ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 1819–1824 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.38 Spec. Issue on NCFCTA-2020

ON DUAL MULTIPLIERS IN CI-ALGEBRAS

PULAK SABHAPANDIT¹ AND KULAJIT PATHAK

ABSTRACT. The Concept of BCK/BCI-algebras was first introduced by Y. Imai and K. Iseki [2,3] in 1966. These BCK/BCI algebras can be generalized into several different categories of algebras like BCH [1], BH [4], d [9], etc. Later on, dual BCK algebras [5] was introduced which paved the way for development of BE-algebras [6]. In 2010, B. L. Meng [8] introduced the idea of CI-algebras as a generalization of BE-algebras which is considered to be an important algebraic structure till date. The concept of Cartesian product has been developed in 2013 [10] which plays a key role in the development of this CI-algebras. A new concept of Absorptive CI-algebra has been developed in 2016. The idea of Multipliers in BE-algebras [7] has been utilized to develop the idea of Multipliers in CI-algebras [12] in 2019. In this paper we present, definition of Dual Multiplers in CI-algebras and talk about few examples, characteristics of this map.

1. INTRODUCTION

The Concept of BCK/BCI-algebras was first introduced by Y. Imai and K. Iseki [2, 3] in 1966. These BCK/BCI algebras can be generalized into several different categories of algebras like BCH [1], BH [4], d [9], etc. Later on, dual BCK algebras [5] was introduced which paved the way for development of BE-algebras [6]. In 2010, B. L. Meng [8] introduced the idea of CI-algebras as a generalization of BE-algebras which is considered to be an important algebraic

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25, 08A30.

Key words and phrases. CI-algebra, Sub-algebra, Multiplier.

P. SABHAPANDIT AND K. PATHAK

structure till date. The concept of Cartesian product has been developed in 2013 [10] which plays a key role in the development of this CI-algebras. A new concept of Absorptive CI-algebra has been developed in 2016. The idea of Multipliers in BE-algebras [7] has been utilized to develop the idea of Multipliers in CI-algebras [12] in 2019. In this paper we present, definition of Dual Multiplers in CI-algebras and talk about few examples, characteristics of this map.

2. Preliminaries

Definition 2.1. [6]: A non-empty set *B*, equipped with a binary operation * and a fixed element 1 is said to be a BE-algebra if it satisfies the following postulates:

(B1) t * t = 1, (B2) t * 1 = 1, (B3) 1 * t = t, (B4) t * (u * v) = u * (t * v) for all $t, u, v \in B$.

Definition 2.2. [8]: A non-empty set *C*, equipped with a binary operation * and a fixed element 1 is said to be a ClâĂŞalgebra if it satisfies the following postulates:

(C1)
$$t * t = 1$$
,
(C2) $1 * t = t$,
(C3) $t * (u * v) = u * (t * v)$ for all $t, u, v \in C$.

Example 1. Let H be a Hilbert space and let B(H) be the class of all bounded linear operators defined on H. Let $C \subset B(H)$ be the set of all positive invertible and commutative operators. We define a binary operation * on C as

 $P * Q = QP^{-1}$, for all $P, Q \in C$.

Let I be the identity operator on H. Then $I \in C$. Also for $P, Q, R \in C$, we have (E1) $P * P = PP^{-1} = I$ (E2) $I * P = PI^{-1} = P$ (E3) $P * (Q * R) = P * (RQ^{-1}) = (RQ^{-1})P - 1 = R(Q^{-1}P^{-1}) = R(P^{-1}Q^{-1})$ $= (RP^{-1})Q^{-1} = Q * (RP^{-1}) = Q * (PR)$

This means that (C; *, I) is a CI-algebra.

A binary relation \leq in C can be defined by $t \leq u$ iff t * u = 1.

Definition 2.3. [8]: A non-empty subset A of a CI-algebra C is said to be a subalgebra of C if $t \in A, u \in A$ imply $t * u \in A$.

Theorem 2.1. [11] Let (C; *, 1) be a CI-algebra and let, the collection of all functions $h : C \to C$ be denoted by G(C). We define a binary operation o in G(C) such that for $h, k \in G(C)$ and $t \in C$,

$$(hok)(t) = h(t) * k(t).$$

where 1[°] is defined as 1[°](t) = 1 for each element $t \in C$. Then (G(C); o, 1[°]) is a CI-algebra. Here two functions $h, k \in G(C)$ are equal iff h(t) = k(t), for each element $t \in C$.

Definition 2.4. Let $h, k \in G(C)$. Then composite of h and k, denoted as $h \bullet k$, is defined as

$$(h \bullet k)(t) = h(k(t)).$$

Definition 2.5. A multiplier $h \in G(C)$ is a mapping such that h(t * u) = t * h(u) for all $t, u \in C$.

3. DUAL MULTIPLIERS IN CI-ALGEBRAS

Definition 3.1. A dual multiplier $h \in G(C)$ is a mapping such that h(t * u) = h(t) * u for all $t, u \in C$.

Note: The identity map I(t) = t is a multiplier as well as a dual multiplier.

Proposition 3.1. Suppose h is a dual multiplier defined on CI-algebra (C; *, 1). (a) If h(1) = e then h(t) = e * t for any $t \in C$, (b) If h(1) = 1 then h is the identity map.

Proof.

(a) Let h(1) = e. Since 1 * t = t for any $t \in C$, and h is a dual multiplier,

$$h(1 * t) = h(t) \Rightarrow h(1) * t = h(t) \Rightarrow e * t = h(t),$$

(b) Putting e = 1 in (a), we get

$$h(t) = 1 * t = t$$

for $t \in C$. So h is the identity map.

Theorem 3.1. *Composite of two dual multiplier maps is a dual multiplier.*

Proof. Suppose h and k are two dual multiplier maps defined on a CI-algebra (C; *, 1). Let $t, u \in C$. Then

$$(h \bullet k)(t * u) = h(k(t * u)) = h(k(t) * u) = h(k(t)) * u = (h \bullet k)(t) * u$$

So $h \bullet k$ is a dual multiplier map.

As above we can also prove

Corollary 3.1.

(a) If h is multiplier and k is dual multiplier, then

$$(h \bullet k)(t * u) = k(t) * h(u)$$

(b) If h is dual multiplier and k is multiplier, then

$$(h \bullet k)(t * u) = h(t) * k(u).$$

Notation: For $h \in G(C)$, let $B_h = \{t \in C : h(t) = t\}$.

Proposition 3.2. If h is dual multiplier then $h(1) \neq 1$ iff B_h is empty.

Proof. Suppose h is a dual multiplier and $h(1) \neq 1$. If possible, suppose B_h is non-empty and $t \in B_h$. Now, we have t * t = 1 and so

$$h(1) = h(t * t) = h(t) * t = t * t = 1,$$

which contradicts our assumption that $h(1) \neq 1$. So $B_h = \phi$.

Again, let us assume B_h is empty. Suppose h(1) = 1. Then $1 \in B_h$ which is a contradiction to the fact that B_h is empty. Hence $h(1) \neq 1$.

Proposition 3.3. If h is a dual multiplier and B_h is non-empty then B_h is a subalgebra.

Proof. Suppose h is a dual multiplier and let $m, n \in B_h$. We have h(m) = m and f(n) = n. Now $h(m * n) = h(m) * n = m * n \Rightarrow m * n \in B_h$. Therefore, B_h is a sub-algebra.

Definition 3.2. Suppose (C; *, 1) is a CI-algebra. We define an addition '+' in C as

$$t + u = (t * u) * u$$
 for all $t, u \in C$.

Theorem 3.2. Suppose h is a dual multiplier on a CI-algebra C. Then

(i) B_h is closed w. r. t. operation '+';

(ii) $t \in B_h$ and $t \leq u \Rightarrow u \in B_h$.

Proof.

(i) Let $t, u \in B_h$. Then h(t) = t and h(u) = u. Now

$$h(t + u) = h((t * u) * u)$$

= $(h(t * u)) * u$
= $(h(t) * u) * u$
= $(t * u) * u$
= $t + u$.

This implies that $t + u \in B_h$ and proves the result.

(ii) Given $t \in B_h$ and $t \le u \Rightarrow h(t) = t$ and t * u = 1. Now

$$h(u) = h(1 * u) = h((t * u) * u)$$

= $(h(t * u)) * u$
= $(h(t) * u) * u$
= $(t * u) * u$
= $1 * u = u$.

This proves that $u \in B_h$.

REFERENCES

- [1] Q. P. HU, X. LI: On BCH-algebras, Math. Seminer Notes, 11(2) (1983), 313-320.
- [2] Y. IMAI, K. ISEKI: On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 19–22.
- [3] K. ISEKI: An algebra related with a propositional calculus, Proc. Japan Acad., **42**(1) (1966), 26–29.
- [4] Y. B.JUN, E. H. ROH, H. S. KIM: On BH-algebras, Sci. Math., 1 (1998), 347–354.
- [5] K. H. KIM, Y. H. YON: Dual BCKâĂŞalgebra and MVâĂŞalgebra, Sci. Math. Japon., 66(2) (2007), 247–253.
- [6] H. S. KIM, Y. H. KIM: On BE-algebras, Sci. Math. Japonicae, 66 (2007), 113–116.
- [7] K. H. KIM: Multipliers in BE-algebras, Inter. Math. Forum, 6 (2011), 815–820.
- [8] B. L. MENG: CI-algebras, Sci. Math. Japonicae online, 6 (2009), 695–701.
- [9] J. NEGGER, H. S. KIM: On d-algebras, Math. Slovaca, 40 (1999), 19–26.
- [10] K. PATHAK, P. SABHAPANDIT, B. C. CHETIA: Cartesian Product of BE/CI-algebras, J. Assam Acad.Math., 6 (2013), 33–40.

P. SABHAPANDIT AND K. PATHAK

- [11] P. SABHAPANDIT, K. PATHAK: Some special Type of CI-algebras, Int. J. of Trends and tech., 64(1) (2019), 6–11.
- [12] P. SABHAPANDIT, K. PATHAK : On Multipliers in CI-algebras, Int. J. of Research and Analytical Reviews, **6**(2) (2019), 99–104.

DEPARTMENT OF MATHEMATICS BISWANATH COLLEGE, BISWANATH CHARIALI-784176, ASSAM, INDIA *E-mail address*: pulaksabhapandit@gmail.com

DEPARTMENT OF MATHEMATICS B.H. COLLEGE, HOWLY-781316, ASSAM, INDIA *E-mail address*: kulajitpathak79@gmail.com