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RECONSTRUCTION OF FINITE TOPOLOGICAL SPACES
WITH MORE THAN ONE ISOLATED POINT

A. ANAT JASLIN JINI1 AND S. MONIKANDAN

ABSTRACT. The deck of a topological space X is the set D(X) = {[X − {x}] :
x ∈ X}, where [Z] denotes the homeomorphism class of Z. A space X is topo-
logically reconstructible if whenever D(X) = D(Y ) then X is homeomorphic
to Y. For |D(X)| ≥ 3, it is shown that all finite topological spaces with more
than one isolated point are reconstructible.

1. FIRST SECTION: IMPORTANT

A vertex-deleted subgraph or card G−v of a graph G is obtained by deleting the
vertex v and all edges incident with v. The collection of all cards of G is called
the deck of G. A graph H is a reconstruction of G if H has the same deck as G. A
graph is said to be reconstructible if it is isomorphic to all its reconstructions. A
parameter p defined on graphs is reconstructible if, for any graph G, it takes the
same value on every reconstruction of G. The graph reconstruction conjecture,
posed by Kelly and Ulam [7] in 1941, asserts that every graph G on n (≥ 3)

vertices is reconstructible. More precisely, if G and H are finite graphs with at
least three vertices such that D(H) = D(G), then G and H are isomorphic.

In 2016, Pitz and Suabedissen [6] have introduced the concept of reconstruc-
tion in topological spaces as follows. For a topological space X, the subspace
X − {x} is called a card of X. The set D(X) = {[X − {x}] : x ∈ X} of
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subspaces of X is called the deck of X, where [X−{x}] denotes the homeomor-
phism class of the card X − {x}. Given topological spaces X and Z, we say that
Z is a reconstruction of X if their decks agree. A topological space X is said to
be reconstructible if the only reconstructions of it are the spaces homeomorphic
to X. Formally, a space X is reconstructible if D(X) = D(Z) implies X ∼= Z and
a property P of topological spaces is reconstructible if D(X) = D(Z) implies
"X has P if and only if Z has P".

The number of elements in a topological space X is called the size of X. Terms
not defined here are taken as in [2]. Gartside et al [3, 4, 6] have proved that
the space of real numbers, the space of rational numbers, the space of irrational
numbers, every compact Hausdorff space that has a card with a maximal finite
compactification, and every Hausdorff continuum X with weight ω(X) < |X|
are reconstructible. In their above paper, they also proved certain properties of
a space, namely all hereditary separation axioms and all cardinal invariants are
reconstructible. All finite sequences are reconstructed by Manvel et al [5].

In this paper, it is shown that every finite topological space with at least
n (≥ 4) elements and more than one isolated point with |D(X)| ≥ 3 is re-
constructible. Also, for |D(X)| = 2, we prove that the finite topological spaces
with more than one isolated point and with one discrete card is reconstructible.
The condition that n ≥ 4 is needed because there are nonreconstructible topo-
logical spaces of size 2 or 3. For n = 2, the set X = {a, b} endowed with any
of the three topologies τ1 = {ϕ, {a}, {b}, X}, τ2 = {ϕ, {a}, X} or τ3 = {ϕ,X}
is not reconstructible, since all these topological spaces have the same deck.
For n = 3, the set X = {a, b, c} endowed with any of the two topologies
τ1 = {ϕ, {c}, X}, τ2 = {ϕ, {a, b}, X} is not reconstructible.

2. FINITE TOPOLOGICAL SPACES

Since every discrete topological space is reconstructible [1], we assume that
X is a finite topological space of size n, which is not discrete, where n ≥ 4 and
X = {x1, x2, . . . , xn}. Let m = |D(X)|. The next lemma is proved in [1].

Lemma 2.1. [1] Let X be a topological space with isolated points and for m = 2,

all but one isolated point in a card must belong to at least one open set in the other
cards. Then the property that whether X has one isolated point or at least two
isolated points is reconstructible.
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For a collection of open subsets Y of a topological space X, ∨(Y ) denotes the
set consisting of elements of Y together with all possible union of elements of
Y.

Theorem 2.1. Every space with at least three mutually non-homeomorphic cards
and more than one isolated point is reconstructible.

Proof. Let X be a space with more than one isolated point. Then every card of
X has at least one isolated point. If an isolated point, say x1 of a card Xx is not
an isolated point of any other card of X, then x1 is not an isolated point of X (as
otherwise, x1 would be an isolated point in all but one card of X) and hence the
set {x1, x} is open in X. Thus, an isolated point, say x1 in a card Xx is an isolated
point of X if it is isolated in all but one card of X; {x1, x} is open in X otherwise.
Repeat these arguments for each of the remaining isolated points in every card
in the deck of X to identify the isolated points of X. Finally, we arrive at two
disjoint new sets, say O1 and O2, where O1 consists of all the isolated points of
X and O2 consists of all such open sets {x1, x} of X. Let O1 = {y1, y2, ..., yk},
where k ≥ 2 and let C1 = ∨(O1 ∪ O2).

Now consider a card Xx and an open set U2 = {a, b} of Xx such that U /∈ C1.

Then |U2∩O1| = 1 or 0. If the former holds, without loss of generality, let a = yi,

for some i, 1 ≤ i ≤ k. If {b} is not open in none of the cards, then {a, b} is not
open in X (as otherwise U2 would be an open set in n − 2 cards, {b} would
be an open set in X − {a} and {a} would be an open set in X − {b}, giving a
contradiction) and hence the set U2 ∪ {x} is open in X. If {b} is open in a card,
which is not open in X, then {b} along with the deleted point for the card, in
which {b} is open, is open in X. Note that this open set already in the collection
O2. So, assume that the latter holds. If one of {a} and {b} are not open in none
of the cards, then U2 is not open in X and hence the set U2 ∪ {x} is open in X.

So assume {a} and {b} are open in at least one of the cards. If one of {a} and
{b} are not open in X, then the 1- subset which is not open in X along with
the deleted point for the card, in which the 1-subset is present, is open in X.

Therefore, U2 is not open in X and hence U2 ∪ {x} is open in X. Repeat these
steps for each 2−open set W in every card in the deck of X. Finally, we will get
collections of open sets, O3 consists of some 3-open sets of X that is not in C1.

Let C2 = ∨(C1 ∪O3).
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Again we proceed with the similar arguments to 3-open sets. Consider any
card Xx and a 3-open set, say U3 in Xx such that U3 /∈ C2. If one of the 2-subsets
of U3 is not open in none of the cards, then U3 is not open in X (as otherwise
V would be open in n− 3 cards and 2-subsets of U3 are open in the three cards
Xz, where z ∈ U3, giving a contradiction) and hence U3 ∪ {x} is open in X. So
assume that, all the 2-subsets of U3 is open in at least one the cards. If one of
the 2- subset is not open in X, then the 2-subset which is not open in X along
with deleted point for the corresponding card, in which the 2-subset is present,
is open in X. Therefore, U3 is not open in X and hence U3 ∪ {x} is open in X.

Repeat these steps for each 3−open set U3 in every card in the deck of X. Finally,
we shall arrive at collections of open sets, say O4 consists of some 4-open sets of
X that is not in C2. Let C3 = ∨(C2 ∪O4).

In general, consider a card Xx and a k-open set, say Uk, k ≤ n− 2, in Xx such
that Uk /∈ Ck−1. If one of the (k − 1)-subsets of Uk is not open in the none of
the cards, then Uk is not open in X and hence Uk ∪ {x} is open in X. So assume
that, all the (k − 1)-subsets of Uk is open in at least one the cards. If one of the
(k− 1)- subset is not open in X, then the (k− 1)-subset along with deleted point
for the corresponding card, in which the (k − 1)-subset is present, is open in X.

Therefore, Uk is not open in X and hence Uk ∪ {x} is open in X. Repeat these
steps for each k−open set Uk in every card in the deck of X. Finally, we shall
arrive at collections of open sets, say Ok+1 consists of some (k + 1)-open sets of
X that is not in Ck−1. Let Ck = ∨(Ck−1 ∪Ok+1).

The proof completes once we identified the remaining (n − 1)−open sets, if
any, in X. For this, we consider a card Xx such that the unique (n − 1)-open
set X − {x} in it is not in the collection Cn−2 so formed. Since each card has
at least one isolated point of X, it follows that each (n − 1)-open set in a card
contains at least one isolated point of X. Now, let U (Xx) = {Xx − yi : yi is an
isolated point of X}. If an element of U (Xx) does not belong to any card, then
Xx does not open in X, since the element itself is not in the space X. So, assume
that each element of U (Xx) is an open set of at least one card of X. If at least
one of the elements of the set U (Xx) is open in X, then the set Xx is open in
X. So, assume that none of the elements of the set U (Xx) is open in X. Then
each element in U (Xx) together with the deleted point of the card, in which
the element is open, is open in X and hence Xx is not open in X. Repeat these
steps for the (n−1)−open set in every card in the deck of X. Let O′

n−1 be the set
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of these new (n− 1)−open sets. Then ∨(Cn−2 ∪O
′
n−1) is the desired topology on

X. �

Lemma 2.2. Let X be a space with only two non-homeomorphic cards and more
than one isolated point. If the subspace topology on one card, say Xx is the discrete
topology, then τX must be equal to one of the following three collections:

(i) τXx ∪X;
(ii) τXx ∪ {x, y} ∪ {{x, y} ∪ U | y ∈ Xx and U ∈ τXx};

(iii) τ(Xx−y) ∪ {x, y} ∪ {{x, y} ∪ U | y ∈ Xx and U ∈ τ(Xx−y)}.

Proof. Assume to the contrary, that τX was not equal to the collection given in
(i), (ii) and (iii). We proceed by three cases depending on the number of isolated
points of X.

Case 1. The space X has n− 1 isolated points.
Let {y1, y2, ..., yn−1} be the set of all isolated points of X. By our contrary

assumption, there exists a smallest i−open set, say W in X containing the point,
say x ∈ X − {y1, ..., yn−1} for some i, 3 ≤ i ≤ n − 1. Then the only card having
discrete topology is Xx. Consider now the two cards Xyk and Xys , where yk ∈ W

and ys /∈ W. We claim that the two cards Xyk and Xys are non-homeomorphic.
Suppose, to the contrary, that there is a homeomorphism f : Xyk −→ Xys .

Then x must be mapped to x under f. It is clear that the smallest open set
containing the point x in Xyk is W −{yk} while the smallest open set containing
the point x in Xys is W, giving a contradiction to f. This completes the claim and
hence the space X has at least three mutually non-homeomorphic cards, giving
a contradiction.

Case 2. The space X has n− 2 isolated points.
Let {y1, y2, ..., yn−2} be the set of all isolated points of X. By our contrary

assumption, in X, there exists an open set U ∪ {x, y} or U ∪ {x} or U ∪ {y}
where ϕ ̸= U ∈ ∨({y1, y2, ..., yn−2}) and x, y ∈ X−{y1, y2, ..., yn−2}. If the former
holds, then no card has the discrete topology, a contradiction. So, assume that
the latter holds. If |U | > 1, then no card will have the discrete topology, a
contradiction. So, let us assume that |U | = 1. If X has only one open set {yj} ∪
{x}, where j = 1, 2, ..., n−2, then no cards will have the discrete topology, again
a contradiction. So, assume that X has two open sets {yi} ∪ {x} and {yj} ∪ {y},
where i, j = 1, 2, ..., n− 2. If i ̸= j, then no card will have the discrete topology.
Otherwise, the only card having the discrete topology is Xyi . Since the card Xye ,
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where e ̸= i, has n−3 isolated points while Xx has n−2 isolated points, the two
cards are non-homeomorphic, giving a contradiction.

Case 3. The space X has at most n− 3 isolated points, where n ≥ 5.

The isolated points of X are denoted by y1, y2, ..., yi. Then 2 ≤ i ≤ n−3, since
the space X under consideration has at least two isolated points. If X has no
2-open sets of the type {yi, xj}, where xj ∈ X−{y1, y2, ..., yi}, 1 ≤ j ≤ n− i, then
no card has the discrete topology. So, assume that X has 2−open sets {yi, xj}.
If X has at most k, where k < n− i, 2-open sets of the above type, then no card
has the discrete topology. So, we assume that X has n−i 2-open sets of the form
{yi}∪{xj}. If any two of the isolated points y′is are distinct, then clearly no card
has the discrete topology. Finally, we consider the case that all the y′is are equal
and they are ya. Now, the only card having the discrete topology is Xya . Since
the card Xyi has i− 1 isolated points while the card Xxj

has i isolated points, it
follows that they are non-homeomorphic, giving a contradiction and completes
the proof. �

Theorem 2.2. Let X be a space with only two non-homeomorphic cards and more
than one isolated point. If one card has discrete topology, then X is reconstructible.

Proof. Let the two cards be Xx, Xy, where Xx is endowed with discrete topology.
By Lemma 2.2, τX must be equal to one of the collections given in (i), (ii) or
(iii). Therefore Xy has n − 2 or n − 3 isolated points. We proceed by two cases
depending on the number of isolated points in the card Xy.

Case 1. The card Xy has n− 2 isolated points.
Suppose X has n − 2 isolated points. Then X must be of the form (iii) of

Lemma 2.2 and hence the card Xy has n − 3 isolated points, a contradiction.
Hence X must contain exactly n − 1 isolated points and consequently τX must
be equal to the form (i) or (ii) of Lemma 2.2. Let the set of all isolated points in
X be {y1, y2, ..., yn−1}. If the open sets of Xy are in ∨({y1, y2..., yi}) ∪Xy, where
2 ≤ i ≤ n−2, then X has no open set of the form {yi, x}, where i = 1, 2, ..., n−1

(as otherwise Xy would contain the 2−open set {yj, x}, where j = 1, 2, ..., n −
1). Then, by Lemma 2.2, X must be of the form (i) of Lemma 2.2. Now the
collection {U | U ∈ Xy and U ∈ ∨({y1, y2, ..., yn−2})} ∪ {U ∪ {y} | U ∈ Xy} is
the desired topology on X. Suppose that Xy contains the open set of the form
{yi, x}. Then, by Lemma 2.2, X must be of the form (ii) of Lemma 2.2 and hence
the collection {U | U ∈ Xy} ∪ {U ∪ {y} | U ∈ Xy} is the desired topology on X.
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Case 2. The card Xy has n− 3 isolated points.
Now X has n − 2 isolated points. By Lemma 2.2, τX is of the form (iii) of

Lemma 2.2. Since X has n − 2 isolated points, one isolated point in the card
Xx is not open in X; let it be y. Then the collection {U ∪ {x} | U ∈ Xx and y ∈
U} ∪ ∨({y1, y2, ..., yn−2}) is the desired topology on X. �
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