

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 1811–1817 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.37 Spec. Issue on NCFCTA-2020

A NOTE ON NILPOTENT MODULES OVER RINGS

PROHELIKA DAS¹

ABSTRACT. In this paper, we define nilpotent elements and nilpotent submodules of a module M over a commutative ring R. We show that if R has the ascending chain condition, then the singular submodule Z(M) is nil a nil submodule of M. Also we prove that if M is completely semi-prime module and the ring R has the ascending chain condition (a.c.c) on annihilators, then M contains no non-zero nil submodule.

1. INTRODUCTION

Throughout this paper all modules considered are left modules not necessarily unital. A non-zero element a of a ring R is nilpotent if $a^n = 0$ for some positive integer n. If R is commutative, then the set of all nilpotent elements forms an ideal called Nilradical of R which coincides with the intersection of all prime ideals of R. An ideal $I(\neq 0)$ of the ring R is nilpotent if $I^n = 0$ for some positive integer n. If every element of an ideal is nilpotent, then it is called nil ideal. It is evident that a nilpotent ideal is a nil ideal. However the converse is not true. Herstien and Small [6] shows that nil rings satisfying certain chain conditions are nilpotent. C Lanski [8] proves that the nil sub rings of Goldie rings [4] are nilpotent. Chatters and Hajarnavis [2, p.6] shows that a semi-ring with the a.c.c for right annihilators contains no non-zero nil one-sided ideals.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 16D10, 16D25, 16D60, 16N40.

Key words and phrases. Nilpotent elements of Modules, Nil submodules, Completely Semiprime modules, Singular submodule of a module.

P. DAS

For some basic definitions and results of rings and modules, we would like to mention Lambeck [7]. For a subset N of a module M, the set $Ann(N) = \{r \in R | rn = 0 \text{ for any } n \in N\}$ is called the annihilator of N. If M is a module over a commutative ring R and N is a submodule, then Ann(N) is an ideal of R. A submodule S of a module M is a prime submodule if for any sunmodule S_i of S, $Ann(S_i) = Ann(S)$. If M is a prime module over a commutative ring R with unity, then the ideal Ann(M) of R is a prime ideal [1,3].

Recall that, a ring R is an Artinian(Noetherian) ring if it satisfies the ascending(descending) chain condition for its ideals. An ideal I of a ring R is an essential ideal if $I \cap J \neq (0)$ for any non-zero ideal J of R. The ideal J is a relative complement of I if it is maximal with respect to the property $I \cap J = (0)$. If the ideal J is the relative complement of the ideal I, then $I \bigoplus J$ is an essential ideal of the ring R [5, p.17]. A module M is a completely semi-prime if for any $m \in M$, $r^2m = 0$ implies rm = 0 for any $r \in R$ [9]. M is a simple module if it has no proper submodules. The set $Z(M) = \{x \in M | Ix = 0 \text{ for some essential}$ ideal I of $R\}$ is a submodule of M known as singular submodule.

Lemma 1.1. Let M be module over a commutative ring R with unity such that Z(M) = 0. Then M is completely semi-prime.

Proof. Let *I* be any ideal of *R* such that $I^2m = 0$, for some $m \in M$. Clearly $I \bigoplus J$ is an essential ideal for the relative complement *J* of *I*. Now $(I + J)I \subseteq I^2 + IJ$ gives that $(I + J)Im \subseteq I^2m + IJm = 0$ as $I^2m = 0$, IJm = 0. Thus $Im \subseteq Z(M)$ which gives that Im = 0.

2. NILPOTENT ELEMENTS AND NILPOTENT SUBMODULES

Definition 2.1. An element $m \neq 0 \in M$ is a nilpotent element with index k > 1 if there exist a proper ideal I of R such that $I^k m = 0$ and $I^{k-1} m \neq 0$.

A submodule $S(\neq 0)$ of the module M is nilpotent if there exists some proper ideal I such that $I^{k-1}S \neq 0$ but $I^kS = 0$ for some k > 1. If every element of a module M is nilpotent, then M is a Nil module.

Lemma 2.1. If $m \in M$ is a nilpotent element, then Ann(m) is not a prime ideal of R.

1812

Proof. Assume that Ann(m) is a prime ideal. Let I be a proper ideal of R such that $Im \neq 0$ and $I^km = 0$ for some k > 1. Then $I^k \subseteq Ann(m)$ gives that $I \subseteq Ann(m)$, a contradiction.

Theorem 2.1. If *P* is a prime submodule of the module *M* and $m \in P$ is a nilpotent element, then $Ann(P) \subset Ann(m)$.

Proof. Since $m \in P$, we get $Ann(P) \subseteq Ann(m)$. Here $Ann(P) \neq Ann(m)$ for otherwise Ann(m) will become a prime ideal [Lemma 2.5], a contradiction. \Box

Below we mention some examples.

Example 1. The ring Z_4 of integer modulo 4 is a nilpotent module over Z since for the ideal $I = \langle 2 \rangle$, $IZ_4 \neq 0$ but $I^2Z_4 = 0$. Every elements of Z_4 is a nilpotent element. The ring Z_6 of integer modulo 6 is not a nilpotent module over Z_6 . The proper ideals of Z_6 are $I_1 = \{0, 2, 4\}$, $I_2 = \{0, 3\}$ and $I_1^kZ_6 \neq 0$, $I_2^kZ_6 \neq 0$ for any $k \geq 0$. Also Z_6 contains no non-zero nilpotent element.

Example 2. The ring Z_p of integer modulo some prime p is a non-nilpotent module over the ring of integers Z. The module Z_p contains no nilpotent element.

Example 3. The Z-module $Z_{p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n}}$, where $p_1, p_2, ..., p_n$ are distinct primes is a torsion module. The module $Z_{p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n}}$ contains no non-zero nilpotent elements for $\alpha_1 = \alpha_2 = = \alpha_n = 1$. However it contains nilpotent elements for at least one of $\alpha_i \ge 2$, i = 1, 2, ..., n.

3. NILPOTENCY IN THE CONTEXT OF SIMPLE AND PRIME MODULES

In this section, we deal with some sufficient conditions for existence of nilpotent elements and nilpotent submodules in a module of some special kind in particular prime, completely semi-prime and simple modules.

Lemma 3.1. Let the ring R be commutative with unity and let $m \in M$ be a nilpotent element such that Ann(m) is maximal as Annihilator. Then rm is also nilpotent for any $r \in R$.

Proof. Let *I* be a proper ideal of *R* such that $Im \neq 0$ but $I^km = 0$ for some positive integer k > 1. Then for any $r \in R$, $I^k(rm)=0$. Here $I(rm) \neq 0$, otherwise $I \subseteq Ann(rm) = Ann(m)$ as Ann(m) is maximal as annihilator, a contradiction.

P. DAS

Theorem 3.1. If M is a simple module over the ring R, then M contains no nonzero nilpotent element

Proof. Let $m(\neq 0) \in M$ be a nilpotent element. Let I be a proper ideal of R such that $Im \neq 0$ and $I^km = 0$ for some k > 1. Now if Im = M, there exist some element $i(\neq 0) \in I$ such that im = m. We see that $i^km = i^{k-1}im = i^{k-1}m$. Similarly $i^{k-1}m = i^{k-2}.im = i^{k-2}m$. Continuing in this way, we get $i^km = m$, a contradiction. Thus Im is a proper submodule of M, a contradiction. \Box

In particular, if M is a simple module, then M is not nilpotent.

Theorem 3.2. Let the ring R be Artinian and N be a submodule of M. If $m + I \neq 0 \in \frac{M}{N}$ is nilpotent, then $m \in M$ is nilpotent.

Example 4. In the module $\frac{Z_2[x]}{\langle x^3 \rangle}$ over the non artinian ring $Z_2[x]$, the element $x + \langle x^3 \rangle$ is nilpotent since for the ideal $I = \langle x \rangle$, $I(x + \langle x^3 \rangle) \neq 0$ but $I^2(x + \langle x^3 \rangle) = 0$. However x is not a nilpotent element of the module $Z_2[x]$ over itself.

Theorem 3.3. Let M be a non-nilpotent module over a Noetherian ring R and N be a submodule of M. Then $\frac{M}{N}$ is non-nilpotent.

However the converse is of the above is not true.

Example 5. The ring Z_4 of integer modulo 4 is a nilpotent module over the Noetherian ring Z, But the quotient $\frac{Z_4}{\{0,2\}}$ is a non-nilpotent module over Z. There exists no proper ideal I in Z such that $I\{0,2\} \neq 0$ and $I^k \frac{Z_4}{\{0,2\}} = 0$ for some k > 1.

Theorem 3.4. If M be a non-nilpotent module over a Noetherian ring R, then M contains no non-zero nilpotent element.

Theorem 3.5. Let M be a completely semi prime module over a commutative ring R with unity satisfying the a.c.c. on annihilators. Then M has no non-zero nil submodule.

Proof. Let N be a non-zero submodule of the module M and let $n \neq 0 \in N$ be such that Ann(n) is maximal. Let $r \neq 0 \in R$ be such that $r^2n \neq 0$. For, if $r^2n = 0$ for all $r \in R$ gives that $r \in Ann(rn) = Ann(n)$, a contradiction. Further $rn \neq 0$ for all $r \in R$. For otherwise $r^2n = 0$, a contradiction. We claim that n' = rn is not a nilpotent element. Let I be a proper ideal of R such that

1814

 $In' \neq 0$. Then $I \not\subseteq Ann(n') = Ann(In') = Ann(n)$ giving thereby $I^2n' \neq 0$. Let $i \in I$ be such that $i^2n' \neq 0$ so that $Ann(n) = Ann(n') = Ann(i^2n')$. Now $in' \neq 0$ implies $i \notin Ann(i^2n')$. Thus $i \notin Ann(n') = Ann(i^2n')$ gives that $i^3n' \neq 0$. Hence $I^3n' \neq 0$ and so on. Thus for any k > 1, $I^kn' \neq 0$.

4. RADICAL OF MODULES AND ITS NILPOTENCY

Definition 4.1. The intersection of all prime submodules of the module M is the prime radical of M denoted $Rad_P(M)$. If M' be the set of all nilpotent elements in a module M, then the submodule generated by M' is the Generalised Radical of M denoted $Rad_G(M)$.

Theorem 4.1. If M contains a nilpotent element m so that Ann(m) is minimal as annihilator. Then $Rad_G(M)$ is also nilpotent.

Theorem 4.2. Let the ring R be commutative with the acc on annihilators. Then Z(M) is a nil submodule of M.

Proof. Let $m \in Z(M)$ and I be a proper ideal of R such that $Im \neq 0$. Consider the chain $Ann(Im) \subseteq Ann(I^2m) \subseteq Ann(I^3m) \subseteq$ Let k > 1 be such that $Ann(I^km) = Ann(I^{k+1}m)$. Suppose that $I^{k+1}m \neq 0$ and let $a \in I$ with $I^kam \neq 0$ such that Ann(am) is maximal. Let $i \in I^k$ be such that $iam \neq 0$. Let $b \in I$ be any element so that $bm \in Z(M)$. Now $Ann(bm) \cap \langle ia \rangle \neq 0$ since Ann(bm)is an essential ideal. Let $x(\neq 0) \in Ann(bm) \cap \langle ia \rangle$. Then xbm = 0 and $x = ria(\neq 0)$ for some $r \in R$. Thus $x \in Ann(abm)$ but $x \notin Ann(am)$. For if xam = 0, we get ria.am = 0 implies that $i \in Ann(ra^2m) = Ann(am)$, a contradiction. Thus $Ann(am) \not\subseteq Ann(abm)$. Hence by the choice of a, we get that $I^kbam = I^kabm = 0$, a contradiction to $I^{k+1}m \neq 0$. Hence m is nilpotent. □

Theorem 4.3. Let the ring R be commutative with unity satisfying the acc on annihilators. Then the following statements are equivalent.

- (i) *M* is completely semi-prime
- (ii) *M* has no non-zero nil submodules
- (iii) Z(M) = 0.

Proof. If M is completely semi-prime, then M has no non-zero nil submodules. Assume that M contains no non-zero nil submodules. Let $r \in R$ be such that $r^2m = 0$ but $rm \neq 0$. Consider the ideal $I = \langle r \rangle$ and submodule $\langle m \rangle$. P. DAS

Clearly $I < m > \neq 0$ and $I^2 < m > = 0$. Thus < m > is a non-zero nil submodule, a contradiction. Next assume that M has no non-zero nil submodules. Thus Z(M) = 0 since Z(M) is a nil submodule. Finally assume that Z(M) = 0. Let $m(\neq 0) \in M$ be such that for some $r \in R$, $r^2m = 0$ but $rm \neq 0$. Consider the ideal I = < r > and J be a relative complement of I. Then $I \bigoplus J$ is an essential ideal of R. Also (I + J)Im = 0 since $I^2 = 0$ and IJ = 0. Thus $Im \subseteq Z(M)$. But $Im \neq 0$, a contradiction.

Example 6. The direct product $M = Z[x]X\frac{Z[x]}{\langle p \rangle}$, for a prime p is an abelian group with respect to the operation addition defined as

$$(m_1, n_1) + (m_2, n_2) = (m_1 + m_2, n_1 + p_2),$$

where $m_1, m_2 \in Z[x], n_1, n_2 \in \frac{Z[x]}{\langle p \rangle}$. Clearly M is a module over the integral domain Z. $M_1 = \{(m,0) \in M | m \in Z[x], 0 \in \frac{Z[x]}{\langle p \rangle}\}$ and $M_2 = \{(0,n) \in M | 0 \in Z[x], n \in \frac{Z[x]}{\langle p \rangle}\}$ are submodules of M. The annihilators of M_1 and M_2 are 0 and $\langle p \rangle$ respectively.

Theorem 4.4. Let R be an integral domain and $m \in M$ be such that $Ann(m) \neq 0$. Then m is not a nilpotent element implies that $m \notin Rad_P(M)$.

Proof. Let I be any proper ideal of R such that $Im \neq 0$. Then for any k > 1, $I^k m \neq 0$. Consider $T = \{I^k Ann(m) | k \geq 0\}$. Clearly $(0) \notin T$. Let P be a submodule such that Ann(P) is a maximal ideal with $I^kAnn(m) \cap Ann(P) = \{0\}$ for any $k \ge 0$. We claim that Ann(P) is a prime ideal. Let $a, b \notin Ann(P)$ be two ele- $(Ann(P) + aR) \cap I^kAnn(m)$ Then ments. ¥ and 0 $(Ann(P) + bR) \cap I^{s}Ann(m) \neq 0$ for some $k, s \geq 0$. Thus we get that $(Ann(P) + aR)(Ann(P) + bR) \cap I^{k}Ann(m)I^{s}Ann(m) \neq 0.$ For, let $x \neq 0 \in (Ann(P) + aR) \cap I^k Ann(m)$ and $y \neq 0 \in (Ann(P) + bR) \cap I^s Ann(m)$ gives $xy \neq 0 \in (Ann(P) + aR)(Ann(P) + bR)$ and $xy \in I^kAnn(m)I^sAnn(m)$. Thus $(Ann(P) + abR) \cap I^k Ann(m) \neq 0$ as $((Ann(P) + aR)(Ann(P) + bR) \cap I^k Ann(P) \neq 0$ $I^kAnn(m)I^sAnn(m)) \subseteq (Ann(P) + abR) \cap I^kAnn(m)$. Now if $ab \in Ann(P)$, then $Ann(P) \cap I^k Ann(m) \neq 0$, a contradiction. Thus Ann(P) is a prime ideal. Now for any submodule $S \neq 0$ of P, then Ann(P) = Ann(S). Hence P is a prime submodule. Again let $m \in P$. Then $Ann(P) \subset Ann(m)$. Thus $Ann(m) \cap Ann(P) = Ann(P) \neq 0$, a contradiction. Thus $m \notin P$. Hence $m \notin Rad_P(M)$.

1816

References

- [1] J. BARSHAY, W. A. BENJAMIN: Topics in Ring Theory, Inc. New York, 1969.
- [2] A. W. CHATTERS, C. W. HAJARNAVIS: *Ring with Chain Conditions*, Pitman Advanced Publishing Program, 1980.
- [3] K. R. FULLER, F. W. ANDERSON: *Rings and Categories of Modules*, Springer Verlag, New York, 1973.
- [4] A. W. GOLDIE: The structure of prime rings under ascending chain condition, Proc. London. Math.Soc., 8 (1958), 589-608.
- [5] K. R. GOODEARL: Ring Theory, Nonsingular Rings and Modules, Marcel Dekker Inc., 1976.
- [6] I. N. HERSTEIN, L. SMALL: *Nil rings satisfying certain chain condition*, Canadian Journal of Mathematics, **16** (1964), 771-776.
- [7] J. LAMBECK: Lectures on Rings and Modules, Blaisdell Publishing Company, 1966.
- [8] C. LANSKY: Goldie conditions in finite normalizing extensions, Proc. of Amer. Math. Society, 79 (1980), 515-519.
- [9] D. SEVVIIRI, N. GROENEWALD: Generalization of nilpotency of ring elements to module elements, Communications in Algebra, **42** (2014), 571-577.

DEPARTMENT OF MATHEMATICS COTTON UNIVERSITY, GUWAHATI-781001, INDIA *E-mail address*: dasprohelika@yahoo.com