ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 1719–1728 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.28 Spec. Issue on NCFCTA-2020

COMPLEMENTARY NIL G-ECCENTRIC DOMINATION IN FUZZY GRAPHS

A. MOHAMED ISMAYIL 1 AND S. MUTHUPANDIYAN

ABSTRACT. A g-eccentric dominating set $D \subseteq V$ of a fuzzy graph $G = (\rho, \phi)$ is said to be a complementary nil g-eccentric dominating set (CNGED-set) if V-Dcontains no g-eccentric dominating set of $G = (\rho, \phi)$. The least scalar cardinality taken over all CNGED- set of G is called the complementary nil g-eccentric domination number of $G = (\rho, \phi)$. In this article, bounds for complementary nil g-eccentric domination number for a few standard fuzzy graph are given and theorems related to CNGED - sets are discussed. The relation between complementary nil g-eccentric domination number and other well known parameters are analyzed.

1. INTRODUCTION

Tamilchelvam and Robinson Chelladurai [10] defined the approach of complementary nil domination on graph in 2009. In 2020, Mohamed Ismayil and Muthupandiyan [7] presented the concept of g-eccentric domination in fuzzy graph. A fuzzy graph $G = (\rho, \phi)$ characterized with two functions ρ characterized on V and ϕ characterized on $E \subseteq V \times V$, where $\rho : V \rightarrow [0, 1]$ and $\phi : E \rightarrow [0, 1]$ such that $\phi(x, y) \leq \rho(x) \land \rho(y) \forall x, y \in V$. We expect that V is finite and non-empty, ϕ is reflexive and symmetric. We indicate the crisp graph by $G^* = (\rho^*, \phi^*)$ of the fuzzy graph $G(\rho, \phi)$, where $\rho^* = \{x \in V : \rho(x) > 0\}$ and $\phi^* = \{(x, y) \in E : \phi(x, y) > 0\}$. The fuzzy graph $G = (\rho, \phi)$ is called trivial in

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C72.

Key words and phrases. Enclave, Complementary nil domination number, Complementary nil g-eccentric domination number.

this case $|\rho^*| = 1$. For all the definitions pertinent to fuzzy graph we bring up in [8,9,11].

A strong path π from r to s is called geodesics in a fuzzy graph in the event that there is no shorter strong path from r to s and a length of a r-s geodesic is the geodesic distance(g-distance) from r to s denoted by $d_g(r, s)$. The geodesic eccentricity (g-eccentricity) $e_g(x)$ of a node x in a connected fuzzy graph $G = (\rho, \varphi)$ is characterized by $e_g(x) = \max\{d_g(x, y), y \in V\}$. The least g-eccentricity among the vertices of G is called g-radius and indicated by $r_g(G) = \min\{e_g(x), x \in V\}$ and the greatest g-eccentricity among the vertices of G is called g-diameter and indicated by $d_g(G) = \max\{e_g(x), x \in V\}$. A vertex y is said to be a g-central node in case $e_g(y) = r_g(G)$. Moreover, a vertex y in G is said to be a g-peripheral node in case $e_g(y) = d_g(G)$. For all the definitions pertinent to g-eccentricity we bring up in [3, 5–7].

A subset D of V is called a dominating set of G in the event that for each $y \in V - D$ there exists $x \in D$ such that x dominates y. The least cardinality taken over all the minimal dominating set is called the domination number of G and it is indicated by $\gamma(G)$. A dominating set $D \subseteq V(G)$ in a fuzzy graph $G = (\rho, \phi)$ is said to be a g-eccentric dominating set each vertex $y \notin D$, there exists at least one g-eccentric vertex $x \in D$. The least scalar cardinality taken over all g-eccentric dominating set is called g-eccentric domination number and is indicated by $\gamma_{ged}(G)$. For all the definitions pertinent to eccentric domination we bring up in [1, 2, 4, 6, 7].

In this article, the new domination parameter $\gamma_{cnged}(G)$ is presented. complementary nil g-eccentric domination set and its number for a few standard fuzzy graph are characterized and a few theorems related to complementary nil g-eccentric domination are expressed and demonstrated.

2. COMPLEMENTARY NIL G-ECCENTRIC DOMINATION IN FUZZY GRAPH

In this chapter, a modern g-eccentric dominating parameter known as complementary nil g-eccentric domination number is characterized. The relationship between $\gamma_{cnged}(G)$ and other well known parameters are obtained.

Definition 2.1. A g-eccentric dominating set $D \subseteq V(G)$ of a fuzzy graph $G(\rho, \phi)$ is called complementary nil g-eccentric dominating set(CNGED -set) in the event that V - D is not a g-eccentric dominating set. A CNGED-set D is minimal if no proper

COMPLEMENTARY NIL G-ECCENTRIC...

FIGURE 1

subset $D' \subset D$ be a CNGED-set. The Complementary nil g-eccentric domination number of G is the least scalar cardinality taken over all the minimal CNGEDset and is indicated by $\gamma_{cnged}(G)$. The most prominent scalar cardinality taken over all the minimal CNGED -set is called a upper complementary nil g-eccentric domination number and is implied by $\Gamma_{cnged}(G)$.

Example 1. In the Figure 1, a minimum dominating set is $D_1 = \{x_3, x_5\}$, a minimum g-eccentric dominating set is $D_2 = \{x_3, x_5\}$, a minimum CNGED-set is $D_3 = \{x_3, x_5, x_6\}$ and minimal CNGED-sets are $D_4 = \{x_1, x_3, x_5, x_6\}$ and $D_5 = \{x_2, x_3, x_4, x_5, x_6\}$. The minimum complementary nil dominating set is $D_6 = \{x_3, x_4, x_5, x_6\}$. Therefore $\gamma(G) = 0.8$, $\gamma_{ged}(G) = 0.8$, $\gamma_{cnged}(G) = 1.2$, $\gamma_{cnd}(G) = 1.5$ and $\Gamma_{cnged}(G) = 2.2$. Here, $\gamma_{cnd}(G) > \gamma_{cnged}(G)$.

Note 2.1. In a fuzzy graph $G = (\rho, \phi)$, there is no relation between $\gamma_{cnged}(G)$ and $\gamma_{cnd}(G)$.

Note 2.2. The minimum CNGED-set is denoted by $\gamma_{cnged}(G)$.

Observation 2.1. For any fuzzy graph $G = (\rho, \phi)$

- (1) $\gamma(G) \leq \gamma_{ged}(G) \leq \gamma_{cnged}(G)$.
- (2) Every super set of a CNGED-set is also a CNGED-set.
- (3) Complement of a CNGED-set is not a CNGED -set.
- (4) Complement of a γ -set is need not a CNGED-set.
- (5) γ_{cnged} -set need not be unique.
- (6) $\gamma_{cnged}(G) \leq \Gamma_{cnged}(G)$.
- (7) Complete fuzzy graph has no CNGED -set.

FIGURE 3

Example 2. In the figure 2, we have the minimum dominating set is $D_1 = \{x_3, x_4\}$, minimum g-eccentric dominating set is $D_2 = \{x_3, x_4\}$, minimum complementary nil dominating set is $D_3 = \{x_2, x_3, x_4\}$ and minimum complementary nil g-eccentric dominating set is $D_4 = \{x_2, x_3, x_4\}$. Hence, $\gamma(G) = 0.5$, $\gamma_{ged}(G) = 0.5$, $\gamma_{cnd}(G) = 0.9$ and $\gamma_{cnged}(G) = 0.9$. Here, $\gamma_{cnd}(G) = \gamma_{cnged}(G)$.

Example 3. In the figure 3, we have the minimum dominating set is $D_1 = \{x_2, x_5\}$, minimum g-eccentric dominating set is $D_2 = \{x_3, x_4, x_6\}$, minimum complementary nil dominating set is $D_3 = \{x_2, x_3, x_4, x_5\}$ and minimum complementary nil g-eccentric dominating set is $D_4 = \{x_3, x_4, x_6\}$. Hence, $\gamma(G) = 0.5$, $\gamma_{ged}(G) = 1.5$, $\gamma_{cnd}(G) = 1.4$ and $\gamma_{cnged}(G) = 1.5$. Here, $\gamma_{cnd}(G) < \gamma_{cnged}(G)$.

Definition 2.2. Let $S \subseteq V(G)$ in a fuzzy graph $G(\rho, \phi)$. A vertex $x \in S$ is said to be an enclave of S if $\phi(x, y) < \rho(x) \land \rho(y)$ for all $\in V - S$, that is $N_s[x] \subseteq S$.

Definition 2.3. Let $S \subseteq V$ be a subset in a fuzzy graph $G(\rho, \phi)$. A vertex $x \in S$ is said to be a g- eccentric enclave of S if $E_g(x) \subseteq S$.

Example 4. In the fuzzy graph given in figure 3.1 a vertex x_5 is an enclave of D_5 and the vertex x_3 is g-eccentric enclave of D_3 since $E_q(x_3) = \{x_5, x_6\} \subseteq D_3$.

3. Theorems Related to Complementary Nil g-Eccentric Domination in Fuzzy Graph

In this chapter, some theorems related to complementary nil g-eccentric domination in fuzzy graphs are stated and proved.

Theorem 3.1. Let $G(\rho, \phi)$ be a fuzzy graph and $D \subseteq G$ be a CNGED-set. Then

- (i) D contains at least one enclave or
- (ii) D has at least one vertex y such that $e_q(y) = d_q(x, y), \forall x \in D$.

Proof. Let D be a CNGED - set of a fuzzy graph $G(\rho, \phi)$. By the definition of CNGED -set, V - D is not a g-eccentric dominating set. At that point there exists a vertex $x \in D$ such that (i) x is not strong neighbours to any of the vertices in V - D. That is $N_s[x] \subseteq D$. In this manner, D contains at least one enclave or (ii) x has no g-eccentric vertex in V - D, Hence x has all its g-eccentric vertices are in D only.

Theorem 3.2. Let D be a CNGED-set of a fuzzy graph $G(\rho, \phi)$. At that point D is minimal \Leftrightarrow for each $x \in D$ one of the given conditions satisfied.

- (i) x contains no strong neighbors in D or g-eccentric vertex of u is not in D.
- (ii) There exists a few $y \in V D$ such that $N_s(y) \cap D = \{x\}$ or $E_q(y) \cap D = \{x\}$.
- (iii) $[V D] \cup \{x\}$ could be a g-eccentric dominating set.

Proof. Assume D is a minimal CNGED-set. If there exists a vertex $x \in D$ such that x does not fulfill any of the given conditions (i), (ii) and (iii). **Case(i)**: Assume x contains all strong neighbors at that point D is not negligible. **Case** (ii): Suppose g-eccentric vertex of x is in D then D is not minimal, by (ii) $N_s(y) \cap D = \varphi$, D is not dominating set and $E_g(y) \cap D = \varphi$ at that point Dis not g-eccentric dominating set **Case(iii)**: $[V - D] \cup \{x\}$ is not a g-eccentric dominating set. This infers that $D - \{x\}$ may be a CNGED-set of $G(\rho, \phi)$, which is a contradiction to the minimality of D.

Conversely, Let D may be a CNGED-set and for all $x \in D$, one of the three conditions hold. we claim that D must be a minimal CNGED-set. Assume that D is not a minimal CNGED-set, then there exists a vertex $x \in D$ such that $D-\{x\}$ is a CNGED-set. Thus, x is strong neighbours to at least one vertex in $D - \{x\}$ and x has g-eccentric vertex in $D - \{x\}$, which implies (i) does not hold.

Moreover, if $D - \{x\}$ is a CNGED- set, each vertex x in $[V - D] \cup \{x\}$ is strong neighbors to at least one vertex in $D - \{x\}$ and x has a g-eccentric vertex in $D - \{x\}$. Subsequently condition (ii) does not hold. Since $D - \{x\}$ is a CNGED-set, at that point by observation 2.1(3) $[V - D] \cup \{x\}$ is not a CNGED-set, therefore condition (iii) does not hold.

Hence, there exists $x \in D$ such that x does not fulfill the conditions (i), (ii) and (iii), which is a contradiction to our assumption.

Theorem 3.3. Let D be a CNGED-set of a connected fuzzy graph $G(\rho, \phi)$, and geccentric point of x in $D - \{x\}$, then there exists a vertex $x \in D$ such that $D - \{x\}$ is g-eccentric dominating set.

Proof. Let D be a CNGED-set of a fuzzy graph $G(\rho, \phi)$. By a theorem 3.1, each CNGED -set has at least one enclave in D. Let $x \in D$ be an enclave of D. Implies that $\phi(x, y) < \rho(x) \land \rho(y)$ for all $y \in V - D$, that is $N_s[x] \subseteq D$. Since $G(\rho, \phi)$ is a connected fuzzy graph, at that point there exists at least one vertex $z \in D$ such that $\phi(x, z) \leq \rho(x) \land \rho(z)$ and g-eccentric vertex of x is in $D - \{x\}$. Hence $D - \{x\}$ is a g-eccentric dominating set.

Theorem 3.4. A CNGED- set in a connected fuzzy graph $G(\rho, \phi)$ is not singleton.

Proof. Let *D* be a CNGED-set of a connected fuzzy graph $G(\rho, \phi)$. By a Theorem 3.1, each CNGED-set has at least one enclave in *D* or *D* has at least one vertex whose g-eccentric vertices in *D*. Let $x \in D$ be an enclave of *D*. Implies that $\phi(x, y) < \rho(x) \land \rho(y)$ for all $y \in V - D$, that is

$$(3.1) N_s[x] \subseteq D$$

Suppose *D* contains only a vertex *x*, (3.1) does not exists or isolated in $G(\rho, \phi)$, which is a contradiction to our connectedness. Thus CNGED-set has more than one vertex in a connected fuzzy graph $G(\rho, \phi)$.

Corollary 3.1. Let D be a γ_{cnged} -set of a fuzzy graph (ρ, ϕ) . If x and y are two enclave of D, then

- (i) $N_s[x] \cap N_s[y] \neq \varphi$ and
- (ii) x and y are strong neighbors.

Example 5. In figure 1 x_5, x_6 are two enclave of D_6 .

Theorem 3.5. A γ_{cnged} - set in a fuzzy graph $G(\rho, \phi)$ is not independent.

Proof. Let $G(\rho, \phi)$ be a fuzzy graph and D be a CNGED-set which is independent. Then D is a minimal g-eccentric dominating set which infers that V - D is additionally a g-eccentric dominating set. By the definition, D is not CNGED-set, which is a contradistinction.

Observation 3.1. For any fuzzy graph $G(\rho, \phi)$, each γ_{cnged} -set intersects with each γ_{ged} -set of $G(\rho, \phi)$.

Theorem 3.6. In a star fuzzy grap S_{ρ} , $\gamma_{cnged}(K_{\rho_1,\rho_2}) = \rho_1 0 + \rho_{20}$, where $\rho_{10} = \min\{\rho(x), x \in \rho_1\}$ and $\rho_{20} = \min\{\rho(y), y \in \rho_2\}$ and $|\rho_1^*| = 1$ and $|\rho_2^*| \ge 1$.

Proof. Let K_{ρ_1,ρ_2} be a star fuzzy graph. Let $D = \{x, y\}$, where x may be a central vertex which dominates all the vertices in V - D and y is pendent vertex, that is y is the g-eccentric vertices of V - D, V - D is not g-eccentric dominating set. In this manner, D is γ_{cnged} -set. Clearly, g-eccentric dominating set is also CNGED-set. That is, $\gamma_{ged}(K_{\rho_1,\rho_2}) = \gamma_{cnged}(K_{\rho_1,\rho_2}) = \rho_{10} + \rho_{20}$.

Theorem 3.7. Let (K_{ρ_1,ρ_2}) be a complete bipartite fuzzy graph, then $\gamma_{cnged}(K_{\rho_1,\rho_2}) \leq \min(|\rho_1|, |\rho_2|) + \rho_n$, where $\rho_n = \max\{\rho(x), x \in V\}$.

Proof. (K_{ρ_1,ρ_2}) be a complete bipartite fuzzy graph, $\rho = \rho_1 \cup \rho_2$ where $m = |\rho_1^*|$ and $n = |\rho_2^*|$ such that each vertex of V_1 is strong neighbors of a vertex in V_2 and vice versa. Let $D = \rho_1 \cup \{y\}, y \in V_2$. Since V - D is not g-eccentric dominating set, at that point D is CNGED-set.

Subsequently, $\gamma_{cnged}(K_{\rho_1,\rho_2}) \leq \min(|\rho_1|, |\rho_2|) + \rho_n$.

Corollary 3.2.

(i) Let (K_{ρ_1,ρ_2}) be the complete bipartite fuzzy graph, then

$$\gamma_{cnged}(K_{\rho_1,\rho_2}) = \begin{cases} |\rho_1| + \rho_{20}, \ if \ |\rho_1| \le |\rho_2| \\ |\rho_2| + \rho_{10}, \ if \ |\rho_1| > |\rho_2| \end{cases}$$

where ρ_{10} is the minimum membership value of ρ_1 and ρ_{20} are the minimum membership value of ρ_2 .

(ii) Let T_{ρ} be a fuzzy tree. Then $\gamma_{cnged}(T_{\rho}) \leq \gamma(T_{\rho}) + \rho_n$.

Corollary 3.3. In a fuzzy wheel graph W_{ρ} , $|\rho^*| = 4$ has no CNGED-set.

Proof. By observation 2.1(7), complete fuzzy graph has no CNGED-set. Hence, $W_{\rho}, |\rho^*| = 4$ is a complete fuzzy graph with 4 vertices has no CNGED-set. \Box

4. Bounds for Complementary Nil g-Eccentric Domination in Fuzzy Graph

In this chapter, we talk about theorem related to bounds for few fuzzy standard graphs.

Observation 4.1. For any fuzzy graph $G = (\rho, \phi)$

(1) $2\rho_0 \le \gamma_{cnged} \le p - \rho_0$.

Observation 4.2.

- (1) For a complete fuzzy graph $K_{\rho}, \gamma_{cnged}(K_{\rho} e) \leq p \rho_0$ where $\rho_0 = \min_{x \in V} \rho(x)$.
- (2) For a complete fuzzy graph $K_{\rho}, \gamma_{cnged}(K_{\rho} e) = p \rho(x)$, where $\rho(x)$ is obtained from $\phi(e) = \rho(x) \wedge \rho(y) = \rho(y)$.
- (3) For a path fuzzy graph $P_{\rho}, \gamma_{cnged}(P_{\rho}) = \gamma_{ged}(P_{\rho}) \leq \frac{p}{3} + 1.$

Theorem 4.1. Let $G(\rho, \phi)$ be a fuzzy graph with pendent vertex, then $\gamma_{cnged}(G) = \gamma_{ged}(G)$ or $\gamma_{ged}(G) + 1$.

Proof. Let $G(\rho, \phi)$ be a fuzzy graph and D be a γ_{ged} -set. Let x be a pendent vertex in G. If x and its support vertex y is in D, at that point V - D is not a g-eccentric dominating set. Subsequently, $\gamma_{cnged}(G) = \gamma_{ged}(G)$. Assume x or its support vertex y is in D, at that point $D_1 = D \cup \{y\}$ or $D_1 = D \cup \{x\}$ may be a g-eccentric dominating set and $V - D_1$ is not a g-eccentric dominating set. Consequently $\gamma_{cnged}(G) = \gamma_{ged}(G) + 1$.

Theorem 4.2. In the event that $G(\rho, \phi)$ be a fuzzy graph with $d_g(G) = 2$, at that point $\gamma_{cnged}(G) \leq \delta_s(G) + 1$.

Proof. Let $G(\rho, \phi)$ be a fuzzy graph with $d_g(G) = 2$. At that point we have $x \in V(G)$ be such that $d_s(x) = \delta_s(G)$. Presently, let us take $D = \{x\} \cup N_s(x) = N_s[x]$. In this manner, each vertex in V - D is strong neighbors to a few vertices of $N_s(x)$ and are g-eccentric to x. Subsequently D is g-eccentric dominating set and V - D is not g-eccentric dominating set, since x can not dominated by any vertex in V - D. Hence, $\gamma_{cnged}(G) \leq \delta_s(G) + 1$.

Theorem 4.3. W_{ρ} be a fuzzy wheel graph, at that point $\gamma_{cnged}(W_{\rho}) \leq 4$, $|\rho^*| = n \geq 5$.

Proof. Let $W_{\rho}, |\rho^*| = n, n \ge 5$ be a fuzzy wheel graph. Let $D = \{x, y, z, w\}$, where w may be a central vertex, z may be a enclave vertex and x, y are any two pheriperal vertices which are no strong neighbors. D is a least g-eccentric dominating set. Hence, V - D is not a g-eccentric dominating set. Subsequently, D is a CNGED-set. Hence, $\gamma_{cnged}(W_{\rho}) \le 4$.

Theorem 4.4. Let T be a fuzzy tree graph $G(\rho, \phi)$ such that each support vertex is strong neighbor of at least one pendent vertex. Then $\gamma_{cnged}(T) \leq U + 2$, where U is the number of support vertices.

Proof. Let U be the set of all support vertices of $G(\rho, \phi)$. Here, all the non end vertices frame a dominating set. In this manner, to create a g-eccentric dominating set we have to be include at most two pendent vertices. Subsequently, the CNGED-set contains all the non conclusion vertices and at most two pendent vertices. Therefore, V - D is not a g-eccentric dominating set. Hence, $\gamma_{cnged}(T) \leq U + 2$.

Theorem 4.5. Let K_{ρ} be a completel fuzzy graph, $|\rho^*| = n, n$ is even. Let $G(\rho, \phi)$ be a fuzzy graph obtained from the complete fuzzy graph K_{ρ} by deleting edges of linear factor. Then $\gamma_{cnged}(G) \leq \frac{p}{2} + 1$.

Proof. Let $G(\rho, \phi)$ be a fuzzy graph obtained from a non-trivial complete fuzzy graph. let $V = \{x_1, x_2, ..., x_n\}$ be the vertices of $G(\rho, \phi)$ and $G(\rho, \phi) = K_{\sigma} - \{x_1x_2, x_3x_4, ..., x_{n-1}x_n\}$. Then $D = \{x_1, x_3...x_{n-1}\}$ and $V - D = \{x_2, x_4...x_n\}$ are g-eccentric dominating sets and we know that $\gamma_{ged}(G) \leq \frac{p}{2}$. Hence, when we include one more vertex in D, then D is CNGED-set and V - D is not g-eccentric dominating set. Thus, $\gamma_{cnged}(G) \leq \frac{p}{2} + 1$.

A. M. ISMAYIL AND S. MUTHUPANDIYAN

5. CONCLUSION

In this paper, we examined the new domination parameter complementary nil g-eccentric domination number for a few standard fuzzy graphs and theorems related to bounds for CNGED-set for fuzzy graph.

References

- [1] M. BHANUMATHI, S. MUTHAMMAI: *Eccentric domination in trees*, International Journal of Engineering Science, Advanced Computing and Bio-Technology, **2**(1) (2011), 38–46.
- [2] M. BHANUMATHI, SUDHASENTHIL: Complementary Nil Eccentric Domination number of a graph, IJMSC, 6 (2016), 183–192.
- [3] K. R. BHUTTANI, A. ROSENFELD: Geodesics in Fuzzy Graphs, Elsevier, 2003.
- [4] T. N. JANAKIRAMAN, M. BHANUMATHI, S. MUTHUMANI: Eccentric domination in Graphs, International journal of Engineering Science, Advanced Computing and Bio-Techonology, 2 (2010), 33–44.
- [5] J. P. LINDA, M. S. SUNITHA: On g-eccentric nodes g-boundary nodes and interior nodes of a fuzzy graph, International Journal of science and Application, **2**(2) (2012), 107–123.
- [6] M. ISMAYIL, I. MOHIDEEN: *Complementary nil domination in fuzzy graph*, Annals of fuzzy mathematics and Informatics, ISSN:209-39310, 2014.
- [7] M. ISMAYIL, S. MUTHUPANDIYAN: *g*-*Eccentric Domination in Fuzzy graphs*, our Heritage(ISSN:0474-9030), **68**(4)(2020), 234–245.
- [8] A. ROSENFELD: *Fuzzy graphs*, In: L. A. Zadeh, K. S.Fu and M. Shimura, Eds, I, Academic Press, New York, (1975), 77–95.
- [9] M. S. SUNITHA, S. MATHEW: *Fuzzy graph theory: Survey*, Annals of pure and Applied Mathematics, **4**(1) (2013), 92–110.
- [10] T. CHELVAM, S. R. CHELLATHURAI: *Complementary nil domination number of a graph*, Tamkang Journal of Mathematics, **40** (2009), 165–172.
- [11] L. A. ZADEH: Fuzzy sets, Information and Control, 8 (1965), 338–353.

PG AND RESEARCH DEPARTMENT OF MATHEMATICS JAMAL MOHAMED COLLEGE(AUTONOMOUS) (AFFILIATED TO BHARATHIDASAN UNIVERSITY) TIRUCHIRAPPALLI-620020, TAMIL NADU, INDIA *E-mail address*: amismayil1973@yahoo.co.in

PG AND RESEARCH DEPARTMENT OF MATHEMATICS JAMAL MOHAMED COLLEGE(AUTONOMOUS) (AFFILIATED TO BHARATHIDASAN UNIVERSITY) TIRUCHIRAPPALLI-620020, TAMIL NADU, INDIA *E-mail address*: muthupandiyanmaths@gmail.com