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RESULTS ON RELATIVELY PRIME DOMINATION NUMBER
OF VERTEX SWITCHING OF COMPLEMENT GRAPHS

C. JAYASEKARAN1 AND A. JANCY VINI

ABSTRACT. Let G be a non-trivial graph. A set S ⊆ V is said to be a rela-

tively prime dominating set if it is a dominating set with at least two elements

and for every pair of vertices u and v in S such that (d(u), d(v)) = 1. The mini-

mum cardinality of a relatively prime dominating set is called a relatively prime

domination number and it is denoted by γrpd(G). For a finite undirected graph

G(V,E) and a subset σ ⊆ V, the switching of G by σ is defined as the graph

Gσ(V,E′) which is obtained from G by removing all edges between σ and its

complement V − σ and adding as edges all non-edges between σ and V − σ.

In this paper we compute the relatively prime domination number of vertex

switching of complement of path Pn, cycle Cn, star K1,n and complete bipartite

graph Km,n.

1. INTRODUCTION

By a graph G = (V,E) we mean a finite undirected simple graph. The order

and size of G are denoted by p and q respectively. For graph theoretical terms, we

refer to Harary [2] and for terms related to domination we refer to Haynes [3].

A subset S of V is said to be a dominating set in G if every vertex not in S

is adjacent to at least one member of S. The domination number γ(G) is the

number of vertices in a smallest dominating set for G.
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The originators of dominating sets are Berge and Ore [1, 8]. It was further

extended to define many other domination related parameters in graphs. Let G

be a non-trivial graph. A set S ⊆ V is said to be a relatively prime dominating

set if it is a dominating set and for every pair of vertices u and v in S such that

(d(u), d(v)) = 1. The number of vertices in a smallest relatively prime dominat-

ing set is called the relatively prime domination number and it is denoted by

γrpd(G) [5]. Switching in graphs was introduced by Lint and Seidel [7]. For

a finite undirected graph G(V,E) and v ∈ V, the vertex switching of G by v is

the graph Gv which is obtained from G by removing all edges incident to v and

adding edges which are not adjacent to v [4]. In this paper we determine the

relatively prime domination number γrpd(G
v
) where G is a path, cycle, star and

complete bipartite graph.

2. DEFINITION AND EXAMPLES

Definition 2.1. For a finite undirected graph G(V,E) and v ∈ V, the vertex switch-

ing of G by v is the graph Gv which is obtained from G by removing all edges

incident to v and adding edges which are not adjacent to v.

Example 1. The graphs C5 and Cv
5 are given in figures 2.1 and 2.2, respec-

tively. Clearly {u, x} is a minimal relatively prime dominating set of Cv
5 and hence

γrpd(C
v
5 ) = 2.
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Example 2. Consider the graph G given in figure 2.3. The graph Gv1 is given

in figure 2.4. Clearly {v1, v2, v4} is a dominating set of Gv1 . Also (d(v1), d(v2)) =
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(3, 1) = 1; (d(v1), d(v4)) = (3, 2) = 1 and (d(v2), d(v4)) = (1, 2) = 1. By definition,

{v1, v2, v4} is a relatively prime dominating set of Gv1 . Also {v1, v2, v4} is a mini-

mal dominating set with this property and hence γrpd(G
v1) = 3. But γ(Gv1) = 2.

bc bc bc bc bc bc
v2 v3 v4

v5 v6 v7
b bc b bc bc bc

v2 v3 v4 v5 v6 v7

Fig 2.3 G Fig 2.4 Gv1

bcbc
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We recall the following results for future study.

Theorem 2.1. [5] For a complete bipartite graph Km,n, γrpd(Km,n) = 2 if and

only if (m,n) = 1.

Result 1. [6] If G is a regular graph of degree n 6= 1, then γrpd(G) = 0.

Result 2. [6] If G = nK2, n ≥ 2, then γ(G) = γrpd(G) = n. For n = 1, γ(G) = 1

and γrpd(G) = 2.

Theorem 2.2. [6] γrpd(Pn) =















2 if 2 ≤ n ≤ 5

3 if n = 6, 7

0 otherwise

.

Notation 1. [4] Consider a cycle Cr = (v1, v2, . . . , vr) (clock-wise). For our

convenience we denote it by Cr(v1). Identifying an end vertex of paths Pm at vi

and Ps at vj , then Cr(v1) is denoted by Cr(v1)(0, . . . , Pm, 0, . . . , Ps, 0, . . . , 0). Iden-

tifying an end vertex of paths Pm and Ps at the vertex vj , then Cr(v1) is denoted

by Cr(v1)(0, . . . , Pm ∪Ps, 0, . . . , 0). The graphs C4(v)(0, 0, P2, P3) and C4(v)(0, 2P2 ∪

P3, P2, P3) given in figure 2. 5 and 2. 6.
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Fig. 2.5 C4(v)(0, 0, P2, P3) Fig. 2.6 C4(v)(0, 2P2 ∪ P3, P2, P3)

3. MAIN RESULTS

In this section, we find γrpd(G
v
) where G is a cycle Cn, path Pn, star K1,n and

complete bipartite graph Km,n and v is any vertex of G.

Theorem 3.1. For n ≥ 3, γrpd(C
v

n) =







2 if n is odd

0 if n is even.

Proof. Let v1v2v3 . . . vnv1 be the cycle Cn. It is clear that for 2 ≤ i ≤ n, C
vi

n are

isomorphic to C
v1

n . We consider the following two cases. If n = 3, then C3 = K3

and hence C3 = K3. This implies that C
v

3 = K1 ∪K2, and hence γrpd(C
v

3) = 2.

Consider n ≥ 4. Without loss of generality, let v = v1. In Cn, d(vi) = 2, and

hence in Cn, d(vi) = n − 3, 1 ≤ i ≤ n. Since v1 is adjacent to v3, v4, . . . , vn−1 in

Cn, v1 is adjacent to v2 and vn in C
v1

n . Hence in C
v1

n , d(v1) = 2, d(v2) = d(vn) =

n− 2 and d(vj) = n− 4, 3 ≤ j ≤ n− 1. Since vn is adjacent to v1, v2, . . . , vn−2 in

C
v1

n , {vn−1, vn} is a minimal dominating set of C
v1

n . Also in C
v1

n , (d(vn−1), d(vn)) =

(n − 4, n − 2). If n is odd, then (n − 2, n − 4) = 1 and hence {vn−1, vn} is a

minimal relatively prime dominating set which implies that γrpd(C
v

n) = 2. If n

is even, then 2, n − 2, n − 4 are multiples of 2 and hence γrpd(C
v

n) = 0. This

completes the proof of the theorem. �
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Example 3. The graphs C7, C7 and C
v1

7 are given in figures 3.1, 3.2 and 3.3,

respectively. Clearly, {v6, v7} is a relatively prime dominating set of C
v1

7 .
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Theorem 3.2.

(i) γrpd(P
v

2) = 2

(ii) γrpd(P
v

3) =







2 if v is an end vertex of P3

0 otherwise

(iii) γrpd(P
v

4) =







2 if v is an support vertex of P4

3 if v is an end vertex

(iv) For n ≥ 5, γrpd(P
v

n) = 2, where v is any vertex of Pn.

Proof. Let v1v2v3 . . . vn be the path Pn. Let v be any vertex of Pn. We consider the

following four cases.

Case 1. n = 2.

Then P2 = K2 and hence P 2 = K2 This implies that P
v

2 = K2 = K1,1. By

Theorem 2.1, γrpd(P
v

2) = 2.

Case 2. n = 3.

Then P3 = K1,2 and hence P 3 = K1 ∪ K2. This implies that P
v

3 is either K3 or

K1 ∪ K2 according as v is a support vertex or an end vertex of P3. If P
v

3 = K3,

then by Result 1, γrpd(P
v

3) = 0. If P
v

3 = K1 ∪K2, then clearly, γrpd(P
v

3) = 2. Thus

γrpd(P
v

3) = 0 or 2 according as v is the support vertex or an end vertex of P3.

Case 3. n = 4.

In this case, P
v

4 is either K1∪P3 with v has degree one or C3(v)(0, 0, P2) according



1606 C. JAYASEKARAN AND A. J. VINI

as v is an end vertex or a support vertex. If P
v

4 = K1∪P3, then the set containing

the isolated vertex and the end vertices is the minimal relatively prime dominat-

ing set and hence γrpd(P
v

4) = 3. If P
v

4 = C3(v)(0, 0, P2), then the vertex v and the

end vertex is a minimal relatively prime dominating set and hence γrpd(P
v

4) = 2.

Thus γrpd(P
v

4) = 2 or 3 according as v is a support vertex or an end vertex of P4.

bc bc

b

b

v

Fig 3.4 C3(v)(0, 0, P2)

Case 4. n ≥ 5.

Subcase 4.1. v is an end vertex.

In this case v is either v1 or vn. Without loss of generality, let it be v1. In

P n, d(v1) = d(vn) = n − 2 and d(vi) = n − 3, 2 ≤ i ≤ n − 1. Since v1 is adja-

cent to v3, v4, . . . , vn in P n, v1 is adjacent to v2 only in P
v1

n . Hence, in P
v1

n , d(v1) =

1, d(v2) = n−3+1 = n−2, d(vn) = n−2−1 = n−3, d(vi) = n−3−1 = n−4, 3 ≤

i ≤ n− 1. Now {v2, vn} is a minimal dominating set and (n− 2, n− 3) = 1. This

implies that {v2, vn} is a minimal relatively prime dominating set of P
v1

n and

hence γrpd(P
v1

n ) = 2.

Subcase 4.2. v is an internal vertex but not a support vertex.

In this case v is one of the vi, 3 ≤ i ≤ n − 2. In P n, d(v1) = d(vn) = n −

2 and d(vj) = n − 3, 2 ≤ j ≤ n − 1. Since v1 is adjacent to v3, v4, . . . , vn in

P n, v1 is adjacent to v3, v4, . . . , vi−1, vi+1, . . . , vn in P
vi

n and also vi+1 is adjacent

to v1, v2, v3, . . . , vi−1, vi, vi+3, . . . , vn in P
vi

n . Hence, in P
vi

n , d(v1) = d(vn) = n −

3, d(vi) = 2, d(vi−1) = d(vi+1) = n− 2, and d(vj) = n− 4, 2 ≤ j 6= i− 1, i, i+ 1 ≤

n− 1. Now, {v1, vi+1} is a dominating set of P
vi

n and (d(v1), d(vi+1)) = (n− 3, n−

2) = 1. This implies that {v1, vi+1} is a minimal relatively prime dominating set

of P
vi

n and hence γrpd(P
vi

n ) = 2.

Subcase 4.3. v is a support vertex.

Then v is either v2 or vn−1. Clearly P v2
n

∼= P vn−1

n . Without loss of generality, let v

be v2. Since v1 is adjacent to v3, v4, . . . , vn in P n, v1 is adjacent to v2, v3, v4, . . . , vn
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in P
v2

n .v3 is adjacent to v1, v4, v5, . . . , vn in P n implies that v3 is adjacent to

v1, v2, v4, . . . , vn in P
v2

n . Hence in P
v2

n , d(v1) = n−1 and d(v3) = n−2. Now,{v1, v3}

is a dominating set of P
v2

n and (d(v1), d(v3)) = (n − 1, n − 2) = 1. This im-

plies that {v1, v3} is a minimal relatively prime dominating set of P
v2

n and hence

γrpd(P
v2

n ) = 2. Thus, γrpd(P
v

n) = 2. The theorem follows from cases 1, 2, 3 and

4. �

Example 4. The graphs P5, P 5, P
v1

5 , P
v2

5 and P
v3

5 are given in figures 3.5, 3.6,

3.7, 3.8 and 3.9 respectively. Clearly, {v2, v3} is a relatively prime dominating

set of P
v1

5 .
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Theorem 3.3. For n ≥ 2, γrpd(K
v

1,n) =







2 if v is an end vertex of K1,n

0 otherwise
.

Proof. Let u be the center and w be any end vertex of K1,n, n ≥ 2.

Case 1. n = 2.

Then K1,2 = P3. By Theorem 2.2, γrpd(K
v

1,2) =







2 if v is an end vertex of K1,2

0 otherwise

Case 2. n ≥ 3.

Then K1,n = K1 ∪ Kn where K1 is the vertex u. Clearly, K
v

1,n is Kn+1 if v = u
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and K2 ∪ Kn−1 if v = w. If v = u, then by Result 1, γrpd(K
v

1,n) = 0. If v = w,

then γrpd(K
v

1,n) = K2 ∪Kn−1. In this case {u, x} is a minimal dominating set of

K
v

1,n where u is in K2 and x is a vertex of Kn−1 and (d(u), d(x)) = (1, n− 2) = 1.

This implies that {u, x} is a minimal relatively prime dominating set of K
v

1,n and

hence γrpd(K
v

1,n) = 2. Thus γrpd(K
v

1,n) =







2 if v is an end vertex of K1,n

0 otherwise
�

Theorem 3.4. For n ≥ 2, γrpd(K
v

m,n) = 2, where m 6= n and m+ n is odd.

Proof. Let (V1, V2) be the bipartition of the vertex set of Km,n with |V1| = m

and |V2| = n. Clearly Km,n = Km ∪Kn. Now, K
v

m,n = Km−1 ∪Kn+1 or Km+1 ∪

Kn−1 according as v ∈ V1 or v ∈ V2. Let x and y be two vertices which are

in different components of K
v

m,n. Then {x, y} is a minimal dominating set of

K
v

m,n. In K
v

m,n, d(x) = m − 2, d(y) = n if v ∈ V1 and d(x) = m, d(y) = n − 2 if

v ∈ V2. If m+ n is odd, then either m or n is odd but not both. This implies that

(m − 2, n) = 1 and (m,n − 2) = 1. Hence {x, y} is a minimal relatively prime

dominating set of K
v

m,n and hence γrpd(K
v

m,n) = 2. �

Observation 1. γrpd(K
v

n,n) = 2, if n is odd.
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