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A NOTE ON NILPOTENT MODULES OVER RINGS

PROHELIKA DAS1

ABSTRACT. In this paper, we define nilpotent elements and nilpotent submod-
ules of a module M over a commutative ring R. We show that if R has the
ascending chain condition, then the singular submodule Z(M) is nil a nil sub-
module of M . Also we prove that if M is completely semi-prime module and
the ring R has the ascending chain condition (a.c.c) on annihilators, then M

contains no non-zero nil submodule.

1. INTRODUCTION

Throughout this paper all modules considered are left modules not necessarily
unital. A non-zero element a of a ring R is nilpotent if an = 0 for some positive
integer n. If R is commutative, then the set of all nilpotent elements forms an
ideal called Nilradical of R which coincides with the intersection of all prime
ideals of R. An ideal I(6= 0) of the ring R is nilpotent if In = 0 for some positive
integer n. If every element of an ideal is nilpotent, then it is called nil ideal. It
is evident that a nilpotent ideal is a nil ideal. However the converse is not true.
Herstien and Small [6] shows that nil rings satisfying certain chain conditions
are nilpotent. C Lanski [8] proves that the nil sub rings of Goldie rings [4] are
nilpotent. Chatters and Hajarnavis [2, p.6] shows that a semi-ring with the a.c.c
for right annihilators contains no non-zero nil one-sided ideals.
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For some basic definitions and results of rings and modules, we would like to
mention Lambeck [7]. For a subset N of a module M , the set Ann(N) = {r ∈
R|rn = 0 for any n ∈ N} is called the annihilator of N . If M is a module over
a commutative ring R and N is a submodule, then Ann(N) is an ideal of R. A
submodule S of a module M is a prime submodule if for any sunmodule Si of
S, Ann(Si) = Ann(S). If M is a prime module over a commutative ring R with
unity, then the ideal Ann(M) of R is a prime ideal [1,3].

Recall that, a ring R is an Artinian(Noetherian) ring if it satisfies the ascend-
ing(descending) chain condition for its ideals. An ideal I of a ring R is an
essential ideal if I ∩ J 6= (0) for any non-zero ideal J of R. The ideal J is a rela-
tive complement of I if it is maximal with respect to the property I ∩ J = (0). If
the ideal J is the relative complement of the ideal I, then I

⊕
J is an essential

ideal of the ring R [5, p.17]. A module M is a completely semi-prime if for any
m ∈ M , r2m = 0 implies rm = 0 for any r ∈ R [9]. M is a simple module if it
has no proper submodules. The set Z(M) = {x ∈ M |Ix = 0 for some essential
ideal I of R} is a submodule of M known as singular submodule.

Lemma 1.1. Let M be module over a commutative ring R with unity such that
Z(M) = 0. Then M is completely semi-prime.

Proof. Let I be any ideal of R such that I2m = 0, for some m ∈M . Clearly I
⊕

J

is an essential ideal for the relative complement J of I. Now (I + J)I ⊆ I2 + IJ

gives that (I + J)Im ⊆ I2m+ IJm = 0 as I2m = 0, IJm = 0. Thus Im ⊆ Z(M)

which gives that Im = 0. �

2. NILPOTENT ELEMENTS AND NILPOTENT SUBMODULES

Definition 2.1. An element m(6= 0) ∈ M is a nilpotent element with index k > 1

if there exist a proper ideal I of R such that Ikm = 0 and Ik−1m 6= 0 .

A submodule S(6= 0) of the module M is nilpotent if there exists some proper
ideal I such that Ik−1S 6= 0 but IkS = 0 for some k > 1. If every element of a
module M is nilpotent, then M is a Nil module.

Lemma 2.1. If m ∈ M is a nilpotent element, then Ann(m) is not a prime ideal
of R.
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Proof. Assume that Ann(m) is a prime ideal. Let I be a proper ideal of R such
that Im 6= 0 and Ikm = 0 for some k > 1. Then Ik ⊆ Ann(m) gives that
I ⊆ Ann(m), a contradiction. �

Theorem 2.1. If P is a prime submodule of the moduleM andm ∈ P is a nilpotent
element, then Ann(P ) ⊂ Ann(m).

Proof. Since m ∈ P , we get Ann(P ) ⊆ Ann(m). Here Ann(P ) 6= Ann(m) for
otherwise Ann(m) will become a prime ideal [Lemma 2.5], a contradiction. �

Below we mention some examples.

Example 1. The ring Z4 of integer modulo 4 is a nilpotent module over Z since
for the ideal I =< 2 >, IZ4 6= 0 but I2Z4 = 0. Every elements of Z4 is a nilpotent
element. The ring Z6 of integer modulo 6 is not a nilpotent module over Z6. The
proper ideals of Z6 are I1 = {0, 2, 4}, I2 = {0, 3} and Ik1Z6 6= 0, Ik2Z6 6= 0 for any
k ≥ 0. Also Z6 contains no non-zero nilpotent element.

Example 2. The ring Zp of integer modulo some prime p is a non-nilpotent module
over the ring of integers Z. The module Zp contains no nilpotent element.

Example 3. The Z-module Zp
α1
1 p

α2
2 ....pαnn

, where p1, p2, ...., pn are distinct primes is
a torsion module. The module Zp

α1
1 p

α2
2 ....pαnn

contains no non-zero nilpotent elements
for α1 = α2 = ..... = αn = 1. However it contains nilpotent elements for at least
one of αi ≥ 2, i = 1, 2, ...., n.

3. NILPOTENCY IN THE CONTEXT OF SIMPLE AND PRIME MODULES

In this section, we deal with some sufficient conditions for existence of nilpo-
tent elements and nilpotent submodules in a module of some special kind in
particular prime, completely semi-prime and simple modules.

Lemma 3.1. Let the ring R be commutative with unity and let m ∈ M be a
nilpotent element such that Ann(m) is maximal as Annihilator. Then rm is also
nilpotent for any r ∈ R.

Proof. Let I be a proper ideal of R such that Im 6= 0 but Ikm = 0 for some
positive integer k > 1. Then for any r ∈ R, Ik(rm)=0. Here I(rm) 6= 0,
otherwise I ⊆ Ann(rm) = Ann(m) as Ann(m) is maximal as annihilator, a
contradiction. �
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Theorem 3.1. If M is a simple module over the ring R, then M contains no non-
zero nilpotent element

Proof. Let m(6= 0) ∈ M be a nilpotent element. Let I be a proper ideal of R
such that Im 6= 0 and Ikm = 0 for some k > 1. Now if Im = M , there exist
some element i(6= 0) ∈ I such that im = m. We see that ikm = ik−1im = ik−1m.
Similarly ik−1m = ik−2.im = ik−2m. Continuing in this way, we get ikm = m, a
contradiction. Thus Im is a proper submodule of M , a contradiction. �

In particular, if M is a simple module, then M is not nilpotent.

Theorem 3.2. Let the ring R be Artinian and N be a submodule of M . If
m+ I(6= 0) ∈ M

N
is nilpotent, then m ∈M is nilpotent.

Example 4. In the module Z2[x]
<x3>

over the non artinian ring Z2[x], the element
x+ < x3 > is nilpotent since for the ideal I =< x >, I(x+ < x3 >) 6= 0 but
I2(x+ < x3 >) = 0. However x is not a nilpotent element of the module Z2[x] over
itself.

Theorem 3.3. Let M be a non-nilpotent module over a Noetherian ring R and N
be a submodule of M . Then M

N
is non-nilpotent.

However the converse is of the above is not true.

Example 5. The ring Z4 of integer modulo 4 is a nilpotent module over the Noe-
therian ring Z, But the quotient Z4

{0,2} is a non-nilpotent module over Z. There
exists no proper ideal I in Z such that I{0, 2} 6= 0 and Ik Z4

{0,2} = 0 for some k > 1.

Theorem 3.4. If M be a non-nilpotent module over a Noetherian ring R, then M
contains no non-zero nilpotent element.

Theorem 3.5. Let M be a completely semi prime module over a commutative ring
R with unity satisfying the a.c.c. on annihilators. Then M has no non-zero nil
submodule.

Proof. Let N be a non-zero submodule of the module M and let n(6= 0) ∈ N

be such that Ann(n) is maximal. Let r(6= 0) ∈ R be such that r2n 6= 0. For,
if r2n = 0 for all r ∈ R gives that r ∈ Ann(rn) = Ann(n), a contradiction.
Further rn 6= 0 for all r ∈ R. For otherwise r2n = 0, a contradiction. We claim
that n/ = rn is not a nilpotent element. Let I be a proper ideal of R such that
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In/ 6= 0. Then I 6⊆ Ann(n/) = Ann(In/) = Ann(n) giving thereby I2n/ 6= 0. Let
i ∈ I be such that i2n/ 6= 0 so that Ann(n) = Ann(n/) = Ann(i2n/). Now in/ 6= 0

implies i /∈ Ann(i2n/). Thus i /∈ Ann(n/) = Ann(i2n/) gives that i3n/ 6= 0. Hence
I3n/ 6= 0 and so on. Thus for any k > 1, Ikn/ 6= 0. �

4. RADICAL OF MODULES AND ITS NILPOTENCY

Definition 4.1. The intersection of all prime submodules of the module M is the
prime radical of M denoted RadP (M). If M/ be the set of all nilpotent elements in
a module M , then the submodule generated by M/ is the Generalised Radical of M
denoted RadG(M).

Theorem 4.1. If M contains a nilpotent element m so that Ann(m) is minimal as
annihilator. Then RadG(M) is also nilpotent.

Theorem 4.2. Let the ring R be commutative with the acc on annihilators. Then
Z(M) is a nil submodule of M .

Proof. Let m ∈ Z(M) and I be a proper ideal of R such that Im 6= 0. Consider
the chain Ann(Im) ⊆ Ann(I2m) ⊆ Ann(I3m) ⊆ ....... Let k > 1 be such that
Ann(Ikm) = Ann(Ik+1m). Suppose that Ik+1m 6= 0 and let a ∈ I with Ikam 6= 0

such that Ann(am) is maximal. Let i ∈ Ik be such that iam 6= 0. Let b ∈ I be
any element so that bm ∈ Z(M). Now Ann(bm)∩ < ia >6= 0 since Ann(bm)

is an essential ideal. Let x( 6= 0) ∈ Ann(bm)∩ < ia >. Then xbm = 0 and
x = ria(6= 0) for some r ∈ R. Thus x ∈ Ann(abm) but x /∈ Ann(am). For if
xam = 0, we get ria.am = 0 implies that i ∈ Ann(ra2m) = Ann(am), a con-
tradiction. Thus Ann(am) 6⊆ Ann(abm). Hence by the choice of a, we get that
Ikbam = Ikabm = 0, a contradiction to Ik+1m 6= 0. Hence m is nilpotent. �

Theorem 4.3. Let the ring R be commutative with unity satisfying the acc on
annihilators. Then the following statements are equivalent.

(i) M is completely semi-prime
(ii) M has no non-zero nil submodules

(iii) Z(M) = 0 .

Proof. If M is completely semi-prime, then M has no non-zero nil submodules.
Assume that M contains no non-zero nil submodules. Let r ∈ R be such that
r2m = 0 but rm 6= 0. Consider the ideal I =< r > and submodule < m >.
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Clearly I < m >6= 0 and I2 < m >= 0. Thus < m > is a non-zero nil submodule,
a contradiction. Next assume that M has no non-zero nil submodules. Thus
Z(M) = 0 since Z(M) is a nil submodule. Finally assume that Z(M) = 0. Let
m(6= 0) ∈ M be such that for some r ∈ R, r2m = 0 but rm 6= 0. Consider the
ideal I =< r > and J be a relative complement of I. Then I

⊕
J is an essential

ideal of R. Also (I + J)Im = 0 since I2 = 0 and IJ = 0. Thus Im ⊆ Z(M). But
Im 6= 0, a contradiction. �

Example 6. The direct product M = Z[x]X Z[x]
<p>

, for a prime p is an abelian group
with respect to the operation addition defined as

(m1, n1) + (m2, n2) = (m1 +m2, n1 +p n2) ,

wherem1,m2 ∈ Z[x], n1, n2 ∈ Z[x]
<p>

. ClearlyM is a module over the integral domain

Z. M1 = {(m, 0) ∈ M |m ∈ Z[x], 0 ∈ Z[x]
<p>
} and

M2 = {(0, n) ∈ M |0 ∈ Z[x], n ∈ Z[x]
<p>
} are submodules of M . The annihilators

of M1 and M2 are 0 and < p > respectively.

Theorem 4.4. Let R be an integral domain and m ∈M be such that Ann(m) 6= 0.
Then m is not a nilpotent element implies that m /∈ RadP (M).

Proof. Let I be any proper ideal of R such that Im 6= 0. Then for any k > 1,
Ikm 6= 0. Consider T = {IkAnn(m)|k ≥ 0}. Clearly (0) /∈ T . Let P be a submod-
ule such that Ann(P ) is a maximal ideal with IkAnn(m) ∩ Ann(P ) = {0} for
any k ≥ 0. We claim that Ann(P ) is a prime ideal. Let a, b /∈ Ann(P ) be two ele-
ments. Then (Ann(P ) + aR) ∩ IkAnn(m) 6= 0 and
(Ann(P ) + bR) ∩ IsAnn(m) 6= 0 for some k, s ≥ 0. Thus we get that
(Ann(P ) + aR)(Ann(P ) + bR) ∩ IkAnn(m)IsAnn(m) 6= 0. For, let
x(6= 0) ∈ (Ann(P ) + aR) ∩ IkAnn(m) and y(6= 0) ∈ (Ann(P ) + bR) ∩ IsAnn(m)

gives xy( 6= 0) ∈ (Ann(P ) + aR)(Ann(P ) + bR) and xy ∈ IkAnn(m)IsAnn(m).
Thus (Ann(P ) + abR) ∩ IkAnn(m) 6= 0 as ((Ann(P ) + aR)(Ann(P ) + bR) ∩
IkAnn(m)IsAnn(m)) ⊆ (Ann(P ) + abR) ∩ IkAnn(m). Now if ab ∈ Ann(P ),
then Ann(P ) ∩ IkAnn(m) 6= 0, a contradiction. Thus Ann(P ) is a prime ideal.
Now for any submodule S(6= 0) of P , then Ann(P ) = Ann(S). Hence P

is a prime submodule. Again let m ∈ P . Then Ann(P ) ⊆ Ann(m). Thus
Ann(m) ∩ Ann(P ) = Ann(P )(6= 0), a contradiction. Thus m /∈ P . Hence
m /∈ RadP (M). �
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