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NEW VERSION OF SOFT NANO COMPACTNESS AND SOFT NANO
CONNECTEDNESS

P. G. PATIL1 AND S. S. BENAKANAWARI

ABSTRACT. Purpose of this paper is to give insight to the soft nano compact-
ness which is the generalization of property of soft nano closedness. Precisely,
soft nano gω-compactness is introduced and the conditions are established
for perfectly soft nano gω-continuous onto functions, strongly soft nano gω-
continuous onto functions and soft nano gω-irresolute functions to be soft nano
gω-compactness. Furthermore, we briefly describe the characterizations of soft
nano gω-connectedness. Also, proved the fact that soft nano gω-connectedness
is under soft nano gω-irresolute surjections.

1. INTRODUCTION

In various areas of mathematics, the role of compactness, wherein each open
covering has limited subcovering is very much significant. Simultaneously, per-
taining to connectedness theorems, lemma, propositions and corollaries have
been investigated by many researchers. Kuratowski [6] introduced connected-
ness between sets in general topology.

Main results for compactness and connectedness in General topology, Nano
topology, Neutrosophic topology, Intuitionistic fuzzy topology, Ideal topology
and Soft nano topology are studied rigorously and the benefits from this study
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invoked for their generalization. The stronger and weaker forms of compactness
and connectedness were presented in the course of time. The concepts of as b-
connectedness [1], s-connectedness [3], soft p-connectedness [8] were studied.
S.S.Benchalli et al. [2] introduced gb-compactness and gb-connectedness in
general topology. In 2018, topics like nano compactness and nano-connected-
ness was putforth by S. Krishnaprakash et.al. [5]. Related matter of nano AΨ-
connectedness and nano AΨ-compactness given by R.Jeevitha et.al. [4] in 2019.
Existance of miscellaneous characters paved the way for advent of sn gω-comp-
actness and sn gω-connectedness.

Objective of this paper is to express some characterizations of soft nano com-
pact spaces in terms of soft nano basic open covers, soft nano Lindelof spaces,
soft nano continuous mappings and properties of soft nano gω-compact spaces
in terms of soft nano gω-continuous maps, soft nano gω-strongly continuous
maps, soft nano gω-perfectly continuous maps. Also, soft nano connectedness
relation with respect to soft nano boundary, soft nano discrete space and soft
nano gω-connectedness.

2. PRELIMINARIES

Definition 2.1. [5] In a nano topological space, the collection of nano open sets
{Qk : k ∈ K} is called nano open cover of nano subset H of U1 if H ⊂ {Qk : k ∈
K}.

Definition 2.2. [5] In a nano topological space if each nano open covering has a
finite subcovering, then it is nano compact.

Definition 2.3. [5] In a nano topological space if each nano open covering has a
countable subcovering, then it is nano- lindelof.

Definition 2.4. [2] In a topological space X1, if X1 canâĂŹt be written as union
of disjoint gb-open sets then it is gb-connected.

Definition 2.5. [2] Subsequent statements are equivalent:

(1) X1 being gb-connected.
(2) ∅ and X1 are only subsets of X1 where they are gb-clopen.
(3) Every gb-continuous function of X1 to discrete space X2 with minimum two

points is a invariable function.
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3. SOFT NANO COMPACTNESS AND THEIR PROPERTIES

Definition 3.1. In a soft nano topological space (τR′ (X1), U1, O1), a collection
(P ∗, O1)m for each m ∈M of soft nano open sets is known as soft nano open cover
of soft nano subset (V ∗, O1) of (τR′ (X1), U1, O1) whenever (V ∗, O1) ⊂ ∪m∈M{(P ∗,
O1)m}.

Definition 3.2. In a soft nano topological space (τR′ (X1), U1, O1), a collection
(P ∗, O1)m for each m ∈ M of soft nano gω-open sets is known as soft nano gω-
open cover of soft nano subset (V ∗, O1) of (τR′ (X1), U1, O1) whenever (V ∗, O1) ⊂
∪m∈M{(P ∗, O1)m}.

Definition 3.3. For a soft nano subset (L∗, O1) is called soft nano compact if
(L∗, O1) is soft nano compact as a subspace of (τR′ (X1), U1, O1 ).

Definition 3.4. Each soft nano gω-open of (τR′ (X1), U1, O1) having a finite soft
nano gω-subcover is called soft nano gω-compact space of (τR′ (X1), U1, O1).

Definition 3.5. In a (τR′ (X1), U1, O1), a soft nano subset (V ∗, O1) is known to be
soft nano gω-compact relative to (τR′ (X1), U1, O1) if each collection (P ∗, O1)m for
all m ∈M of sn-O(X1, O1) subsets, such that (V ∗, O1) ⊂ ∪m∈M{(P ∗, O1)m}.

Definition 3.6. A soft nano subset (V ∗, O1) of (τR′ (X1), U1, O1) is said to be soft
nano gω-compact if (V ∗, O1) is sn gω-compact as a subspace of (τR′ (X1), U1, O1).

Theorem 3.1. Every sn gω-compact space is sn-compact.

Proof. Let (τR′ (X1), U1, O1) be a sn gω-compact and consider a sn open cover
(V ∗, O1)m which is a collection of sn open set (V ∗, O1)m in (τR′ (X1), U1, O1).
From [7], every sn open set is sn gω-open set. Now sn gω-open cover (V ∗, O1)m
contains a finite sn subcover, as (τR′ (X1), U1, O1) is sn gω-compact. Therefore
(τR′ (X1), U1, O1) is sn compact. �

Definition 3.7. If each sn open cover of (τR′ (X1), U1, O1) has a sn countable sn
subcover, then (τR′ (X1), U1, O1) is called a sn-Lindelof space.

Theorem 3.2. Each sn gω-compact space is sn-Lindelof space but not conversely.

Proof. Let (P ∗, O1)m for each m ∈ M be a sn open cover of (τR′ (X1), U1, O1),
where (τR′ (X1), U1, O1)) is sn-compact and it has finite subcover {(P ∗, O1)m:
m=1, 2, 3,..., n}. We know that every countable subcover has finite subcover
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and thus (P ∗, O1)m for each m ∈M has a countable subcover {(P ∗, O1)m; m=1,
2, 3,..., n}. Therefore (τR′ (X1), U1, O1) is sn-Lindelof space.Conversely, the set
of all ordinal numbers ω1 is countably sn-compact but not sn-compact, as it has
no finite sn-subcover. �

Theorem 3.3. Under a sn-continuous map image of sn-Lindelof is sn-compact.

Proof. Let (P ∗, O1)m for each m ∈ M be a sn open cover of (τR′′ (X2), U2, O2)

of sn-continuous map F : (τR′ (X1), U1, O1) → (τR′′ , (X2), U2, O2) from a sn-
Lindelof space (τR′ (X1), U1, O1) onto sn-topological space. Here {F−1(P ∗, O1)m :

m ∈ M} is sn-open cover of (τR′ (X1), U1, O1) and it has a continuous sub-
cover {F−1(P ∗, O1)m : m = 1, 2, 3, ..., n} as (τR′ (X1), U1, O1) is sn-Lindelof. Now
F (U1) = U2 = ∪m∈M(P ∗, O1)m as X1 = ∪m∈MF−1(P ∗, O1)m, where {(P ∗, O1)1,

(P ∗, O1)2, (P
∗, O1)3, ..., (P

∗, O1)m} is a countable subfamily of {(P ∗, O1)m : m ∈
M} for (τR′′ , (X2), U2, O2). Therefore (τR′′ , (X2), U2, O2) is sn-Lindelof. �

Theorem 3.4. For an onto, sn gω-continuous function F : (τR′ (X1), U1, O1) →
(τR′′ , (X2), U2, O2), if (τR′ (X1), U1, O1) is sn gω-compact, then (τR′′ , (X2), U2, O2)

is sn gω-compact.

Proof. F is sn gω-continuous function and here let (L∗, O1)m for each m ∈M be
sn open cover of (τR′′ , (X2), U2, O2). Then {F−1(L∗, O1)m : m ∈ M} which is sn
gω-open cover of (τR′ (X1), U1, O1) contains a sn finite subcover {F−1(L∗, O1)m :

m = 1, 2, 3, ..., n}. Hence (τR′ (X1), U1, O1) = ∪nm=1[F
−1(L∗, O1)m] implies

F (τR′ (X1), U1, O1) = ∪nm=1(L
∗, O1)m).

We have (τR′′ , (X2), U2, O2) = ∪nm=1{(L∗, O1)m) : m ∈ M} as F is onto. Thus
{(L∗, O1)1, (L

∗, O1)2, (L
∗, O1)3, ..., (L

∗, O1)n} is sn-finite subcover of {(L∗, O1)m) :

m ∈M} for (τR′′ , (X2), U2, O2). Hence (τR′′ , (X2), U2, O2) is sn-compact. �

Theorem 3.5. For a sn gω-strongly continuous surjective function F : (τR′ (X1), U1,

O1)→ (τR′′ , (X2), U2, O2), if (τR′ (X1), U1, O1) is sn-compact, then (τR′′ , (X2), U2, O2)

is sn gω-compact.

Proof. Consider (L∗, O1)m for each m ∈ M be a collection of sn gω-O(X2, O2).
As F is sn gω-strongly continuous, {F−1(L∗, O1)m : m ∈ M} is sn open cover of
(τR′ (X1), U1, O1). Now (τR′ (X1), U1, O1) has a finite subcover, {F−1(L∗, O1)1, F

−1

(L∗, O1)2, F
−1(L∗, ..., F−1(L∗, O1)n} as it is sn-compact. Also, {(L∗, O1)1, (L

∗, O1)2,
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(L∗, O1)3, ..., (L
∗, O1)n} is a finite sn gω-subcover as F is surjective and therefore

(τR′′ , (X2), U2, O2) is sn gω-compact. �

Theorem 3.6. For a sn gω-perfectly continuous, surjective function F : (τR′ (X1), U1,

O1)→ (τR′′ , (X2), U2, O2), if (τR′ (X1), U1, O1) is sn-compact, then (τR′′ , (X2), U2, O2)

is sn gω-compact.

Proof. We know that a sn gω-perfectly continuous

F : (τR′ (X1), U1, O1)→ (τR′′ , (X2), U2, O2)

is sn gω-strongly continuous. Also, by Theorem 3.5 (τR′′ , (X2), U2, O2) is sn gω-
compact. �

Theorem 3.7. A (τR′ (X1), U1, O1) is sn-compact if and only if each sn basic open
cover has a finite subcover.

Proof. Each of the sn open cover of (τR′ (X1), U1, O1) has a finite subcover as it is
sn-compact. In the converse part: if each sn basic open cover of (τR′ (X1), U1, O1)

has a finite subcover and let (D∗, O1) = {(H∗, O1)m : m ∈ M} be sn open
cover of (τR′ (X1), U1, O1). Suppose in (τR′ (X1), U1, O1), if Bsn = {(C∗, O1)i :

i ∈ I} is sn-open base then every (H∗, O1)m is a finite sub cover of Bsn. Now
{(C∗, O1)i : i = 1, 2, 3, ..., n} is a finite sub collection and forms sub cover of
(D∗, O1). Therefore (τR′ (X1), U1, O1) is sn-compact. �

4. SOFT NANO CONNECTEDNESS

Definition 4.1. If a sn topological space (τR′ (X1), U1, O1) can’t be written as dis-
joint union of two sn non-empty sn open sets, then it is sn-connected.

Example 1. Consider U1 = {ε1, ε2, ε3, ε4}, O1 = {K1, K2, K3}, X1 = {ε1, ε4} and
U1/R

1 = {{ε1}, {ε2}, {ε3}, {ε4}}, (τR′ (X1) = {U, , (K1, {ε1, ε4}), (K2, {ε1, ε4}), (K3,

{ε1, ε4})} is sn-connected.

Theorem 4.1. A sn-continuous onto map F : (τR′ (X1), U1, O1)→ (τR′′ , (X2), U2,

O2) where X1 is sn-connected, then X2 is sn-connected

Proof. Let X2 = (P ∗1 , O1) ∪ (P ∗2 , O1) is not sn-connected where (P ∗1 , O1) and
(P ∗2 , O1) are disjoint sn-O(X1, O2). Here X2 = F−1(P ∗1 , O1) ∪ F−1(P ∗2 , O1) and
F−1(P ∗1 , O1) and F−1(P ∗2 , O1) be disjoint sn-O(X1, O1) as F is sn-continuous and
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surjective. But this is contradiction to the assumption that (τR′ (X1), U1, O1) is
sn-connected. Therefore (τR′ (X1), U1, O1) is sn-connected. �

Theorem 4.2. (τR′ (X1), U1, O1) is sn-connected if and only if each sn non empty
proper sn-subset of (τR′ (X1), U1, O1) contains a sn non-empty sn boundary.

Proof. Assume (τR′ (X1), U1, O1) to be sn-disconnected and then U1 = (P ∗1 , O1) ∪
(P ∗2 , O1) where (P ∗1 , O1) and (P ∗2 , O1) are both sn-clopen disjoint in U1. Here
(P ∗1 , O1)

1 = (P ∗1 , O1)
◦ = (P ∗1 , O1) but Bd(P ∗1 , O1) = (P ∗1 , O1) − (P ∗1 , O1)

◦. There-
fore Bd(P ∗1 , O1) = is contradiction to our assumption. Thus (τR′ (X1), U1, O1)

must be sn-connected. In the converse part: consider (τR′ (X1), U1, O1) be sn-
connected and Bd(L∗, O1) = where (L∗, O1) is sn-proper subset of (τR′ (X1), U1,

O1). Again (L∗, O1) = (L∗, O1)
◦∪ Bd(L∗, O1) = (L∗, O1) ∪ Bd(L∗, O1). Thus

(L∗, O1) is both sn-clopen in (τR′ (X1), U1, O1) as (L∗, O1) = (L∗, O1)
◦ = (L∗, O1).

Hence (τR′ (X1), U1, O1) is sn-disconnected. This contradicts the assumption.
Therefore each sn-proper sn-subset of (τR′ (X1), U1, O1) has sn-non empty bound-
ary. �

Definition 4.2. A (τR′ (X1), U1, O1) is sn gω-connected, if (τR′ (X1), U1, O1) can-
not be articulated as disjoint union of two sn non empty sn gω open sets. In
(τR′ (X1), U1, O1) sn subset is sn-gω-connected, if it is sn-gω-connected as a sub-
space of (τR′ (X1), U1, O1).

Theorem 4.3. A (τR′ (X1), U1, O1) is sn gω-connected, then it is sn-disconnected
but converse is not true.

Proof. Consider a sn gω-connected (τR′ (X1), U1, O1) space. Let (τR′ (X1), U1, O1)

be disconnected, here (τR′ (X1), U1, O1) = (P ∗1 , O1) ∪ (P ∗2 , O1) where (P ∗1 , O1)

and (P ∗2 , O1) are non-empty disjoint sn-O(X1, O1). But (P ∗1 , O1) and (P ∗2 , O1)

are sn gω-open and (τR′ (X1), U1, O1) = (P ∗1 , O1) ∪ (P ∗2 , O1) where (P ∗1 , O1) and
(P ∗2 , O1) are non-empty disjoint sn gω-O(X1, O1). Therefore by the contradiction
(τR′ (X1), U1, O1) is sn gω-connected. �

Converse is not true by the following example.

Example 2. Consider U1 = {ε1, ε2, ε3, ε4},O1 = {K1, K2, K3} and (τR′ (X1), U1, O1)

= {U, ∅, (K1, {ε1}), (K2, {ε1}), (K3, {ε1}), (K1, {ε1, ε2, ε4}), (K2, {ε1, ε2, ε4}), (K3, {ε1,
ε2, ε4}), (K1, {ε2, ε4}), (K2, {ε2, ε4}), (K3, {ε2, ε4})}. Here (τR′ (X1), U1, O1) is sn-
connected. Now {(K1, {ε2, ε3, ε4}), (K2, {ε2, ε3, ε4}), (K3, {ε2, ε3, ε4})} is sn gω-clopen
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but here U and ∅ are only sn-clopen subsets of (τR′ (X1), U1, O1). So (τR′ (X1), U1, O1)

is not sn gω-connected.

Theorem 4.4. Subsequents are equivalent, for a (τR′ (X1), U1, O1):

(1) (τR′ (X1), U1, O1) is sn gω-connected.
(2) U and ∅ are only sn-clopen subsets of (τR′ (X1), U1, O1).
(3) For a sn gω-continuous map of (τR′ (X1), U1, O1) into sn-discrete space

(τR′′ (X2), U2, O2) is a invariable map with minimum two points.

Proof.
(1) ⇒ (2), Consider (τR′ (X1), U1, O1) a sn gω-connected space. Let (L∗, O1)

and (L∗, O1)
c are both sn gω-clopen. Now (L∗, O1) = ∅ or (L∗, O1) = U1 as

(τR′ (X1), U1, O1) is sn gω-connected.
(2)⇒ (1), (τR′ (X1), U1, O1) = (L∗1, O1)∪(L∗2, O1) where (L∗1, O1) and (L∗2, O1) are
disjoint sn gω-subsets. Here (L∗1, O1) sn gω-clopen. But by assumption (L∗1, O1) =

U1 or ∅. Therefore (τR′ (X1), U1, O1) is sn gω-connected.
(2)⇒ (3), In a sn gω-continuous map F : (τR′ (X1), U1, O1)→ (τR′′ (X2), U2, O2)

has sn gω-clopen covering {F−1(S∗, O1) : (S∗, O1) ∈ (τR′′ (X2), U2, O2).For every
(S∗, O1) ∈ (τR′′ (X2), U2, O2) F

−1(S∗, O1) = U1 or ∅ by assumption. Here F dis-
agrees to be a function. Now F is a invariable function which is shown by the ex-
istance of minimum point (S∗, O1) ∈ (τR′′ (X2), U2, O2) such that F−1(S∗, O1) 6=
∅. Thus F−1(S∗, O1) = U1.

(3) ⇒ (2), Consider a map F : (τR′ (X1), U1, O1) → (τR′′ (X2), U2, O2) defined
as F (S∗, O1) = {(S∗, O1)} and F [(S∗, Oc

1)] = (S∗2 , O1) where (S∗, O1) is sn gω-
clopen in (τR′ (X1), U1, O1) and here we assumed that (S∗, O1) 6= ∅ and hence
F is a sn gω-continuous. Therefore by hypothesis, F is a invariable map and
(S∗, O1) = (S∗2n, O1). Hence (S∗, O1) = U1. �
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