha$ -open set of (X,τ) such that $B \subseteq cl_{\delta}(A)$, Then $A \subseteq U$. Since A is $\delta *g\alpha$ -closed set, $cl_{\delta}(A) \subseteq U$. Also since $B \subseteq cl_{\delta}(A)$, $cl_{\delta}(B) \subseteq cl_{\delta}(cl_{\delta}(A)) = cl_{\delta}(A) \subseteq U$. Implies cl?(B) \subseteq U. Therefore B is also a $\delta *g\alpha$ -closed set.

Theorem 3.18. Let A be $\delta^* g \alpha$ -closed of (X, τ) , then A is δ -closed iff $cl_{\delta}(A) - A$ is $^* g \alpha$ -closed.

Proof. Necessity. Let A be a δ -closed subset of X. Then $cl_{\delta}(A) = A$ and so $cl_{\delta}(A) - A = \phi$ which is $*g\alpha$ -closed.

Sufficiency. Since A is $\delta^* g \alpha$ -closed, by proposition, $cl_{\delta}(A) - A$ does not contain a non-empty $^* g \alpha$ -closed set. But $cl_{\delta}(A) - A = \phi$. That is $cl_{\delta}(A) = A$. Hence A is δ -closed.

4. Some spaces using $\delta^* \mathbf{g} \alpha$ -closed sets

We introduce the following definition.

Definition 4.1. A space (X, τ) is called ${}_{\alpha\delta}T^{**}_{\frac{3}{4}}g\alpha$ -space if every $\delta^*g\alpha$ -closed set is an δ -closed.

Theorem 4.1. For a topological space (X, τ) , the following conditions are equivalent.

- (i) (X, τ) is a ${}_{\alpha\delta}T^{**}_{\frac{3}{4}}g\alpha$ -space.
- (ii) Every singleton $\{x\}$ is either $*g\alpha$ -closed or δ -open.

Proof. $(i) \Rightarrow (ii)$ Let $x \in X$. Suppose $\{x\}$ is not a $^*g\alpha$ -closed set of (X,τ) . Then $X - \{x\}$ is not a $^*g\alpha$ -open set. Thus $X - \{x\}$ is an $\delta^*g\alpha$ -closed set of (X,τ) . Since (X,τ) is $_{\alpha\delta}T^{**}_{\frac{3}{4}}g\alpha$, $X - \{x\}$ is an δ -closed set of (X,τ) , i.e. $\{x\}$ is δ -open set of (X,τ) .

 $(ii) \Rightarrow (i)$ Let A be an $\delta^* g \alpha$ -closed set of (X, τ) . Let $x \in cl_{\delta}(A)$. By (ii), $\{x\}$ is either ${}^*g \alpha$ -closed or δ -open.

Case(i). Let $\{x\}$ be ${}^*g\alpha$ -closed. If we assume that $x\notin A$, then we would have $x\in cl_\delta(A)-A$, which cannot happen according to proposition Hence $x\in A$. Case(ii) Let $\{x\}$ be δ -open. Since $x\in cl_\delta(A)$, then $\{x\}\bigcap A=\phi$. This shows that $x\in A$. So in both cases we have $cl_\delta(A)\subseteq A$. Trivially $A\subseteq cl_\delta(A)$. Therefore $A=cl_\delta(A)$ or equivalently A is δ -closed. Hence (X,τ) is a ${}_{\alpha\delta}T_{\frac{3}{4}}^{**}g\alpha$ -space. \square

Theorem 4.2. Every $_{\delta}T_{\frac{3}{4}}$ -space is a $_{\alpha\delta}T_{\frac{3}{4}}^{**}g\alpha$ -space. Converse is not true is showed through an example.

Proof. Let A be a $\delta^*g\alpha$ -closed set of (X,τ) . Since every $\delta^*g\alpha$ -closed set is gδ-closed, then A is gδsŒčlosed. Since (X,τ) is $_{\delta}T_{\frac{3}{4}}$ -space, then A is δ-closed. Therefore (X,τ) is $_{\alpha\delta}T_{\frac{3}{4}}^{**}g\alpha$ -space.

Example 12. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$; Here it is ${}_{\alpha\delta}T^{**}_{\frac{3}{4}}g\alpha$ -space but not ${}_{\delta}T_{\frac{3}{4}}$ -space, Since $\{a\}$ is $g\delta$ -closed set but not δ -closed set.

Theorem 4.3. Every $_{\delta}T_{\delta gb}$ -space is a $_{\alpha\delta}T_{\frac{3}{4}}^{**}g\alpha$ -space. Converse is not true is showed through an example.

Proof. Let A be a $\delta^*g\alpha$ -Closed set of (X,τ) . Since every $\delta^*g\alpha$ -Closed set is δgb -closed, then A is δgb -closed. Since (X,τ) is $_{\delta}T_{\delta gb}$ -space, then A is δ -closed. Therefore (X,τ) is $_{\alpha\delta}T_{\frac{3}{4}}^{**}g\alpha$ -space.

Example 13. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$; Here it is ${}_{\alpha\delta}T^{**}_{\frac{3}{4}}g\alpha$ -space but not ${}_{\delta}T_{\delta gb}$ -space, Since $\{a\}$ is δgb -closed set but not δ -closed set.

Definition 4.2. A space (X, τ) is called ${}_{\delta}T_c^{***}$ -space if every gs-Closed set in it is an $\delta^*g\alpha$ -closed.

Theorem 4.4. Every $_{\delta}T_{c}^{**}$ -space is a $_{\alpha}T_{d}$ -space. Converse is not true is showed through an example.

Proof. Let A be a αg -Closed set of (X,τ) . Since αg -Closed set is gs-closed, then A is gs-closed. Since (X,τ) is a $_{\delta}T_{c}^{**}$ -space in (X,τ) , then A is $\delta^{*}g\alpha$ -closed.

Since every $\delta^*g\alpha$ -closed set is g-closed, then A is g-closed. Therefore (X,τ) is ${}_{\alpha}T_d$ -space.

Example 14. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$; Here it is ${}_{\alpha}T_d$ -space but not ${}_{\delta}T_c^{**}$ -space.

Definition 4.3. A space (X, τ) is called ${}_{\delta\alpha}T_c^{**}$ -space if every αg -Closed set in it is an $\delta^*g\alpha$ -closed.

Theorem 4.5. Every $_{\delta}T_{c}^{**}$ -space is a $_{\delta\alpha}T_{c}^{**}$ -space. Converse is not true is showed through an example.

Proof. Let A be a αg -Closed set of (X,τ) . Since every αg -Closed set is gs CEčlosed, then A is gs-closed. Since (X,τ) is ${}_{\delta}T_c^{**}$ -space, then A is ${}_{\delta}^*g\alpha$ -closed. Therefore (X,τ) is an ${}_{\delta\alpha}T_c^{**}$ -space.

Example 15. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$; Here it is ${}_{\delta\alpha}T_c^{**}$ -space but not ${}_{\delta}T_c^{**}$ -space, Since $\{a\}$ is gs-closed set but not ${}_{\delta}T_c^{**}$ -closed set.

Definition 4.4. A space (X, τ) is called ${}^{**}_{\delta\alpha}T_{\frac{1}{2}}$ -space if every g-Closed set in it is an $\delta^*g\alpha$ -closed.

Theorem 4.6. Every $_{\delta}T_{c}^{**}$ -space is a $_{\delta\alpha}^{**}T_{\frac{1}{2}}$ -space. Converse is not true is showed through an example.

Proof. Let A be a g-Closed set of (X,τ) . Since every g-Closed set is gs-closed, then A is gs-closed. Since (X,τ) is ${}_{\delta}T_c^{**}$ -space, then A is ${}_{\delta}^*g\alpha$ -closed. Therefore (X,τ) is an ${}_{\delta\alpha}^*T_{\frac{1}{2}}$ -space.

Example 16. Let $X=\{a,b,c,d\},\ \tau=\{\phi,X,\{a\},\{a,b\},\{a,b,c\}\}\$; Here it is ${}^{**}_{\delta\alpha}T_{\frac{1}{2}}$ -space but not ${}_{\delta}T_{c}^{**}$ -space, Since $\{b\}$ is gs-closed set but not ${}^{*}g\alpha$ -closed set.

Theorem 4.7. Every $_{\delta\alpha}T_c^{**}$ -space is a $_{\delta\alpha}^{**}T_{\frac{1}{2}}$ -space. Converse is not true is showed through an example.

Proof. Let A be a g-Closed set of (X,τ) . Since every g-Closed set is αg -closed, then A is αg -closed. Since (X,τ) is ${}_{\delta\alpha}T_c^{**}$ -space, then A is ${}^*g\alpha$ -closed. Therefore (X,τ) is an ${}^{**}_{\delta\alpha}T_{\frac{1}{2}}$ -space.

Example 17. Let $X=\{a,b,c,d\},\ \tau=\{\phi,X,\{a\},\{a,b\},\{a,b,c\}\}\$; Here it is ${}^{**}_{\delta\alpha}T_{\frac{1}{2}}$ -space but not ${}_{\delta\alpha}T_{c}^{**}$ -space, Since $\{b\}$ is ${}_{\alpha}g$ -closed set but not ${}_{\delta}^{*}g\alpha$ -closed set.

5. Conclusion

This article defined $\delta^*g\alpha$ -closed set in Topological Spaces and relation with other exciting sets in topology were studied. Along with that some of there properties were discussed. Also $_{\alpha\delta}T_{\frac{3}{4}}^{**}g\alpha$ -space, $_{\delta}T_{c}^{**}$ -space, $_{\delta\alpha}^{**}T_{\frac{1}{2}}$ -space and $_{\delta\alpha}T_{c}^{**}$ -space of a set were introduced and discussed their properties. This set can be used to derive few more functions such as $\delta^*g\alpha$ -continuous and $\delta^*g\alpha$ -irresolute functions. In addition to that it can be extended to homeomorphsims of topological spaces.

REFERENCES

- [1] A. ANDRIJEVIC: Semi-preopen sets, Mat. Vesnik. **38**(1)(1986), 24 32.
- [2] A. S. MASHHOUR, M. E. ABD EL-MONSEF, S.N. EL-DEBB: On precontinuous and weak precontinuous mappings, Proc.Math. and Phys.Soc. Egypt., **55**(1982), 47 53.
- [3] J. DONTCHEV: On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A Math., **16**(1995) 35 -âĂŞ 48.
- [4] J. DONTCHEV, L. AROKIARANI, K. BALACHANDRAN: On Generalized δ -closed sets and Almost weakly Hausdroff spaces, Questions Answers Gen Topology., **18**(1)(2000), 17 30.
- [5] H. MAKI, J. UMEHARA, T. NOIRI: Every topological space is pre- $T_{\frac{1}{2}}$, Mem.Fac Sci. Kochi Univ. Ser.A, Math., 17(1996), 33 42.
- [6] H. MAKI, R. DEVI, K. BALACHANDRAN: Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci.Kochi Univ. Ser. A. Math., **15**(1994), 57 63
- [7] H. MAKI, R. DEVI, K. BALACHANDRAN: Generalized α -closed maps and α -generalized closed maps, Indian J.Pure Appl.Math. **29**(1)(1998), 37 49.
- [8] J. DONTCHEV, M. GANSTER: On δ -generalized closed sets and $T_{\frac{3}{4}}$ -spaces, Mem.Fac.Sci.Kochi Univ.Ser.A, Math., 17(1996), 15 31.
- [9] J. H. PARK, D. S. SONG, R. SAADATI: On Generalized δ -Semiclosed sets in Topological Spaces, Choas, Soliton and Fractals., **33**(2007), 1329 1338.
- [10] M VIGNESWARAN, R. DEVI: On $G\alpha 0$ -kernel in the digital plane, International Jornal of Mathematical Archive., **3**(6)(2012), 2358 2373.
- [11] M. Stone: *Application of the theory of Boolian rings to general topology*, Trans. Amer. Math. Soc., **41**(1937), 374 481.
- [12] N. LEVINE: Generalized closed sets in topology, Rend.Circ.Mat.Palermo., **19**(1970), 89 96.
- [13] N. LEVINE: Semi-open sets and semi-continuity in topological spaces, Amer Math. Monthly., **70**(1963), 36 41.

- [14] N. V. VELICKO: *H-closed topological spaces*, Amer. Math.Soc. Transl., **78**(1968), 103 118.
- [15] O. NJASTAD: On some classes of nearly open sets, Pacific J Math., 15(1965), 961 970.
- [16] P. BHATTACHARYA, B. K LAHIRI: *Semi-generalized closed sets in topology*, Indian J.Math., **29**(1)(1987), 375 382.
- [17] S. P. ARYA, T. NOUR: *Characterizations of S-normal spaces*, Indian J.Pure. Appl.Math,. **21**(8)(1990), 717 719.
- [18] S. S. BENCHALLI, U. I. NEELI: Generalized δ -semi closed sets in the Topological spaces, Int.J.Appl. Math., **24**(1)(2011), 21 38.
- [19] S. S. BENCHALLI, P. G. PATIL, J. B. TORANAGATTI, S. R. VIGHNESHI: δgb -Seperation axioms in Topological spaces, International Mathematical Forum., **23**(2016), 1117 1131.
- [20] S. S. BENCHALLI, P. G. PATIL, J. B. TORANAGATTI: On δgb -continuous functions in topological spaces, International Journal of Scientific and Innovative Mathematical Research., **3**(2) (2015), 440 446
- [21] R. SUDHA, K. SIVAKAMASUNDARI: δg^* -closed sets in topological spaces, International Journal of Mathematical Archieve, **3**(3)(2012), 1222 1230

DEPARTMENT OF MATHEMATICS

KPR INSTITUTE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS)

COIMBATORE - 641407, INDIA.

E-mail address: catchmedamo@gmail.com

DEPARTMENT OF MATHEMATICS

KONGUNADU ARTS AND SCIENCE COLLEGE (AUTONOMOUS)

COIMBATORE - 641029, INDIA.

E-mail address: vignesh.mat@gmail.com