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A STUDY ON SUBDIRECT IRREDUCIBILITY OF THE SUBGROUP
LATTICES OF THE GROUP OF 2 × 2 MATRICES OVER Z7

R. SEETHALAKSHMI1, V. DURAI MURUGAN, AND R. MURUGESAN

ABSTRACT. In this paper, we determine subdirect irreducibility of the subgroup
lattice of the group of 2× 2 matrices over Z7.

1. INTRODUCTION

Let L(G) denotes the Lattice of Subgroups of G, where G is a group of 2 × 2

matrices over Zp having determinant value 1 under matrix multiplication mod-
ulo p, where p is a prime number.

Let

G =

(
a b

c d

)
: a, b, c, d ∈ Zp, ad− bc 6= 0.

Then G is a group under matrix multiplication modulo p.
Let

G =

{(
a b

c d

)
∈ G : ad− bc = 1.

}
Then G is a subgroup of G.
We have, o(G) = p(p2 − 1)(p − 1) and o(G) = p(p2 − 1) [6]. For more details

on this theory and on its applications, we suggest the reader to refer [1–5,7–9].
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2. PRELIMINARIES

Definition 2.1. (Poset) A partial order on a non-empty set P is a binary relation
≤ on P that is reflexive, anti-symmetric and transitive. The pair (P,≤) is called a
partially ordered set or poset. A poset. (P,≤) is totally ordered if every x, y ∈ P
are comparable, that is either x ≤ y or y ≤ x. A non-empty subset S of P is a
chain in P if S is totally ordered by ≤.

Definition 2.2. Let (P,≤) be a poset and let S ⊆ P . An upper bound of S is an
element x ∈ P for which s ≤ x for all s ∈ S. The least upper bound of S is called
the supremum or join of S.A lower bound for S is an element x ∈ P for which
x ≤ s for all s ∈ S. The greatest lower bound of S is called the infimum or meet
of S.

Definition 2.3. (Lattice) Poset (P,≤) is called a lattice if every pair x, y elements
of P has a supremum and an infimum, which are denoted by x ∨ y and x ∧ y
respectively.

Definition 2.4. (Atom) An element a is an atom, if a > 0 and a dual atom, if
a < 1.

Definition 2.5. An equivalence relation θ on a lattice L is called a congruence
relation on L iff (a0, b0) ∈ θ and (a1, b1) ∈ θ imply that (a0 ∧ a1, b0 ∧ b1) ∈ θ and
(a0 ∨ a1, b0 ∨ b1) ∈ θ.

Definition 2.6. The collection of all congruence relations on L, is denoted by Con
L.

Note: Con L with respect to the set inclusion relation becomes an algebraic
lattice [1].

Definition 2.7. If a lattice L has only two trivial congruence relations, namely ω,
the diagonal and τ = L× L, then L is said to be simple. (e.g. M3 is simple)

Definition 2.8. If Con L contains a unique atom, then we say that L is subdirectly
irreducible. (e.g N5 is subdirectly irreducible)

We tabulate the subgroups of G, when p = 7 in the order in which they lie in
different maximal subgroups (co-atoms). This will make our work easy.
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TABLE 1. Intervals [{e}, Ui] in L(G), i = 1, 2, ...8

Order Subgroups Order Subgroups
42 U1 42 U2

21 T1 21 T2

14 R1 14 R2

7 N1 7 N2

6
M1, M12, M14,

M16, M17, M21, M23
6

M1, M11, M13,
M15, M18, M22, M24

3
K1, K12, K14,

K16, K17, K21, K23
3

K1, K11, K13,
K15, K18, K22, K24

Order Subgroups Order Subgroups
42 U3 42 U4

21 T3 21 T4

14 R3 14 R4

7 N3 7 N4

6
M4, M6, M9,

M17, M20, M24, M26
6

M4, M5, M10,
M18, M19, M23, M25

3
K4, K6, K9,

K17, K20, K24, K26
3

K4, K5, K10,
K18, K19, K23, K25

Order Subgroups Order Subgroups
42 U5 42 U6

21 T5 21 T6

14 R5 14 R6

7 N5 7 N6

6
M3, M6, M8,

M16, M19, M22, M28
6

M3, M5, M7,
M15, M20, M21, M27

3
K3, K6, K8,

K16, K19, K22, K28
3

K3, K5, K7,
K15, K20, K21, K27

Order Subgroups Order Subgroups
42 U7 42 U8

21 T7 21 T8

14 R7 14 R8

7 N7 7 N8

6
M2, M8, M10,

M12, M13, M26, M27
6

M2, M7, M9,
M11, M14, M25, M28

3
K2, K8, K10,

K12, K13, K26, K27
3

K2, K7, K9,
K11, K14, K25, K28
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TABLE 2. Intervals [{e}, Vi] in L(G), i = 1, 2, ...14

Order Subgroups Order Subgroups
48 V1 48 V2

16 S12, S16, S17 16 S13, S18, S19

12 Q1, Q4, Q7, Q8 12 Q1, Q3, Q9, Q10

8 P12, P16, P17 8 P13, P18, P19

6 M1, M4, M7, M8 6 M1, M3, M9, M10

4
L1, L2, L3, L10, L11,
L12, L14, L16, L17

4
L1, L2, L3, L8, L9,
L13, L15, L18, L19

3 K1, K4, K7, K8 3 K1, K3, K9, K10

Order Subgroups Order Subgroups
48 V3 48 V4

16 S4, S5, S15 16 S6, S7, S14

12 Q2, Q4, Q15, Q16 12 Q2, Q3, Q17, Q18

8 P4, P5, P15 8 P6, P7, P14

6 M2, M4, M15, M16 6 M2, M3, M17, M18

4
L1, L4, L5, L10, L11,
L13, L15, L20, L21

4
L1, L6, L7, L8, L9,
L12, L14, L20, L21

3 K2, K4, K15, K16 3 K2, K3, K17, K18

Order Subgroups Order Subgroups
48 V5 48 V6

16 S5, S10, S21 16 S4, S11, S20

12 Q5, Q9, Q12, Q22 12 Q6, Q10, Q11, Q21

8 P5, P10, P21 8 P4, P11, P20

6 M5, M9, M12, M22 6 M6, M10, M11, M21

4
L3, L4, L5, L7, L8,
L10, L15, L16, L21

4
L2, L4, L5, L6, L9,
L11, L15, L17, L20

3 K5, K9, K12, K22 3 K6, K10, K11, K21

Order Subgroups Order Subgroups
48 V7 48 V8

16 S6, S9, S20 16 S7, S8, S21

12 Q5, Q8, Q14, Q24 12 Q6, Q7, Q13, Q23

8 P6, P9, P20 8 P7, P8, P21

6 M5, M8, M14, M24 6 M6, M7, M13, M23

4
L3, L4, L6, L7, L9,
L11, L14, L19, L20

4
L2, L5, L6, L7, L8,
L10, L14, L18, L21

3 K5, K8, K14, K24 3 K6, K7, K13, K23
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Order Subgroups Order Subgroups
48 V9 48 V10
16 S3, S10, S16 16 S2, S11, S17

12 Q11, Q17, Q19, Q27 12 Q12, Q18, Q20, Q28

8 P3, P10, P16 8 P2, P11, P17

6 M11, M17, M19, M27 6 M12, M18, M20, M28

4
L3, L5, L9, L10, L12,
L16, L17, L19, L21

4
L2, L4, L8, L11, L12,
L16, L17, L18, L20

3 K11, K17, K19, K27 3 K12, K18, K20, K28

Order Subgroups Order Subgroups
48 V11 48 V12
16 S2, S8, S18 16 S3, S9, S19

12 Q14, Q15, Q19, Q26 12 Q13, Q16, Q20, Q25

8 P2, P8, P18 8 P3, P9, P19

6 M14, M15, M19, M26 6 M13, M16, M20, M25

4
L2, L7, L8, L11, L13,
L17, L18, L19, L21

4
L3, L6, L9, L10, L13,
L16, L18, L19, L20

3 K14, K15, K19, K26 3 K13, K16, K20, K25

Order Subgroups Order Subgroups
48 V13 48 V14
16 S1, S12, S14 16 S1, S13, S15

12 Q21, Q22, Q25, Q26 12 Q23, Q24, Q27, Q28

8 P1, P12, P14 8 P1, P13, P15

6 M21, M22, M25, M26 6 M23, M24, M27, M28

4
L1, L6, L7, L12, L13,
L14, L15, L16, L17

4
L1, L4, L5, L12, L13,
L14, L15, L18, L19

3 K21, K22, K25, K26 3 K23, K24, K27, K28

When p = 7, we display two typical intervals [{e}, U1] and [{e}, V1] of L(G) in
the following figures.
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FIGURE 1. The Interval [{e}, U1]

FIGURE 2. The Interval [{e}, V1]



A STUDY ON SUBDIRECT IRREDUCIBILITY. . . 1757

3. SUBDIRECT IRREDUCIBILITY OF L(G) WHEN p = 7

In this section, while computing the congruences we refer to tables 1 and 2.

Lemma 3.1. θ({e}, H1) is a proper congruence relation on L(G).

Proof. Let θ({e}, H1) = θ1. Let K be a subgroup of odd order then

(3.1) ({e}, H1) ∨ (K,K) = (K,S)

where K covers S and S is of even order. Therefore (K,S) ∈ θ1, for every
subgroup K of odd order.
θ1 contains no other pair (X, Y ), where X 6= Y . Since, if X is any subgroup of

even order in L(G), then ({e}, H1)∧(X,X) = ({e}, H1) and ({e}, H1)∨(X,X) =

(X,X).
If X is any subgroup of odd order other than K and S then (K,S)∧ (X,X) =

({e}, {e}) and (K,S) ∨ (X,X) = (K ∨ X,S ∨ X) which is the same type of the
pair (K,S) as in (3.1).

Therefore, we do not get a new element other than that found in (3.1). So
we conclude that θ1 is a proper congruence relation on L(G). �

Lemma 3.2. The principal congruence generated by any pair of the form (K,S),
where K is of odd order and S is of even order immediately above K, is equal to
θ1.

Proof. Let θ2 = (K,S), where K is of odd order and S is of even order immedi-
ately above K. We have to prove that θ1 = θ2. Now, (K,S) ∈ θ2. Therefore,

(K,S) ∧ (H1, H1) = (K ∧H1, S ∧H1) = ({e}, H1).

Therefore, ({e}, H1) ∈ θ2.
Therefore, θ1 ⊆ θ2. Also, as seen in the previous lemma, (K,S) ∈ θ1 which

implies that θ2 ⊆ θ1.
Therefore, θ1 = θ2 and hence the proof. �

Lemma 3.3. θ(H1, G) = L(G)× L(G).

Proof. Now, (H1, G) ∧ (Xi, Xi) = ({e}, Xi), for any odd order subgroup Xi of
G. Then, the supremum of all ({e}, Xi) is ({e}, G) which belongs to θ(H1, G).
Therefore, θ(H1, G) = L(G)× L(G), is an improper congruence. �

Lemma 3.4. θ(H1, X) = L(G)× L(G), where X is a subgroup of any order.



1758 R. SEETHALAKSHMI, V. DURAI MURUGAN, AND R. MURUGESAN

Proof. Let X be either an odd order or even order subgroup of G. Now, (H1, X)∨
(Ui, Ui) = (Ui, G), where Ui’s are co-atoms and non-comparable with X and
we observe that there are atleast 3 such Ui’s and if we take take the infimum
of all (Ui, G), we get (H1, G) ∈ θ(H1, X) which generates L(G) × L(G) [by
Lemma 3.3]. Therefore, θ(H1, X) = L(G)×L(G), where X is a subgroup of any
order. �

Lemma 3.5. θ({e}, X) = L(G)× L(G), where X is a subgroup of any order.

Proof. Now, ({e}, X) ∨ (Ui, Ui) = (Ui, G), where Ui’s are co-atoms and non-
comparable with X.

We observe that there are atleast 3 such Ui’s and if we take infimum of all
(Ui, G), we get (H1, G) ∈ θ({e}, X) which genetates L(G) × L(G). [by Lemma
3.3].

Therefore, θ({e}, X) = L(G)×L(G), where X is a subgroup of any order. �

Lemma 3.6. θ(X, Y ) = L(G) × L(G), where both X and Y are of even order
subgroups.

Proof. Case (i): Suppose that o(X) 6= 42 and o(Y ) = 42.

(i(a)): If X is not a subset of Y then, θ(X, Y ) contains (X∧Y,X∨Y ) = (H1, G).
By lemma 3.3, θ(X, Y ) = L(G)× L(G).

(i(b)): Suppose X is a subset of Y , that is, X is of order 2 or 6. Take a subgroup
S of odd order such that S is not a subset of X and S is a subset of Y .
Such an S exists. Then (S ∧ X,S ∧ Y ) = ({e}, S) ∈ θ(X, Y ) which
generates L(G)× L(G) [by lemma 3.5].

Case (ii): Symmetry of θ(X, Y ) implies the roles of X and Y can be inter-
changed. �

Lemma 3.7. θ(X, Y ) = L(G)× L(G), where both X and Y are subgroups of odd
order.

Proof. Case (i): Let X and Y be non-comparable subgroups. Now, θ(X, Y )

contains (X ∧ Y,X ∨ Y ) = ({e}, Z), Z is of any order.
By lemma 3.5, θ(X, Y ) = L(G)× L(G).
Case (ii): Let X and Y be comparable. Now, (X ∧Ki, Y ∧Ki) = ({e}, Ki), Ki

is a subgroup of order 3 and Ki ⊂ Y but Ki 6⊂X. Such a Ki exists. Then,

({e}, Ki) ∈ θ(X, Y ).
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By lemma 3.5, ({e}, Ki) generates L(G)× L(G). Therefore,

θ(X, Y ) = L(G)× L(G)

when both X and Y are of odd order subgroups. �

Lemma 3.8. θ(X, Y ) = L(G) × L(G), where X is an odd order subgroup and Y
is an even order subgroup.

Proof. Let X be not a subset of Y . Now, θ(X, Y ) contains (X ∧ Y,X ∨ Y ) =

({e}, Z), Z is of any order and Z 6= {e}.
That is,

({e}, Z) ∈ θ(X, Y ).

By lemma 3.5, ({e}, Z) generates L(G) × L(G). Therefore, θ(X, Y ) generates
L(G)× L(G).

If X is a subset of Y and X does not cover Y , then there exists a subgroup T
of odd order such that T is not a subset of X but T is a subset of Y . Then

(X ∧ T, Y ∧ T ) = ({e}, T ) ∈ θ(X, Y ).

But, ({e}, T ) generates L(G)× L(G).
Therefore, θ(X, Y ) is improper.
Hence θ(X, Y ) = L(G)× L(G) when X is an odd order subgroup and Y is an

even order subgroup. �

Theorem 3.1. L(G) is subdirectly irreducible when p = 7.

Proof. From lemma 3.1 to 3.8, we conclude that the only proper congruence re-
lation on L(G) is θ({e}, H1). Thus Con(L(G)) contains a unique atom θ({e}, H1).

Therefore, Con(L(G)) is isomorphic to the three element chain. Hence, L(G)
is subdirectly irreducible. �

4. CONCLUSION

In this paper we proved that the subgroup lattices of the group of 2×2 matrices
over Z7 is subdirect irreducibility.
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