

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 1751–1760 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.31 Spec. Issue on NCFCTA-2020

A STUDY ON SUBDIRECT IRREDUCIBILITY OF THE SUBGROUP LATTICES OF THE GROUP OF 2×2 MATRICES OVER Z_7

R. SEETHALAKSHMI¹, V. DURAI MURUGAN, AND R. MURUGESAN

ABSTRACT. In this paper, we determine subdirect irreducibility of the subgroup lattice of the group of 2×2 matrices over Z_7 .

1. INTRODUCTION

Let L(G) denotes the Lattice of Subgroups of G, where G is a group of 2×2 matrices over Z_p having determinant value 1 under matrix multiplication modulo p, where p is a prime number.

Let

$$\mathcal{G} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in Z_p, ad - bc \neq 0.$$

Then \mathcal{G} is a group under matrix multiplication modulo p. Let

$$G = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \mathcal{G} : ad - bc = 1. \right\}$$

Then \mathcal{G} is a subgroup of G.

We have, $o(\mathcal{G}) = p(p^2 - 1)(p - 1)$ and $o(G) = p(p^2 - 1)$ [6]. For more details on this theory and on its applications, we suggest the reader to refer [1–5, 7–9].

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 03G10.

Key words and phrases. Matrix group, subgroups, Lattice, Congruence, subdirect irreducibility.

1752 R. SEETHALAKSHMI, V. DURAI MURUGAN, AND R. MURUGESAN

2. Preliminaries

Definition 2.1. (Poset) A partial order on a non-empty set P is a binary relation \leq on P that is reflexive, anti-symmetric and transitive. The pair (P, \leq) is called a partially ordered set or poset. A poset. (P, \leq) is totally ordered if every $x, y \in P$ are comparable, that is either $x \leq y$ or $y \leq x$. A non-empty subset S of P is a chain in P if S is totally ordered by \leq .

Definition 2.2. Let (P, \leq) be a poset and let $S \subseteq P$. An upper bound of S is an element $x \in P$ for which $s \leq x$ for all $s \in S$. The least upper bound of S is called the **supremum or join** of S.A lower bound for S is an element $x \in P$ for which $x \leq s$ for all $s \in S$. The greatest lower bound of S is called the **infimum or meet** of S.

Definition 2.3. (Lattice) Poset (P, \leq) is called a lattice if every pair x, y elements of P has a supremum and an infimum, which are denoted by $x \lor y$ and $x \land y$ respectively.

Definition 2.4. (Atom) An element a is an atom, if a > 0 and a dual atom, if a < 1.

Definition 2.5. An equivalence relation θ on a lattice L is called a congruence relation on L iff $(a_0, b_0) \in \theta$ and $(a_1, b_1) \in \theta$ imply that $(a_0 \land a_1, b_0 \land b_1) \in \theta$ and $(a_0 \lor a_1, b_0 \lor b_1) \in \theta$.

Definition 2.6. *The collection of all congruence relations on L, is denoted by Con L.*

Note: Con L with respect to the set inclusion relation becomes an algebraic lattice [1].

Definition 2.7. If a lattice L has only two trivial congruence relations, namely ω , the diagonal and $\tau = L \times L$, then L is said to be simple. (e.g. M_3 is simple)

Definition 2.8. If Con L contains a unique atom, then we say that L is subdirectly irreducible. (e.g N_5 is subdirectly irreducible)

We tabulate the subgroups of G, when p = 7 in the order in which they lie in different maximal subgroups (co-atoms). This will make our work easy.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Order	Subgroups	Order	Subgroups
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3		3	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Order		Order	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42	U_3	42	U_4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	T_3	21	T_4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	R_3	14	R_4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7	N_3	7	N_4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	$M_4, M_6, M_9,$	6	$M_4, M_5, M_{10},$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	$M_{17}, M_{20}, M_{24}, M_{26}$	0	$M_{18}, M_{19}, M_{23}, M_{25}$
	2	$K_4, K_6, K_9,$	2	$K_4, K_5, K_{10},$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	$K_{17}, K_{20}, K_{24}, K_{26}$	3	$K_{18}, K_{19}, K_{23}, K_{25}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Order		Order	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Subgroups		Subgroups
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42	Subgroups U ₅	42	Subgroups U ₆
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42 21	Subgroups U5 T5	42 21	$\frac{\textbf{Subgroups}}{U_6}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42 21 14	Subgroups U5 T5 R5	42 21 14	Subgroups U ₆ T ₆ R ₆
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42 21 14 7	$\begin{tabular}{c} Subgroups \\ U_5 \\ T_5 \\ R_5 \\ N_5 \end{tabular}$	42 21 14 7	$\begin{tabular}{c} Subgroups \\ \hline U_6 \\ \hline T_6 \\ \hline R_6 \\ \hline N_6 \\ \end{tabular}$
	42 21 14 7	$\begin{tabular}{c} Subgroups \\ U_5 \\ T_5 \\ R_5 \\ N_5 \\ M_3, M_6, M_8, \end{tabular}$	42 21 14 7	Subgroups U_6 T_6 R_6 N_6 $M_3, M_5, M_7,$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42 21 14 7 6	$\begin{tabular}{c} Subgroups \\ U_5 \\ T_5 \\ R_5 \\ N_5 \\ M_3, M_6, M_8, \\ M_{16}, M_{19}, M_{22}, M_{28} \end{tabular}$	42 21 14 7 6	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42 21 14 7 6	$\begin{tabular}{c} Subgroups \\ U_5 \\ T_5 \\ R_5 \\ N_5 \\ M_3, M_6, M_8 \\ $M_{16}, M_{19}, M_{22}, M_{28}$ \\ K_3, K_6, K_8 \\ \end{tabular}$	42 21 14 7 6	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42 21 14 7 6 3	$\begin{tabular}{c} Subgroups \\ \hline U_5 \\ \hline T_5 \\ \hline R_5 \\ \hline N_5 \\ \hline $M_3, M_6, M_8, \\ M_{16}, M_{19}, M_{22}, M_{28}$ \\ \hline $K_3, K_6, K_8, \\ K_{16}, K_{19}, K_{22}, K_{28}$ \\ \hline \end{tabular}$	42 21 14 7 6 3	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	42 21 14 7 6 3 Order	$\begin{tabular}{ c c c c } \hline Subgroups \\ \hline U_5 \\ \hline U_5 \\ \hline T_5 \\ \hline R_5 \\ \hline N_5 \\ \hline $M_3, M_6, M_8, \\ \hline $M_{16}, M_{19}, M_{22}, M_{28}$ \\ \hline $K_3, K_6, K_8, \\ \hline $K_{16}, K_{19}, K_{22}, K_{28}$ \\ \hline $Subgroups$ \end{tabular}$	42 21 14 7 6 3 Order	Subgroups U_6 T_6 R_6 N_6 $M_3, M_5, M_7,$ $M_{15}, M_{20}, M_{21}, M_{27}$ $K_3, K_5, K_7,$ $K_{15}, K_{20}, K_{21}, K_{27}$ Subgroups
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42 21 14 7 6 3 Order 42	$\begin{tabular}{ c c c c } \hline Subgroups \\ \hline U_5 \\ \hline U_5 \\ \hline T_5 \\ \hline R_5 \\ \hline N_5 \\ \hline $M_3, M_6, M_8, \\ M_{16}, M_{19}, M_{22}, M_{28}$ \\ \hline $M_{16}, M_{19}, M_{22}, M_{28}$ \\ \hline $K_3, K_6, K_8, \\ K_{16}, K_{19}, K_{22}, K_{28}$ \\ \hline $Subgroups$ \\ \hline U_7 \\ \hline \end{tabular}$	42 21 14 7 6 3 Order 42	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42 21 14 7 6 3 Order 42 21	$\begin{tabular}{ c c c c } \hline Subgroups \\ \hline U_5 \\ \hline T_5 \\ \hline R_5 \\ \hline N_5 \\ \hline $M_3, M_6, M_8, \\ M_{16}, M_{19}, M_{22}, M_{28}$ \\ \hline $K_3, K_6, K_8, \\ K_{16}, K_{19}, K_{22}, K_{28}$ \\ \hline $Subgroups $ \\ \hline U_7 \\ \hline T_7 \\ \hline \end{tabular}$	42 21 14 7 6 3 Order 42 21	Subgroups U_6 T_6 R_6 N_6 $M_3, M_5, M_7,$ $M_{15}, M_{20}, M_{21}, M_{27}$ $K_3, K_5, K_7,$ $K_{15}, K_{20}, K_{21}, K_{27}$ Subgroups U_8 T_8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42 21 14 7 6 3 Order 42 21 14	$\begin{tabular}{ c c c } \hline Subgroups \\ \hline U_5 \\ \hline U_5 \\ \hline T_5 \\ \hline R_5 \\ \hline N_5 \\ \hline M_3, M_6, M_8, \\ \hline M_{16}, M_{19}, M_{22}, M_{28} \\ \hline K_3, K_6, K_8, \\ \hline K_{16}, K_{19}, K_{22}, K_{28} \\ \hline Subgroups \\ \hline U_7 \\ \hline T_7 \\ \hline R_7 \\ \hline \end{tabular}$	42 21 14 7 6 3 Order 42 21 14	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
3	42 21 14 7 6 3 Order 42 21 14 7	$\begin{tabular}{ c c c } \hline Subgroups \\ \hline U_5 \\ \hline T_5 \\ \hline R_5 \\ \hline N_5 \\ \hline $M_3, M_6, M_8, \\ $M_{16}, M_{19}, M_{22}, M_{28}$ \\ \hline $K_3, K_6, K_8, \\ $K_{16}, K_{19}, K_{22}, K_{28}$ \\ \hline $Subgroups $ \\ \hline U_7 \\ \hline T_7 \\ \hline R_7 \\ \hline N_7 \\ \hline \end{tabular}$	42 21 14 7 6 3 Order 42 21 14 7	Subgroups U_6 T_6 R_6 N_6 $M_3, M_5, M_7,$ $M_{15}, M_{20}, M_{21}, M_{27}$ $K_3, K_5, K_7,$ $K_{15}, K_{20}, K_{21}, K_{27}$ Subgroups U_8 T_8 R_8 N_8
$K_{12}, K_{13}, K_{26}, K_{27}$	42 21 14 7 6 3 Order 42 21 14 7	$\begin{tabular}{ c c c } \hline Subgroups \\ \hline U_5 \\ \hline T_5 \\ \hline R_5 \\ \hline N_5 \\ \hline $M_3, M_6, M_8, \\ M_{16}, M_{19}, M_{22}, M_{28} \\ \hline $M_{16}, M_{19}, M_{22}, M_{28} \\ \hline $K_3, K_6, K_8, \\ K_{16}, K_{19}, K_{22}, K_{28} \\ \hline $K_{16}, K_{19}, K_{22}, K_{28} \\ \hline $Subgroups \\ \hline U_7 \\ \hline T_7 \\ \hline R_7 \\ \hline N_7 \\ \hline $M_2, M_8, M_{10}, \\ \hline \end{tabular}$	42 21 14 7 6 3 Order 42 21 14 7	Subgroups U_6 T_6 R_6 N_6 $M_3, M_5, M_7,$ $M_{15}, M_{20}, M_{21}, M_{27}$ $K_3, K_5, K_7,$ $K_{15}, K_{20}, K_{21}, K_{27}$ Subgroups U_8 T_8 R_8 N_8 $M_2, M_7, M_9,$
	42 21 14 7 6 3 Order 42 21 14 7 6	$\begin{tabular}{ c c c } \hline Subgroups \\ \hline U_5 \\ \hline T_5 \\ \hline R_5 \\ \hline N_5 \\ \hline $M_3, M_6, M_8, \\ $M_{16}, M_{19}, M_{22}, M_{28}$ \\ \hline $M_{16}, M_{19}, M_{22}, M_{28}$ \\ \hline $K_3, K_6, K_8, \\ $K_{16}, K_{19}, K_{22}, K_{28}$ \\ \hline U_7 \\ \hline $K_{16}, K_{19}, K_{22}, K_{28}$ \\ \hline U_7 \\ \hline T_7 \\ \hline R_7 \\ \hline N_7 \\ \hline $M_2, M_8, M_{10}, \\ $M_{12}, M_{13}, M_{26}, M_{27}$ \\ \hline \end{tabular}$	42 21 14 7 6 3 Order 42 21 14 7 6	Subgroups U_6 T_6 R_6 N_6 $M_3, M_5, M_7,$ $M_{15}, M_{20}, M_{21}, M_{27}$ $K_3, K_5, K_7,$ $K_{15}, K_{20}, K_{21}, K_{27}$ Subgroups U_8 R_8 $M_2, M_7, M_9,$ $M_{11}, M_{14}, M_{25}, M_{28}$

TABLE 1. Intervals $[\{e\}, U_i]$ in L(G), i = 1, 2, ...8

Subgroups Order Subgroups Order 48 V_1 16 S_{12}, S_{16}, S_{17} 12 Q_1, Q_4, Q_7, Q_8 8 P_{12}, P_{16}, P_{17} M_1, M_4, M_7, M_8 6 $L_1, L_2, L_3, L_{10}, L_1$ 4 $L_{12}, L_{14}, L_{16}, L_{17}$ 3 K_1, K_4, K_7, K_8 Order Subgroups 48 V_3 16 S_4, S_5, S_{15} 12 Q_2, Q_4, Q_{15}, Q_{16} P_4, P_5, P_{15} 8 6 M_2, M_4, M_{15}, M_{16} $L_1, L_4, L_5, L_{10}, L_1$ 4 $L_{13}, L_{15}, L_{20}, L_{21}$ 3 K_2, K_4, K_{15}, K_{16} Order Subgroups 48 V_5 $\overline{S}_5, S_{10}, S_{21}$ 16 Q_5, Q_9, Q_{12}, Q_{22} 12 P_5, P_{10}, P_{21} 8 6 M_5, M_9, M_{12}, M_{22} L_3, L_4, L_5, L_7, L_8 4 $L_{10}, L_{15}, L_{16}, L_{21}$ K_5, K_9, K_{12}, K_{22} 3 Order Subgroups 48 V_7 16 S_6, S_9, S_{20} 12 Q_5, Q_8, Q_{14}, Q_{24} 8 P_6, P_9, P_{20} 6 M_5, M_8, M_{14}, M_{24} L_3, L_4, L_6, L_7, L_9 4 $L_{11}, L_{14}, L_{19}, L_{20}$ K_5, K_8, K_{14}, K_{24} 3

TABLE 2. Intervals $[\{e\}, V_i]$ in L(G), i = 1, 2, ...14

		0 1
	48	V_2
	16	S_{13}, S_{18}, S_{19}
	12	Q_1, Q_3, Q_9, Q_{10}
	8	P_{13}, P_{18}, P_{19}
	6	M_1, M_3, M_9, M_{10}
1,	4	$L_1, L_2, L_3, L_8, L_9,$
7		$L_{13}, L_{15}, L_{18}, L_{19}$
	3	K_1, K_3, K_9, K_{10}
	Order	Subgroups
	48	V_4
	16	S_6, S_7, S_{14}
	12	Q_2, Q_3, Q_{17}, Q_{18}
	8	P_6, P_7, P_{14}
6	6	M_2, M_3, M_{17}, M_{18}
1,	4	$L_1, L_6, L_7, L_8, L_9,$
L	4	$L_{12}, L_{14}, L_{20}, L_{21}$
6	3	K_2, K_3, K_{17}, K_{18}
	Order	Subgroups
	48	V_6
	16	S_4, S_{11}, S_{20}
	12	$Q_6, Q_{10}, Q_{11}, Q_{21}$
	8	P_4, P_{11}, P_{20}
2	6	$M_6, M_{10}, M_{11}, M_{21}$
3,	4	$L_2, L_4, L_5, L_6, L_9,$
L		$L_{11}, L_{15}, L_{17}, L_{20}$
2	3	$K_6, K_{10}, K_{11}, K_{21}$
	Order	Subgroups
	48	V8
	16	S_7, S_8, S_{21}
	12	Q_6, Q_7, Q_{13}, Q_{23}
	14	
:	8	P_7, P_8, P_{21}
4		$\frac{P_7, P_8, P_{21}}{M_6, M_7, M_{13}, M_{23}}$
4	8	
	8 6	M_6, M_7, M_{13}, M_{23}

Order	Subgroups
48	V_9
16	S_3, S_{10}, S_{16}
12	$Q_{11}, Q_{17}, Q_{19}, Q_{27}$
8	P_3, P_{10}, P_{16}
6	$M_{11}, M_{17}, M_{19}, M_{27}$
4	$L_3, L_5, L_9, L_{10}, L_{12},$
	$L_{16}, L_{17}, L_{19}, L_{21}$
3	$K_{11}, K_{17}, K_{19}, K_{27}$

Order	Subgroups
48	V_{10}
16	S_2, S_{11}, S_{17}
12	$Q_{12}, Q_{18}, Q_{20}, Q_{28}$
8	P_2, P_{11}, P_{17}
6	$M_{12}, M_{18}, M_{20}, M_{28}$
4	$L_2, L_4, L_8, L_{11}, L_{12},$
	$L_{16}, L_{17}, L_{18}, L_{20}$
3	$K_{12}, K_{18}, K_{20}, K_{28}$

Order	Subgroups	Order	Subgroups
48	V_{11}	48	V_{12}
16	S_2, S_8, S_{18}	16	S_3, S_9, S_{19}
12	$Q_{14}, Q_{15}, Q_{19}, Q_{26}$	12	$Q_{13}, Q_{16}, Q_{20}, Q_{25}$
8	P_2, P_8, P_{18}	8	P_3, P_9, P_{19}
6	$M_{14}, M_{15}, M_{19}, M_{26}$	6	$M_{13}, M_{16}, M_{20}, M_{25}$
4	$L_2, L_7, L_8, L_{11}, L_{13},$	4	$L_3, L_6, L_9, L_{10}, L_{13},$
–	$L_{17}, L_{18}, L_{19}, L_{21}$	т	$L_{16}, L_{18}, L_{19}, L_{20}$
3	$K_{14}, K_{15}, K_{19}, K_{26}$	3	$K_{13}, K_{16}, K_{20}, K_{25}$
Order	Subgroups	Order	Subgroups
Order 48	Subgroups V ₁₃	Order 48	Subgroups V ₁₄
48	V ₁₃	48	V_{14}
48 16	$\frac{V_{13}}{S_1, S_{12}, S_{14}}$	48 16	$\frac{V_{14}}{S_1, S_{13}, S_{15}}$
48 16 12	$\begin{array}{c} V_{13} \\ S_{1}, S_{12}, S_{14} \\ Q_{21}, Q_{22}, Q_{25}, Q_{26} \end{array}$	48 16 12	$\frac{V_{14}}{S_1, S_{13}, S_{15}}$ $Q_{23}, Q_{24}, Q_{27}, Q_{28}$
48 16 12 8 6	$\begin{array}{c} V_{13} \\ S_{1}, S_{12}, S_{14} \\ Q_{21}, Q_{22}, Q_{25}, Q_{26} \\ P_{1}, P_{12}, P_{14} \end{array}$	48 16 12 8 6	$\begin{array}{c} V_{14} \\ S_1, S_{13}, S_{15} \\ \hline Q_{23}, Q_{24}, Q_{27}, Q_{28} \\ \hline P_1, P_{13}, P_{15} \end{array}$
48 16 12 8	$\begin{array}{c} V_{13} \\ S_{1}, S_{12}, S_{14} \\ Q_{21}, Q_{22}, Q_{25}, Q_{26} \\ P_{1}, P_{12}, P_{14} \\ M_{21}, M_{22}, M_{25}, M_{26} \end{array}$	48 16 12 8	

When p = 7, we display two typical intervals $[\{e\}, U_1]$ and $[\{e\}, V_1]$ of L(G) in the following figures.

FIGURE 2. The Interval $[\{e\}, V_1]$

3. Subdirect irreducibility of L(G) when p = 7

In this section, while computing the congruences we refer to tables 1 and 2.

Lemma 3.1. $\theta(\{e\}, H_1)$ is a proper congruence relation on L(G).

Proof. Let $\theta(\{e\}, H_1) = \theta_1$. Let *K* be a subgroup of odd order then

(3.1) $(\{e\}, H_1) \lor (K, K) = (K, S)$

where K covers S and S is of even order. Therefore $(K, S) \in \theta_1$, for every subgroup K of odd order.

 θ_1 contains no other pair (X, Y), where $X \neq Y$. Since, if X is any subgroup of even order in L(G), then $(\{e\}, H_1) \land (X, X) = (\{e\}, H_1)$ and $(\{e\}, H_1) \lor (X, X) = (X, X)$.

If X is any subgroup of odd order other than K and S then $(K, S) \land (X, X) = (\{e\}, \{e\})$ and $(K, S) \lor (X, X) = (K \lor X, S \lor X)$ which is the same type of the pair (K, S) as in (3.1).

Therefore, we do not get a new element other than that found in (3.1). So we conclude that θ_1 is a proper congruence relation on L(G).

Lemma 3.2. The principal congruence generated by any pair of the form (K, S), where K is of odd order and S is of even order immediately above K, is equal to θ_1 .

Proof. Let $\theta_2 = (K, S)$, where K is of odd order and S is of even order immediately above K. We have to prove that $\theta_1 = \theta_2$. Now, $(K, S) \in \theta_2$. Therefore,

 $(K, S) \land (H_1, H_1) = (K \land H_1, S \land H_1) = (\{e\}, H_1).$

Therefore, $(\{e\}, H_1) \in \theta_2$.

Therefore, $\theta_1 \subseteq \theta_2$. Also, as seen in the previous lemma, $(K, S) \in \theta_1$ which implies that $\theta_2 \subseteq \theta_1$.

Therefore, $\theta_1 = \theta_2$ and hence the proof.

Lemma 3.3. $\theta(H_1, G) = L(G) \times L(G)$.

Proof. Now, $(H_1, G) \land (X_i, X_i) = (\{e\}, X_i)$, for any odd order subgroup X_i of G. Then, the supremum of all $(\{e\}, X_i)$ is $(\{e\}, G)$ which belongs to $\theta(H_1, G)$. Therefore, $\theta(H_1, G) = L(G) \times L(G)$, is an improper congruence.

Lemma 3.4. $\theta(H_1, X) = L(G) \times L(G)$, where X is a subgroup of any order.

1758

Proof. Let X be either an odd order or even order subgroup of G. Now, $(H_1, X) \lor (U_i, U_i) = (U_i, G)$, where U_i 's are co-atoms and non-comparable with X and we observe that there are atleast 3 such U_i 's and if we take take the infimum of all (U_i, G) , we get $(H_1, G) \in \theta(H_1, X)$ which generates $L(G) \times L(G)$ [by Lemma 3.3]. Therefore, $\theta(H_1, X) = L(G) \times L(G)$, where X is a subgroup of any order.

Lemma 3.5. $\theta(\{e\}, X) = L(G) \times L(G)$, where X is a subgroup of any order.

Proof. Now, $(\{e\}, X) \lor (U_i, U_i) = (U_i, G)$, where U_i 's are co-atoms and non-comparable with X.

We observe that there are atleast 3 such U_i 's and if we take infimum of all (U_i, G) , we get $(H_1, G) \in \theta(\{e\}, X)$ which genetates $L(G) \times L(G)$. [by Lemma 3.3].

Therefore, $\theta(\{e\}, X) = L(G) \times L(G)$, where X is a subgroup of any order. \Box

Lemma 3.6. $\theta(X,Y) = L(G) \times L(G)$, where both X and Y are of even order subgroups.

Proof. Case (i): Suppose that $o(X) \neq 42$ and o(Y) = 42.

- (i(a)): If X is not a subset of Y then, $\theta(X, Y)$ contains $(X \land Y, X \lor Y) = (H_1, G)$. By lemma 3.3, $\theta(X, Y) = L(G) \times L(G)$.
- (i(b)): Suppose X is a subset of Y, that is, X is of order 2 or 6. Take a subgroup S of odd order such that S is not a subset of X and S is a subset of Y. Such an S exists. Then $(S \land X, S \land Y) = (\{e\}, S) \in \theta(X, Y)$ which generates $L(G) \times L(G)$ [by lemma 3.5].

Case (ii): Symmetry of $\theta(X, Y)$ implies the roles of X and Y can be interchanged.

Lemma 3.7. $\theta(X, Y) = L(G) \times L(G)$, where both X and Y are subgroups of odd order.

Proof. Case (i): Let X and Y be non-comparable subgroups. Now, $\theta(X, Y)$ contains $(X \land Y, X \lor Y) = (\{e\}, Z), Z$ is of any order.

By lemma 3.5, $\theta(X, Y) = L(G) \times L(G)$.

Case (ii): Let X and Y be comparable. Now, $(X \wedge K_i, Y \wedge K_i) = (\{e\}, K_i)$, K_i is a subgroup of order 3 and $K_i \subset Y$ but $K_i \not\subset X$. Such a K_i exists. Then,

$$(\{e\}, K_i) \in \theta(X, Y).$$

By lemma 3.5, $(\{e\}, K_i)$ generates $L(G) \times L(G)$. Therefore,

$$\theta(X,Y) = L(G) \times L(G)$$

when both X and Y are of odd order subgroups.

Lemma 3.8. $\theta(X, Y) = L(G) \times L(G)$, where X is an odd order subgroup and Y is an even order subgroup.

Proof. Let X be not a subset of Y. Now, $\theta(X, Y)$ contains $(X \land Y, X \lor Y) = (\{e\}, Z), Z$ is of any order and $Z \neq \{e\}$.

That is,

$$(\{e\}, Z) \in \theta(X, Y).$$

By lemma 3.5, $(\{e\}, Z)$ generates $L(G) \times L(G)$. Therefore, $\theta(X, Y)$ generates $L(G) \times L(G)$.

If X is a subset of Y and X does not cover Y, then there exists a subgroup T of odd order such that T is not a subset of X but T is a subset of Y. Then

$$(X \wedge T, Y \wedge T) = (\{e\}, T) \in \theta(X, Y).$$

But, $(\{e\}, T)$ generates $L(G) \times L(G)$.

Therefore, $\theta(X, Y)$ is improper.

Hence $\theta(X, Y) = L(G) \times L(G)$ when X is an odd order subgroup and Y is an even order subgroup.

Theorem 3.1. L(G) is subdirectly irreducible when p = 7.

Proof. From lemma 3.1 to 3.8, we conclude that the only proper congruence relation on L(G) is $\theta(\{e\}, H_1)$. Thus Con(L(G)) contains a unique atom $\theta(\{e\}, H_1)$.

Therefore, Con(L(G)) is isomorphic to the three element chain. Hence, L(G) is subdirectly irreducible.

4. CONCLUSION

In this paper we proved that the subgroup lattices of the group of 2×2 matrices over Z_7 is subdirect irreducibility.

R. SEETHALAKSHMI, V. DURAI MURUGAN, AND R. MURUGESAN

References

- [1] N. BOURBAKI: *Elements of Mathematics, Algebra I*, Chapter 1-3 Springer Verlag Berlin Heidelberg, New York, London Paris Tokio, 1974.
- [2] J. B. FRALEIGH: A first course in Abstract Algebra, Addison âĂŞ Wesley, London, 1992.
- [3] C. F. GARDINER: A first course in group theory, Springer-Verlag, Berlin, 1997.
- [4] G. GRATZER: General Lattice theory: BirkhauserVeslag, Basel, 1998.
- [5] I. N. HERSTIEN: Topics in Algebra, John Wiley and sons, New York, 1975.
- [6] D. J. THIRAVIAM: A Study on some special types of lattices, Ph.D thesis, Manonmaniam Sundaranar University, 2015.
- [7] A. VETHAMANICKAM, D. J. THIRAVIAM: *On Lattices of Subgroups*, Int.Journal of Mathematical Archiv, **6**(9) (2015), 1–11.
- [8] R. SEETHALAKSHMI, V. D. MURUGAN, R. MURUGESAN: A study on complementedness in the subgroup lattices of 2×2 matrices over Z_7 , Malaya Journal of Matematik, 5(1) (2020), 496–498.
- [9] R. SEETHALAKSHMI, V. D. MURUGAN, R. MURUGESAN: A study on subdirect irreducibility of the subgroup lattices of the group of 2×2 matrices over Z_3 and Z_5 , Malaya Journal of Matematik, **5**(1) (2020), 499–501.

DEPARTMENT OF MATHEMATICS THE MDT HINDU COLLEGE, PETTAI MANONMANIAM SUNDARANAR UNIVERSITY ABISHEKAPATTI, TIRUNELVELI-627012, TAMIL NADU, INDIA *E-mail address*: tr.seethalakshmi@gmail.com

DEPARTMENT OF MATHEMATICS ST, JOSEPH COLLEGE OF ARTS AND SCIENCE VAIKALIPATTI, TENKASI-627808, TAMIL NADU, INDIA *E-mail address*: vvndurai@gmail.com

DEPARTMENT OF MATHEMATICS ST, JOHN'S COLLEGE, PALAYAMKOTTAI TIRUNELVELI-627002, TAMIL NADU, INDIA *E-mail address*: rmurugesa2020@gmail.com.

1760