

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 1495–1501 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.3 Spec. Issue on NCFCTA-2020

APPLICATION OF BIPOLAR FUZZY ROUGH SETS

S. ANITA SHANTHI 1 AND M. SARANYA

ABSTRACT. The aim this paper is to introduce weighted geometric aggregation operator (WGAO)using bipolar fuzzy rough set (BFRS). A multi-criteria decision making method (MCDM) based on bipolar fuzzy rough set is developed. Further, an example is given to explain this method.

1. INTRODUCTION

Pawlak [4, 5] proposed the rough set theory. Dubois et al. [2, 3] introduced the concept of fuzzy rough sets. Zhang [7] developed bipolar fuzzy set theory. Thillaigovindan et al. [6] dealt with MCDM problems on IFSSRT. This paper deals with a score function based on BFRS. A MCDM mothod based on BFR set is developed. Further, an example is given to explain this method.

2. BFRS WGAO and BFRS score function

This section deals with WGAO based on BFRS. A score function based on BFRS is defined. BFRS is defined in [1].

Definition 2.1. The entire data set of BFRS is represented in the form of a $m \times k$ matrix.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 03E72.

Key words and phrases. Bipolar fuzzy rough set, WGAO, score function, MCDM problem.

$$BFRM = \begin{pmatrix} c_1 & c_2 & \cdots & c_k \\ BFR(A_1) & (\underline{M}_{11}, \overline{M}_{11}) & (\underline{M}_{12}, \overline{M}_{12} & \cdots & (\underline{M}_{1k}, \overline{M}_{1k}) \\ (\underline{M}_{21}, \overline{M}_{21}) & (\underline{M}_{22}, \overline{M}_{22}) & \cdots & (\underline{M}_{2k}, \overline{M}_{2k}) \\ \vdots & \vdots & \vdots & \vdots \\ BFR(A_m) & (\underline{M}_{m1}, \overline{M}_{m1}) & (\underline{M}_{m2}, \overline{M}_{m2}) & \cdots & (\underline{M}_{mk}, \overline{M}_{mk}) \end{pmatrix}$$

where $\underline{M}_{11} = (\underline{\mu}_{11}^n, \underline{\mu}_{11}^p)$ and $\overline{M}_{11} = (\overline{\mu}_{11}^n, \overline{\mu}_{11}^p)$.

Definition 2.2. Let A be a BFRS over $U = \{x_1, x_2, ..., x_m\}$ and $C = \{c_1, c_2, ..., c_k\}$ be the set of criteria. A WGAO of BFRS(U) is defined as

$$\xi_{i} = \left(\left(\frac{2\prod_{j=1}^{k} (-p_{ij})^{wt_{j}}}{\prod_{j=1}^{k} (-p_{ij})^{wt_{j}} - \prod_{j=1}^{k} (2-p_{ij})^{wt_{j}}}, \frac{2\prod_{j=1}^{k} (q_{ij})^{wt_{j}}}{\prod_{j=1}^{k} (-p_{ij})^{wt_{j}} - \prod_{j=1}^{k} (1-r_{ij})^{wt_{j}}}, \frac{2\prod_{j=1}^{k} (q_{ij})^{wt_{j}} + \prod_{j=1}^{k} (2-q_{ij})^{wt_{j}}}{\prod_{j=1}^{k} (1+r_{ij})^{wt_{j}} - \prod_{j=1}^{k} (1-r_{ij})^{wt_{j}}}, \frac{\prod_{j=1}^{k} (1+s_{ij})^{wt_{j}} - \prod_{j=1}^{k} (1-s_{ij})^{wt_{j}}}{\prod_{j=1}^{k} (1+r_{ij})^{wt_{j}} + \prod_{j=1}^{k} (1-r_{ij})^{wt_{j}}}, \frac{\prod_{j=1}^{k} (1+s_{ij})^{wt_{j}} - \prod_{j=1}^{k} (1-s_{ij})^{wt_{j}}}{\prod_{j=1}^{k} (1+s_{ij})^{wt_{j}} + \prod_{j=1}^{k} (1-s_{ij})^{wt_{j}}} \right) \right)$$

where

$$(p_{ij}, q_{ij}) = (\mu_{BF\underline{R}^n(A_i)}(x_i), \mu_{BF\underline{R}^p(A_i)}(x_i)), (r_{ij}, s_{ij})$$
$$= (\mu_{BF\overline{R}^n(A_i)}(x_i), \mu_{BF\overline{R}^p(A_i)}(x_i))),$$

 wt_j is weight of criteria $c_j \ni wt_j \in [0,1], j = 1, 2, \cdots, k$ and $\sum_{j=1}^k wt_j = 1$.

Definition 2.3. The BFR degree is defined as

$$\lambda_{ij} = 1 - |\mu_{BF\underline{R}^n(A)}(x) - \mu_{BF\overline{R}^n(A)}(x) + \mu_{BF\underline{R}^p(A)}(x) - \mu_{BF\overline{R}^p(A)}(x)|$$

Definition 2.4. The BFRS is $E_j = \frac{1}{m} \sum_{i=1}^{m} \lambda_{ij}$.

1496

Definition 2.5. The weight E_i is,

$$wt_j = \frac{1 - E_j}{\sum\limits_{j=1}^k (1 - E_j)}, j = 1, 2, ..., k.$$

Thus we obtain the weight vector $wt = (wt_1, wt_2, ..., wt_k)$ which satisfying $\sum_{i=1}^{\kappa} wt_j = 1.$

Definition 2.6. For a *BFR* set, the score function is

$$BFRS(\zeta_i) = \left| \frac{\mu_{BF\underline{R}}^n(x) + \mu_{BF\underline{R}}^p(x) + (-1 - \mu_{BF\overline{R}}^n(x)) + (1 - \mu_{BF\overline{R}}^p(x))}{4 + (-1 - \mu_{BF\underline{R}}^n(x) - \mu_{BF\overline{R}}^n(x)) + (1 - \mu_{BF\underline{R}}^p(x) - \mu_{BF\overline{R}}^p(x))} \right|,$$

here $BFRS(\zeta_i) \in [-1, 1]$

where $BFRS(\zeta_i) \in [-1, 1]$.

3. Method

Consider a set $U = \{x_1, x_2, ..., x_m\}$ of m alternatives and a set $C = \{c_1, c_2, ..., c_k\}$ of k criteria. Corresponding to criteria c_j , each alternative x_i is considered as a BFRS over U. Weight wt_j is assigned to each criteria. Each alternative $BFR(A_i)$ to reduced to a single $BFRS((\mu_i^n, \mu_i^p), (\overline{\mu_i^n}, \overline{\mu_i^p})) = \zeta_i$ on application of the WGAO. The score function is used to convert the BFRS of each alternative to $BFRS(\zeta_i)$. On comparing the score function values between $BFR(A_i)$, the largest value is chosen as the best.

3.1. **Procedure:** The procedure for solving the MCDM problems with *BFRSs* is as follows:

Step 1: Compute *BFRSs*, *BFR*(A_i) (i = 1, 2, ..., m) and form the *BFRM*.

- Step 2: The *BFRSs* are aggregated to a single value by finding the fuzzy degree λ_{ij} . Using this the *BFRS* entropy of evaluation index E_i is computed. The weight wt_j corresponding to c_j (j = 1, 2, ..., k) is then calculated using E_i values.
- **Step 3:** The WGA value ζ_i for each alternative $BFR(A_i)$ is calculated using Definition 2.5.
- **Step 4:** Compute the score function value $BFRS(\zeta_i)$ for each ζ_i by Definition 2.6.

1497

Step 5: The alternative are ranked depending on the values of $BFRS(\zeta_i)$. The alternative corresponding to maximum value of $BFRS(\zeta_i)$ is the best.

3.2. **Application.** A wireless communication engineer has to decide on the working of four types of antennas viz. short dipole, dipole, monopole and loop antennas which are represented by bipolar fuzzy rough sets $BFR(A_1)$, $BFR(A_2)$, $BFR(A_3)$, $BFR(A_4)$ respectively. By considering the properties of the antennas as c_1 = antenna gain, c_2 = aperture, c_3 = bandwidth, c_4 = polarization and c_5 = effective length, the best performing antenna is to be selected under these five criteria.

Step 1: Consider $U = \{x_1, x_2, x_3, x_4, x_5\},\$ $A_1 = \{x_1/(-0.25, 0.34), x_2/(-0.24, 0.45), x_3/(-0.4, 0.55), x_3/(-0.5, 0.55), x$ $x_4/(-0.38, 0.6), x_5/(-0.25, 0.62)$ and x_1 x_5 x_3 x_4 x_2 (-0.4, 0.64) (-0.4, 0.64) (-0.4, 0.64) (-0.4, 0.64)(-1, 1)(-0.4, 0.64) (-1, 1) (-0.7, 0.74) (-0.7, 0.74) (-0.7, 0.74) x_2 $BF\mathbb{R} = x_3$ (-0.4, 0.64) (-0.7, 0.74)(-1, 1)(-0.8, 0.84) (-0.8, 0.84)(-0.4, 0.64) (-0.7, 0.74) (-0.8, 0.84)(-1, 1)(-0.9, 0.94) x_4 $x_5 \setminus (-0.4, 0.64) \quad (-0.7, 0.74) \quad (-0.8, 0.84) \quad (-0.9, 0.94)$ (-1, 1) $BFR(A_1) = \{\{x_1/(-0.4, 0.34), x_2/(-0.3, 0.34), x_3/(-0.3, 0)\}\}$ $x_4/(-0.3, 0.34), x_5/(-0.3, 0.34)\},\$ $\{x_1/(-0.4, 0.62), x_2/(-0.4, 0.62), x_3/(-0.4, 0.62), x_3/(-0.4$ $x_4/(-0.4, 0.62), x_5/(-0.4, 0.62)\}$

Consider $U = \{x_1, x_2, x_3, x_4, x_5\}, A_2 = \{x_1/(-0.11, 0.4), x_2/(-0.21, 0.5), x_2/(-0.21, 0.5), x_3, x_4, x_5\}$ $x_3/(-0.28, 0.53), x_4/(-0.4, 0.58), x_5/(-0.45, 0.35)$ and x_1 x_2 x_3 x_4 x_5 (-1,1)(-0.48, 0.58) (-0.48, 0.58) (-0.48, 0.58)(-0.48, 0.58) x_1 (-0.48, 0.58)(-1,1)(-0.6, 0.68)(-0.6, 0.68)(-0.6, 0.68) x_2 $BF\mathbb{R} = x_3$ (-0.48, 0.58)(-0.6, 0.68)(-1, 1)(-0.68, 0.75)(-0.68, 0.75)(-0.48, 0.58)(-0.6, 0.68)(-0.68, 0.75) x_4 (-1,1)(-0.72, 0.8)(-0.48, 0.58) (-0.6, 0.68) (-0.68, 0.75) (-0.72, 0.8)(-1,1) x_5 $BFR(A_2) = \{\{x_1/(-0.45, 0.4), x_2/(-0.4, 0.35), x_3/(-0.32, 0.35),$ $x_4/(-0.28, 0.35), x_5/(-0.28, 0.35)\},\$ $\{x_1/(-0.48, 0.58), x_2/(-0.48, 0.58), x_3/(-0.48, 0.58), x_3/(-0.48$ $x_4/(-0.48, 0.58), x_5/(-0.48, 0.58)\}$

1498

$$\begin{aligned} & \text{Consider } U = \{x_1, x_2, x_3, x_4, x_5\}, A_3 = \{x_1/(-0.23, 0.21), x_2/(-0.15, 0.3), x_3/(-0.008, 0.27), x_4/(-0.012, 0.38), x_5/(-0.16, 0.009)\} \text{ and} \\ & x_1 & x_2 & x_3 & x_4 & x_5 \\ & x_1 & (-1, 1) & (-0.35, 0.4) & (-0.35, 0.4) & (-0.35, 0.4) & (-0.35, 0.4) \\ & (-0.35, 0.4) & (-1, 1) & (-0.55, 0.62) & (-0.55, 0.62) & (-0.55, 0.62) \\ & (-0.35, 0.4) & (-0.55, 0.62) & (-1, 1) & (-0.65, 0.88) & (-0.65, 0.88) \\ & (-0.35, 0.4) & (-0.55, 0.62) & (-0.65, 0.88) & (-1, 1) & (-0.78, 0.95) \\ & (-0.35, 0.4) & (-0.55, 0.62) & (-0.65, 0.88) & (-0.78, 0.95) & (-1, 1) \\ & BFR(A_3) = \{\{x_1/(-0.16, 0.21), x_2/(-0.23, 0.3), x_3/(-0.23, 0.12), x_4/(-0.23, 0.36), x_5/(-0.35, 0.38), x_3/(-0.35, 0.38), x_3/(-0.35, 0.38), x_4/(-0.35, 0.38), x_5/(-0.35, 0.38), x_3/(-0.35, 0.38), x_5/(-0.35, 0.38), x_3/(-0.35, 0.38), x_4/(-0.35, 0.38), x_5/(-0.35, 0.38), x_3/(-0.35, 0.38), x_4/(-0.35, 0.38), x_5/(-0.35, 0.38), x_3/(-0.35, 0.38), x_5/(-0.35, 0.38), x_3/(-0.35, 0.38), x_4/(-0.35, 0.38), x_5/(-0.35, 0.38), x_3/(-0.35, 0.38), x_5/(-0.35, 0.38), x_3/(-0.35, 0.38), x_4/(-0.35, 0.38), x_5/(-0.35, 0.$$

$$\begin{aligned} & \text{Consider } U = \{x_1, x_2, x_3, x_4, x_5\}, A_4 = \{x_1/(-0.02, 0.11), x_2/(-0.09, 0.18), \\ & x_3/(-0.07, 0.2), x_4/(-0.05, 0.13), x_5/(-0.006, 0.005)\} \text{ and} \\ & x_1 & x_2 & x_3 & x_4 & x_5 \\ & x_1 \begin{pmatrix} (-1, 1) & (-0.11, 0.21) & (-0.11, 0.21) & (-0.11, 0.21) \\ (-0.11, 0.21) & (-1, 1) & (-0.23, 0.41) & (-0.23, 0.41) & (-0.23, 0.41) \\ (-0.11, 0.21) & (-0.23, 0.41) & (-1, 1) & (-0.36, 0.56) & (-0.36, 0.56) \\ (-0.11, 0.21) & (-0.23, 0.41) & (-0.36, 0.56) & (-1, 1) & (-0.49, 0.62) \\ (-0.11, 0.21) & (-0.23, 0.41) & (-0.36, 0.56) & (-0.49, 0.62) & (-1, 1) \\ & BFR(A_4) = \{\{x_1/(-0.09, 0.11), x_2/(-0.07, 0.18), x_3/(-0.09, 0.2), \\ & x_4/(-0.09, 0.13), x_5/(-0.02, 0.2), x_3/(-0.2, 0.2), \\ & x_4/(-0.2, 0.2), x_5/(-0.2, 0.2)\}\}. \end{aligned}$$

Bipolar fuzzy rough decision matrix

	c_1	c_2	c_3
$BFR(A_1)$	(-0.4, 0.34)(-0.4, 0.62)	(-0.3, 0.34)(-0.4, 0.62)	(-0.3, 0.34)(-0.4, 0.62)
$BFR(A_2)$	(-0.45, 0.4)(-0.48, 0.58)	(-0.4, 0.35)(-0.48, 0.58)	(-0.32, 0.35)(-0.48, 0.58)
$BFR(A_3)$	(-0.16, 0.21)(-0.35, 0.38)	(-0.23, 0.3)(-0.35, 0.38)	(-0.23, 0.12)(-0.35, 0.38)
$BFR(A_4)$	(-0.09, 0.11)(-0.11, 0.2)	(-0.07, 0.18)(-0.2, 0.2)	(-0.09, 0.2)(-0.2, 0.2)
BFRM =		c_4	c_5
		(-0.3, 0.34)(-0.4, 0.62)	(-0.3, 0.34)(-0.4, 0.62)
		(-0.28, 0.35)(-0.48, 0.58)	(-0.28, 0.35)(-0.48, 0.58)
		(-0.23, 0.05)(-0.35, 0.38)	(-0.23, 0.009)(-0.35, 0.38)
		(-0.09, 0.13)(-0.2, 0.2)	(-0.09, 0.005)(-0.2, 0.2)

Step 2: Using Definitions 2.3, 2.4 and 2.5 the weight wt_j , corresponding criteria c_j are as follows:

 $wt_1 = 0.191, wt_2 = 0.203, wt_3 = 0.191 wt_4 = 176 \text{ and } wt_5 = 239.$

Step 3: Using Definition 2.2 the values of WGAO calculated for each alternative are,

$$\begin{aligned} \zeta_1 &= ((-0.46491, 0.34), (-0.20207, 0.62)) \\ \zeta_2 &= ((-0.34872, 0.390365), (-0.48, 0.58)) \\ \zeta_3 &= ((-0.30394, 0.076682), (-0.35, 0.38)) \\ \zeta_4 &= ((-0.13887, 0.068905), (-0.1635, 0.2)). \end{aligned}$$

Step 4: Using Definition 2.6 the score function values $BFRS(\zeta_i)$ calculated.

```
BFRS(\zeta_1) = 0.14644,

BFRS(\zeta_2) = 0.01512,

BFRS(\zeta_3) = 0.06129,

BFRS(\zeta_4) = 0.0264.
```

Step 5: We conclude that $BFR(A_1) \succ BFR(A_3) \succ BFR(A_4) \succ BFR(A_2)$. Thus the alternative $BFR(A_1)$, namely dipole antenna is the best.

REFERENCES

- S. A. SHANTHI, M. SARANYA: On bipolar fuzzy rough connected spaces, AIP Conference Proceeding., 2177 (2019), 1–6.
- [2] D. DUBOIS, H. PRADE: Rough fuzzy set and fuzzy rough sets, In. J. Gen. Syst., 17 (1990), 191–209.
- [3] D. DUBOIS, H. PRADE: Putting fuzzy sets and rough sets together, Int. Decis. Support., 5 (1992), 203–232.
- [4] Z. PAWLAK: Rough sets, Int. J. comput. Inf. sci., 11(1982), 341–356.
- [5] Z. PAWLAK: Rough Sets- Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers, Boston, 1991.
- [6] N. THILLAIGOVINDAN, S. A. SHANTHI, J. V. NAIDU: A better score function for multiple criteria decision making in fuzzy environment with criteria choice under risk, Expert. Syst. Appl., 59(2016), 78–85.
- [7] W. R. ZHANG: *Bipolar fuzzy sets*, IEEE International Conference on Fuzzy Sets, (1994) 305–309.

DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY ANNAMALAINAGAR-608002, TAMIL NADU, INDIA *E-mail address*: shanthi.anita@yahoo.com

DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY ANNAMALAINAGAR-608002, TAMIL NADU, INDIA *E-mail address*: devash2416@gmail.com