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ABUNDANT SOLUTIONS OF CERTAIN NONLINEAR EVOLUTION
EQUATIONS ARISING IN SHALLOW WATER WAVES

PINKI KUMARI1, R. K. GUPTA, AND SACHIN KUMAR

ABSTRACT. A family of new integrable Boussinesq equations with spatio tem-
poral dimensions-(1+1) and (2+1) is studied in this work. The understudied
equations are frequently used in computer models for the simulation of long
water waves in shallow lakes and ocean harbours. Therefore, searching the ex-
act travelling wave solutions of such equations are convenient in numerical as
well as theoretical studies. In this work, a variety of travelling wave solutions
i.e. Jacobi elliptic types, Weierstrass elliptic types, are obtained by the tanh
function expansion method principle. Symbolic computations are made with
the help of Maple software.

1. INTRODUCTION

The standard Boussiness equation (BE) [1] is given by

(1.1) utt − uxx − a(u2)xx − buxxxx = 0,

introduced by Boussinesq to describe solution-interaction mechanism of shallow
water waves in 1871. In fluid dynamics, the BE (1) combine several effects of
waves and shallow water, including refraction, diffraction, shoaling and weak
nonlinearity. Other than fluid dynamics, the equation (1.1) plays a crucial role
in many fields of physics like vibrations in a nonlinear string, nonlinear lattice
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waves, and iron sound waves in a plasma, the shape-memory alloys, Rayleigh
Benard convection. The BE (1.1) and its extensions have been extensively an-
alyzed [3–7]. Wazwaz proposed new (2+1) and (3+1) dimensional integrable
Boussinesq equations and obtained their multiple soliton solutions [8].

(1+1) dimensional Boussinesq equation

(1.2) utt − uxx − a(u2)xx − buxxxx + cuxt = 0.

(2+1) dimensional Boussinesq equation

(1.3) utt − uxx − a(u2)xx − buxxxx +
c2

4
uyy + cuyt = 0.

Here, the coefficients a, b, c, d are non zero constants. The above two models
(1.2)-(1.3), describe the propagation of gravity waves over the water surface,
more particularly, the head-on collision of oblique wave profiles, was proposed
to examine the complete integrability [2].

The tanh function method is an direct, effective and powerful method for
seeking exact solutions of a nonlinear system. The method is based upon the
travelling wave hypothesis. So the method provides the solitary wave solutions
in terms of finite order polynomial of tanh functions. The improvements of tanh
method can be seen in [9–11].

In recent years, the symbolic computer program, maple, has made tedious
and time consuming calculations easy and quick in context of differential equa-
tions. As a result, an exploration of directly searching for exact solutions of
nonlinear dynamical systems has become an interesting and exciting research
topic nowadays.

The study here will be focused on searching new exact solutions with distinct
physical structures for the aforementioned three models (1.2)-(1.3) by using
tanh function method principle.

The main steps of the algorithm to obtain the exact travelling wave solutions
of the under-considered models is discussed in the following section.

2. ALGORITHM

Consider a nonlinear partial differential equation in the following form:

(2.1) F (u, ut, ux, utt, uxt, uxx, ...) = 0,
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with independent variable (x, t) and dependent variable u.

Step1: Transform (1.1) by travelling wave transformation

u(x, t) = U(ξ), ξ = k1x+ k2t+ p

into following ordinary differential equation:

(2.2) G(U,U ′, U ′′, ...) = 0,

where ′ denotes the derivative w.r.t. ξ.

Step2: Assume the solution of (2.2) in the finite series form

(2.3) U(ξ) =
m∑
i=0

aif
i(ξ),

where ai are real constants, m is a positive integer and all to be determined later.
Here, f can be chosen one among trigonometric functions, hyperbolic functions,
Weierstrass P function, Jacobi elliptic functions.

Step3: Determine m by balancing principle.

Step4: Insert (2.3) into (2.2) and then by equating the coefficients of resulted
polynomial in f to zero, we get a system of algebraic equations which, solving
by maple, yield parameters ai, k1, k2, p .

Step5: We can obtain the exact solutions of (2.1) from the result obtained in
previous step.

3. RESULTS

In this section, a variety of the exact travelling wave solutions with distinct
and rich physical structure for three models (1.2)-(1.3) of special interest in
physics are demonstrated. It should be noted that abundant wave solutions,
which have attracted much attention, are presented in a unified manner for the
first time to the best of our knowledge.
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3.1. Exact solutions of (1.2).

• Weierstrass P type solution

u(x, t) =
ck1k2 − k21 + k22

2ak21
− 6bk21WeierstrassP 2(k1x+ k2t+ p, c1, c2)

a

• Jacobi elliptic function type solutions
– CN type solution

u(x, t) =− 8bc21k
4
1 − 4bk41 − ck1k2 + k21 − k22

2ak21
+

6bc21k
2
1JacobiCN2(k1x+ k2t+ p, c1)

a

– DN type solution

u(x, t) =
4bc21k

4
1 − 8bk41 + ck1k2 − k21 + k22

2ak21
+

6bk21JacobiDN
2(k1x+ k2t+ p, c1)

a

– NC type solution

u(x, t) =− 8bc21k
4
1 − 4bk41 − ck1k2 + k21 − k22

2ak21
+

6b(c21 − 1)k21JacobiNC2(k1x+ k2t+ p, c1)

a

– ND type solution

u(x, t) =
4bc21k

4
1 − 8bk41 + ck1k2 − k21 + k22

2ak21
+

6b(c21 − 1)k21JacobiND2(k1x+ k2t+ p, c1)

a

– NS type solution

u(x, t) =
4bc21k

4
1 + 4bk41 + ck1k2 − k21 + k22

2ak21
− 6bk21JacobiNS

2(k1x+ k2t+ p, c1)

a

• SN type solution

u(x, t) =
8bc21k

4
1 − 4bk41 − ck1k2 + k21 − k22

2ak21
− 6b(c21 − 1)k21JacobiSN

2(k1x+ k2t+ p, c1)

a

3.2. Exact solutions of (1.3).

• Weierstrass P type solution

u(x, y, t) =
k22c

2 + 4ck2k3 − 4k21 + 4k22
8ak21

− 6bk21WeierstrassP 2(k1x+ k2y + k3t+ p, c1, c2)

a

• Jacobi elliptic function type solutions
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– CN type solution

u(x, y, t) =− 32bc21k
4
1 − 16k41b− k22c

2 − 4k2k3c+ 4k21 − 4k23
8ak21

+
6bc21k

2
1JacobiCN

2(k1x+ k2y + k3t+ p, c1)

a

– DN type solution

u(x, y, t) =
16bc21k

4
1 − 32k41b+ k22c

2 + 4k2k3c− 4k21 + 4k23
8ak21

+
6bc21k

2
1JacobiDN

2(k1x+ k2y + k3t+ p, c1)

a

– NC type solution

u(x, y, t) =− 16bc21k
4
1 − 32k41b+ k22c

2 + 4k2k3c− 4k21 + 4k23
8ak21

+
6b(c21 − 1)k21JacobiNC

2(k1x+ k2y + k3t+ p, c1)

a

– ND type solution

u(x, y, t) =− 16bc21k
4
1 − 32k41b+ k22c

2 + 4k2k3c− 4k21 + 4k23
8ak21

− 6b(c21 − 1)k21JacobiND
2(k1x+ k2y + k3t+ p, c1)

a

– NS type solution

u(x, y, t) =
16bc21k

4
1 + 16k41b+ k22c

2 + 4k2k3c− 4k21 + 4k23
8ak21

− 6k21JacobiNS
2(k1x+ k2y + k3t+ p, c1)

a

• SN type solution

u(x, y, t) =
16bc21k

4
1 + 16k41b+ k22c

2 + 4k2k3c− 4k21 + 4k23
8ak21

− 6b(c21 − 1)k21JacobiSN
2(k1x+ k2y + k3t+ p, c1)

a

Note. Some new exact travelling wave solutions are presented, which are not
reported before in the context of under-considered models, and can be helpful
in getting better insights about simulation of water waves in shallow lakes and
beaches..
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