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A NOTE ON NILPOTENT MODULES OVER RINGS
PROHFELIKA DAS!

ABSTRACT. In this paper, we define nilpotent elements and nilpotent submod-
ules of a module M over a commutative ring R. We show that if R has the
ascending chain condition, then the singular submodule Z () is nil a nil sub-
module of M. Also we prove that if M is completely semi-prime module and
the ring R has the ascending chain condition (a.c.c) on annihilators, then M
contains no non-zero nil submodule.

1. INTRODUCTION

Throughout this paper all modules considered are left modules not necessarily
unital. A non-zero element « of a ring R is nilpotent if ™ = 0 for some positive
integer n. If R is commutative, then the set of all nilpotent elements forms an
ideal called Nilradical of R which coincides with the intersection of all prime
ideals of R. An ideal I(+# 0) of the ring R is nilpotent if /™ = 0 for some positive
integer n. If every element of an ideal is nilpotent, then it is called nil ideal. It
is evident that a nilpotent ideal is a nil ideal. However the converse is not true.
Herstien and Small [6] shows that nil rings satisfying certain chain conditions
are nilpotent. C Lanski [8] proves that the nil sub rings of Goldie rings [4] are
nilpotent. Chatters and Hajarnavis [2, p.6] shows that a semi-ring with the a.c.c
for right annihilators contains no non-zero nil one-sided ideals.
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For some basic definitions and results of rings and modules, we would like to
mention Lambeck [7]. For a subset N of a module M, the set Ann(N) = {r €
R|rn = 0 for any n € N} is called the annihilator of N. If M is a module over
a commutative ring R and N is a submodule, then Ann(N) is an ideal of R. A
submodule S of a module M is a prime submodule if for any sunmodule S; of
S, Ann(S;) = Ann(S). If M is a prime module over a commutative ring R with
unity, then the ideal Ann(M) of R is a prime ideal [1,3].

Recall that, a ring R is an Artinian(Noetherian) ring if it satisfies the ascend-
ing(descending) chain condition for its ideals. An ideal / of a ring R is an
essential ideal if / N J # (0) for any non-zero ideal J of R. The ideal J is a rela-
tive complement of / if it is maximal with respect to the property / N.J = (0). If
the ideal J is the relative complement of the ideal 7, then 7 € J is an essential
ideal of the ring R [5, p.17]. A module M is a completely semi-prime if for any
m € M, r*m = 0 implies rm = 0 for any r € R [9]. M is a simple module if it
has no proper submodules. The set Z(M) = {x € M|Ix = 0 for some essential
ideal I of R} is a submodule of M known as singular submodule.

Lemma 1.1. Let M be module over a commutative ring R with unity such that
Z(M) = 0. Then M is completely semi-prime.

Proof. Let I be any ideal of R such that I?m = 0, for some m € M. Clearly I @ J
is an essential ideal for the relative complement .J of I. Now (I + J)I C I? +1.J
gives that (I + J)Im C I*’m+ IJm = 0as I*m =0, [Jm = 0. Thus Im C Z(M)
which gives that Im = 0. d

2. NILPOTENT ELEMENTS AND NILPOTENT SUBMODULES

Definition 2.1. An element m(# 0) € M is a nilpotent element with index k > 1
if there exist a proper ideal I of R such that I*m = 0 and I*'m # 0.

A submodule S(# 0) of the module M is nilpotent if there exists some proper
ideal I such that /*71S # 0 but I*S = 0 for some k > 1. If every element of a
module M is nilpotent, then M is a Nil module.

Lemma 2.1. If m € M is a nilpotent element, then Ann(m) is not a prime ideal
of R.
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Proof. Assume that Ann(m) is a prime ideal. Let I be a proper ideal of R such
that I'm # 0 and [*m = 0 for some k > 1. Then I* C Ann(m) gives that
I C Ann(m), a contradiction. O

Theorem 2.1. If P is a prime submodule of the module M and m € P is a nilpotent
element, then Ann(P) C Ann(m).

Proof. Since m € P, we get Ann(P) C Ann(m). Here Ann(P) # Ann(m) for
otherwise Ann(m) will become a prime ideal [Lemma 2.5], a contradiction. [

Below we mention some examples.

Example 1. The ring Z, of integer modulo 4 is a nilpotent module over Z since
for the ideal I =< 2 >, IZ, # 0 but I*Z, = 0. Every elements of Z, is a nilpotent
element. The ring Zg of integer modulo 6 is not a nilpotent module over Zs. The
proper ideals of Zs are I, = {0,2,4}, I, = {0,3} and I} Zs # 0, 1§ Zs # 0 for any
k > 0. Also Zg contains no non-gero nilpotent element.

Example 2. The ring Z, of integer modulo some prime p is a non-nilpotent module
over the ring of integers Z. The module Z, contains no nilpotent element.

Example 3. The Z-module Zyoryer o, where p1, ps, ...., p, are distinct primes is
a torsion module. The module Z o102 «n contains no non-zero nilpotent elements
for a; = ay = ... = «, = 1. However it contains nilpotent elements for at least
oneofa; >2,1=1,2,.....n.

3. NILPOTENCY IN THE CONTEXT OF SIMPLE AND PRIME MODULES

In this section, we deal with some sufficient conditions for existence of nilpo-
tent elements and nilpotent submodules in a module of some special kind in
particular prime, completely semi-prime and simple modules.

Lemma 3.1. Let the ring R be commutative with unity and let m € M be a
nilpotent element such that Ann(m) is maximal as Annihilator. Then rm is also
nilpotent for any r € R.

Proof Let I be a proper ideal of R such that Im # 0 but /*m = 0 for some
positive integer k& > 1. Then for any » € R, I*(rm)=0. Here I(rm) # 0,
otherwise I C Ann(rm) = Ann(m) as Ann(m) is maximal as annihilator, a
contradiction. d
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Theorem 3.1. If M is a simple module over the ring R, then M contains no non-
zero nilpotent element

Proof Let m(# 0) € M be a nilpotent element. Let / be a proper ideal of R
such that Im # 0 and I*m = 0 for some k > 1. Now if Im = M, there exist

some element i(# 0) € I such that im = m. We see that /*m = i*"Lim = *"Im.

_ k-2 k-2

Similarly *~'m im = i*~?m. Continuing in this way, we get i*m = m, a

contradiction. Thus Im is a proper submodule of M, a contradiction. O

In particular, if M is a simple module, then M is not nilpotent.

Theorem 3.2. Let the ring R be Artinian and N be a submodule of M. If
m + I(#0) € ¥ is nilpotent, then m € M is nilpotent.

Example 4. In the module f;gi] over the non artinian ring Z,[z|, the element

r+ < 2 > is nilpotent since for the ideal I =< x >, I(z+ < x* >) # 0 but
I*(z+ < 2® >) = 0. However z is not a nilpotent element of the module Z[x] over
itself.

Theorem 3.3. Let M be a non-nilpotent module over a Noetherian ring R and N
be a submodule of M. Then %l is non-nilpotent.

However the converse is of the above is not true.

Example 5. The ring Z, of integer modulo 4 is a nilpotent module over the Noe-

therian ring Z, But the quotient % is a non-nilpotent module over Z. There

exists no proper ideal I in Z such that 1{0,2} # 0 and I* {OZE} = 0 for some k > 1.

Theorem 3.4. If M be a non-nilpotent module over a Noetherian ring R, then M

contains no non-gzero nilpotent element.

Theorem 3.5. Let M be a completely semi prime module over a commutative ring
R with unity satisfying the a.c.c. on annihilators. Then M has no non-zero nil
submodule.

Proof. Let N be a non-zero submodule of the module M and let n(# 0) € N
be such that Ann(n) is maximal. Let 7(# 0) € R be such that r?n # 0. For,
if r?n = 0 for all » € R gives that r € Ann(rn) = Ann(n), a contradiction.
Further rn # 0 for all r € R. For otherwise r?n = 0, a contradiction. We claim
that n/ = rn is not a nilpotent element. Let I be a proper ideal of R such that
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In/ #0. Then I € Ann(n/) = Ann(In/) = Ann(n) giving thereby I*n/ # 0. Let
i € I be such that i>n/ # 0 so that Ann(n) = Ann(n/) = Ann(i*n/). Now in/ # 0
impliesi ¢ Ann(i*n/). Thusi ¢ Ann(n/) = Ann(i®n/) gives that i*n/ # 0. Hence
I*n/ # 0 and so on. Thus for any k > 1, I*n/ # 0. O

4. RADICAL OF MODULES AND ITS NILPOTENCY

Definition 4.1. The intersection of all prime submodules of the module M is the
prime radical of M denoted Radp(M). If M/ be the set of all nilpotent elements in
a module M, then the submodule generated by M/ is the Generalised Radical of M
denoted Radg(M).

Theorem 4.1. If M contains a nilpotent element m so that Ann(m) is minimal as
annihilator. Then Radg (M) is also nilpotent.

Theorem 4.2. Let the ring R be commutative with the acc on annihilators. Then
Z(M) is a nil submodule of M.

Proof. Let m € Z(M) and I be a proper ideal of R such that Im # 0. Consider
the chain Ann(Im) C Ann(I*m) C Ann(I’m) C ....... Let k > 1 be such that
Ann(I*m) = Ann(I**1m). Suppose that I**1m # 0 and let a € I with I*am # 0
such that Ann(am) is maximal. Let i € I* be such that iam # 0. Let b € I be
any element so that bm € Z(M). Now Ann(bm)N < ia >%# 0 since Ann(bm)
is an essential ideal. Let z(# 0) € Ann(bm)N < ia >. Then zbm = 0 and
x = ria(# 0) for some r € R. Thus x € Ann(abm) but x ¢ Ann(am). For if
ram = 0, we get ria.am = 0 implies that i € Ann(ra*m) = Ann(am), a con-
tradiction. Thus Ann(am) € Ann(abm). Hence by the choice of a, we get that
I*bam = I*abm = 0, a contradiction to I**'m # 0. Hence m is nilpotent. O

Theorem 4.3. Let the ring R be commutative with unity satisfying the acc on
annihilators. Then the following statements are equivalent.
(i) M is completely semi-prime
(i) M has no non-gero nil submodules
(iii) Z(M) =0.

Proof. If M is completely semi-prime, then M has no non-zero nil submodules.
Assume that M contains no non-zero nil submodules. Let » € R be such that
r?m = 0 but rm # 0. Consider the ideal ] =< r > and submodule < m >.
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Clearly I < m ># 0 and I? < m >= 0. Thus < m > is a non-zero nil submodule,
a contradiction. Next assume that M has no non-zero nil submodules. Thus
Z(M) = 0 since Z(M) is a nil submodule. Finally assume that Z(M) = 0. Let
m(# 0) € M be such that for some r € R, r*m = 0 but rm # 0. Consider the
ideal I =< r > and J be a relative complement of /. Then I € J is an essential
ideal of R. Also (I + J)Im = 0 since I> = 0 and IJ = 0. Thus I'm C Z(M). But
Im # 0, a contradiction. O

Example 6. The direct product M = Z[z|X i[ﬁ, for a prime p is an abelian group

with respect to the operation addition defined as

(m1,n1) + (ma,n2) = (Mg + ma,ny +, na),

where my, my € Z[z|,n1,n9 € fgﬂ Clearly M is a module over the integral domain
Z. My, = {m0) € Mm e Zaz,0 e 22} and

<p>
M, = {(0,n) € M|0 € Z[z]|,n € %} are submodules of M. The annihilators

of My and M5 are 0 and < p > respectively.

Theorem 4.4. Let R be an integral domain and m € M be such that Ann(m) # 0.
Then m is not a nilpotent element implies that m ¢ Radp(M).

Proof. Let I be any proper ideal of R such that Im # 0. Then for any k£ > 1,
I*m # 0. Consider T = {I* Ann(m)|k > 0}. Clearly (0) ¢ T Let P be a submod-
ule such that Ann(P) is a maximal ideal with I*Ann(m) N Ann(P) = {0} for
any k£ > 0. We claim that Ann(P) is a prime ideal. Let a,b ¢ Ann(P) be two ele-
ments. Then (Ann(P) + aR) N I[*Ann(m) # 0 and
(Ann(P) + bR) N I*Ann(m) # 0 for some k,s > 0. Thus we get that
(Ann(P) + aR)(Ann(P) + bR) N I*Ann(m)I*Ann(m) # 0. For, let
2(#0) € (Ann(P) + aR) N I*Ann(m) and y(# 0) € (Ann(P) + bR) N I* Ann(m)
gives zy(# 0) € (Ann(P) + aR)(Ann(P) + bR) and xy € I*Ann(m)I°Ann(m).
Thus (Ann(P) + abR) N I*Ann(m) # 0 as ((Ann(P) + aR)(Ann(P) + bR) N
I* Ann(m)I° Ann(m)) C (Ann(P) + abR) N I*Ann(m). Now if ab € Ann(P),
then Ann(P) N I*Ann(m) # 0, a contradiction. Thus Ann(P) is a prime ideal.
Now for any submodule S(# 0) of P, then Ann(P) = Ann(S). Hence P
is a prime submodule. Again let m € P. Then Ann(P) C Ann(m). Thus
Ann(m) N Ann(P) = Ann(P)(# 0), a contradiction. Thus m ¢ P. Hence
m ¢ Radp(M). O
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