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NEW BOUNDS ON SDD INVARIANT OF GRAPHS

P. MURUGARAJAN1 AND R. ARULDOSS

ABSTRACT. The SDD invariant is one of the 148 discrete Adriatic indices con-
tributed many years ago. In this paper, we obtain several new upper bounds for
SDD invariant of a given graph in terms of other graph parameters.

1. INTRODUCTION

Molecular descriptors have found applications in modeling several physico-
chemical properties in QSAR and QSPR studies [2, 4]. A particularly many
type of molecular descriptors are defined as functions of the structure of the
underlying molecular graph, such as the Wiener invariant [10], the Zagreb in-
variants [3] and Balaban invariant [1]. Damir Vukicević et al. [9] proved that
many of these descriptors are defined the sum of individual bond contributions.
Among the 148 discrete Adriatic invariants studied in [9], whose predictive
properties were evaluated against the benchmark datasets of the Internation
Academy of Mathematical Chemistry [8], 20 invariants were selected as sig-
nificant predictors of physicochemical properties. One of these useful discrete
adriatic indices is the symmetric division deg (SDD) invariant which is defined
as SDD(Γ) =

∑
xy∈E(Γ)

(
ηx
ηy

+ ηy
ηx)

)
, where ηx and ηy are the degrees of vertices

x and y, respectively. Among all the existing molecular descriptors, SDD in-
variant has the best correlating ability for predicting the total surface area of
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polychlorobiphenys [9]. In this paper, several new upper bounds for symmetric
division deg invariant of a given graph are established.

2. PRELIMINARIES

The minimum and minimum vertex degrees of Γ, respectively, denoted by δ
and ∆.

- First and second Zagreb invariants:
M1(Γ) =

∑
xy∈E(Γ)

(ηx + ηy) and M2(Γ) =
∑

xy∈E(Γ)

(ηxηy).

- The first and second modified Zagreb invariants:
M∗

1 (Γ) =
∑

x∈V (Γ)

1
η2x

and M∗
2 (Γ) =

∑
xy∈E(Γ)

1
ηxηy

.

- The multiplicative version of Zagreb invariant:
π1(Γ) =

∏
x∈V (Γ)

η2
x,π2(Γ) =

∏
xy∈E(Γ)

ηxηy and π∗1(Γ) =
∏

xy∈E(Γ)

(ηx + ηy).

- The α-Randić invariant is then defined as Rα(Γ) =
∑

xy∈E(Γ)

(ηxηy)
α.

- The α-sum-connectivity invariant of Γ is defined as
χα(Γ) =

∑
xy∈E(Γ)

(ηx + ηy)
α.

- The sum and product F -invariants:
F (Γ) =

∑
xy∈E(Γ)

(η2
x + η2

y) and F ∗(Γ) =
∏

xy∈E(Γ)

(η2
x + η2

y).

- The α-F -invariant: Fα(Γ) =
∑

xy∈E(Γ)

(η2
x + η2

y)
α.

- The (r, t)-Zagreb invariant: Z ′r,t(Γ) =
∑

xy∈E(Γ)

(ηrxη
t
y + ηtxη

r
y).

3. BOUNDS FOR SDD

Let Γ be a connected graph with s vertices and m edges and let ∆ = η1 ≥
η2 ≥ . . . ≥ ηs = δ > 0, ηi = η(i) and η(e1) ≥ η(e2) ≥ . . . ≥ η((em) be sequences
of its vertex and edge degrees, respectively. We denote ∆e1 = η(e1) + 2 and
δe1 = η(em) + 2. If the vertices x and y are adjacent, we write x ∼ y.

Let p = (pi) and a = (ai), i = 1, 2, . . . ,m be positive real number sequences
with the properties p1 + p2 + . . . + pm = 1 and 0 < a ≤ ai ≤ A <∞. Rennie [6]
proved
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m∑
i=1

piai + aA

m∑
i=1

pi
ai
≤ a+ A,(3.1)

with equality if and only if ai = A(or)ai = a, for every i = 1, 2, . . . ,m.

Let x = (xi) and a = (ai), i = 1, 2, . . . ,m be positive real number sequences.
Then by [7],

m∑
i=1

xr+1
i

ari
≥

( m∑
i=1

xi

)r+1

( m∑
i=1

ai

)r
with equality if and only if a1

x1
= a2

x2
= . . . = am

xm
.

If a = (ai), i = 1, 2, . . . ,m is a positive real number sequences, then by [5],
we write ( m∑

i=1

√
ai
)2 ≥

m∑
i=1

ai +m(m− 1)
( m∏
i=1

ai

) 1
m

(3.2)

with equality if and only if a1 = a2 = . . . = am.

Theorem 3.1. For a connected graph Γ, SDD(Γ) ≤
(∆e + δe)F (Γ)− 2Z ′3,1(Γ)

∆eδe
.

Equality holds if and only if Γ is regular (or) semiregular bipartite graph.

Proof. For pi =
η2
x + η2

y∑
x∼y

(η2
x + η2

y)
, ai = ηxηy,r = δe,R = ∆e where summation is

performed over all edges in a graph Γ, the inequality (3.1) becomes∑
x∼y

(η2
x + η2

y)ηxηy∑
x∼y

(η2
x + η2

y)
+ ∆eδe

∑
x∼y

η2x+η2y
ηxηy∑

x∼y
(η2
x + η2

y)
≤ ∆e + δe

⇒
∑
x∼y

(η2
x + η2

y)ηxηy + ∆eδe
∑
x∼y

η2
x + η2

y

ηxηy
≤ (∆e + δe)

∑
x∼y

(η2
x + η2

y)

⇒
∑
x∼y

(η2
x + η2

y)ηxηy + ∆eδe SDD(Γ) ≤ (∆e + δe)F (Γ).(3.3)

By the definition of (r, t)-Zagreb invariant, we obtain

2Z ′3,1(Γ) + ∆eδeSDD(Γ) ≤ (∆e + δe)F (Γ).
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Therefore

SDD(Γ) ≤
(∆e + δe)F (Γ)− 2Z ′3,1(Γ)

∆eδe
.

Equality in (3.1) holds if and only if a1 = a2 = . . . = am (or) a1 = a2 = . . . =

as ≥ as+1 = . . . = am for some s,1 ≤ s ≤ m − 1. This means that equality in
(3.3) is attained if and only if either ∆e = η(e1) + 2 = . . . = η(em) + 2 = δe (or)
∆e = η(e1) + 2 = . . . = η(es) + 2 ≥ η(es+1) + 2 = . . . = η(em) + 2 = δefor some
s,1 ≤ s ≤ m− 1. This implies Γ is regular (or) semiregular bipartite graph. �

Theorem 3.2. Let Γ be a connected graph with m edges. Then

SDD(Γ) ≤
[
(∆e + δe)F (Γ)− F (Γ) +m(m− 1)(F ∗(Γ))

1
m

M∗
2 (Γ)

]( 1

∆eδe

)
,

with equality if and only if Γ is regular (or) semiregular bipartite graph.

Proof. One can see that

∑
x∼y

(η2
x + η2

y)ηxηy =
∑
x∼y

(
√
η2
x + η2

y)
2

1
ηxηy

≥
(
∑
x∼y

√
η2
x + η2

y)
2∑

x∼y

1
ηxηy

.(3.4)

Setting ai = η2
x + η2

y in (3.2), we have

(
∑
x∼y

√
η2
x + η2

y)
2 ≥

∑
x∼y

(η2
x + η2

y) +m(m− 1)
(∏
x∼y

(η2
x + η2

y)
) 1

m

= F (Γ) +m(m− 1)(F ∗(Γ))
1
m .(3.5)

From the Equations (3.4) and (3.5) we obtain∑
x∼y

(η2
x + η2

y)ηxηy ≥
F (Γ) +m(m− 1)(F ∗(Γ))

1
m

M∗
2 (Γ)

.(3.6)

Substitute (3.6) in (3.3), we get

F (Γ) +m(m− 1)(F ∗(Γ))
1
m

M∗
2 (Γ)

+ ∆eδeSDD(Γ) ≤ (∆e + δe)F (Γ).

Hence

SDD(Γ) ≤
[
(∆e + δe)F (Γ)− F (Γ) +m(m− 1)(F ∗(Γ))

1
m

M∗
2 (Γ)

]( 1

∆eδe

)
.

Equality holds if and only if Γ is regular (or) semiregular bipartite graph. �
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Theorem 3.3. For a connected graph Γ with m edges,

SDD(Γ) ≤
[
(∆e + δe)F (Γ)−m(F ∗Γ)

1
m (π2(Γ))

1
m

]( 1

∆eδe

)
.

Equality holds if and only if Γ is regular (or) semiregular bipartite graph.

Proof. One can observe that∑
x∼y

(η2
x + η2

y)
2ηxηy ≥ m

(∏
x∼y

(η2
x + η2

y)ηxηy

) 1
m

= m(F ∗Γ)
1
m (π∗1)

1
m .(3.7)

By the Equations (3.3) and (3.7), we have

m(F ∗Γ)
1
m (π2(Γ))

1
m + ∆eδeSDD(Γ) ≤ (∆e + δe)F (Γ).

Therefore SDD(Γ) ≤
[
(∆e + δe)F (Γ)−m(F ∗Γ)

1
m (π2(Γ))

1
m

](
1

∆eδe

)
.

The equality sign holds throughtout in (3.7) if and only if (η2
x + η2

y)
2ηxηy = k,

constant, for every edge of Γ. Therefore equality holds in (3.7) if and only if Γ

is regular (or) semiregular bipartite graph. Hence SDD(Γ) ≤
[
(∆e + δe)F (Γ)−

m(F ∗Γ)
1
m (π2(Γ))

1
m

](
1

∆eδe

)
with equality if and only if Γ is regular (or) semireg-

ular bipartite graph. �

Theorem 3.4. Let Γ be a connected graph with m edges. Then

SDD(Γ) ≤ (∆e + δe)F (Γ)− 2mδ4

∆eδe
with equality if and only if Γ is regular (or)

semiregular bipartite graph.

Proof. Since δ ≤ ηx ≤ ∆, for every vertex x ∈ V (Γ) with equality if and only if
Γ is regular. Hence

∑
x∼y

(η2
x + η2

y)ηxηy ≥ 2mδ4. From the Equation (3.3), we get

2mδ4 + ∆eδe SDD(Γ) ≤ (∆e + δe)F (Γ)

⇒ ∆eδe SDD(Γ) ≤ (∆e + δe)F (Γ)− 2mδ4

⇒ SDD(Γ) ≤ (∆e + δe)F (Γ)− 2mδ4

∆eδe
.

�
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