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TRANSIT INDEX OF A GRAPH AND ITS CORRELATION WITH MON OF
OCTANE ISOMERS

K. M. RESHMI1 AND RAJI PILAKKAT

ABSTRACT. Many topological indices are defined for Graphs. Some are dis-
tance based and some are degree based. Topological indices are widely used to
analyse various networks, from large complex networks in communications to
molecular graphs in chemical graph theory. In this paper we define new graph
parameters called transit of a vertex and transit index of a graph. We com-
pute them for Paths and Trees. It is found that among all trees on n vertices,
the path Pn has the maximum transit index. The bounds for transit index are
determined for connected graphs. Finally, the correlation coefficient between
transit index of molecular graphs of octane isomers and motor octane number
is evaluated. The correlation coefficient obtained is strongly negative

1. INTRODUCTION

Graph theory is a branch of Mathematics that finds application in various
fields of science and technology. Graph topologies are extensively studied in
Chemical graph Theory and Computer Networking. The concept of topological
indices owes to Weiner [8], [9]. He introduced it while studying the boiling
point of paraffins. Hyper-Weiner index [5] and Schultz index [6] are also dis-
tance based topological indices, while Randić [3] index and Zagreb index [1]
are degree based. Structural properties of graphs were also studied in various
communication networks. Many graph invariants related to centrality gained at-
tention. In the paper [7], Shimbel introduced a graph parameter named "stress
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of a vertex". Stress of a vertex v is the number of shortest paths which passes
through v. Motivated by this parameter we define the transit of a vertex and
transit index of a graph . The degree of vertices and graph distances has its
effect on the transit.

Throughout this paper, G denotes a simple, connected and undirected graph
with vertex set V and edge set E. Also |V | = n and |E| = m. For undefined
terms we refer [2].

2. TRANSIT INDEX

Definition 2.1. Let v ∈ V . Then we define the transit of a vertex v denoted by
T (v) as "the sum of the lengths of all shortest path with v as an internal vertex "
and the transit index of G denoted by TI(G) as

TI(G) =
∑
v∈V

T (v) .

Lemma 2.1. T (v) = 0 iff 〈N [v]〉 is a clique.

Proof. Let T (v) = 0. Consider the degree d(v) of v. If d(v) = 0, 1, then we are
done. Let d(v) > 1. Let Vk = {v1, v2, . . . , vk} be the neighbours of v. Let us
suppose that 〈N [v]〉 is not a clique. Without loss of generality, let us assume
that vr and vs are two non-adjacent neighbours of v. In this case vr, v, vs forms
a shortest path through v. A contradiction to the assumption.

Conversely let N [v] = Vk ∪ {v} forms a clique.
If d(v) = 0, 1, then there are no paths passing through v and hence T (v) = 0.

Let d(v) > 1 and if possible, let T (v) 6= 0. Then there exist a shortest path
P : u, . . . , u1, v, v1, . . . , w passing through v. Since u1, v1 are neighbours of v,they
are adjacent. Hence the u − w path P − {v} obtained from P by deleting the
vertex v from P forms a u−w path with less length than P , a contradiction. �

3. PATHS AND TREES

Theorem 3.1. For a path Pn,

transit index =
n(n+ 1)(n2 − 3n+ 2)

12
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Proof. Let Pn : v1v2 . . . vn. Then vk divides Pn into two paths say P1 with k − 1

vertices and P2 with n− k vertices.

P1 vk P2

FIGURE 1. Path Pn

We will compute T (vk) by counting the number of times each edge appears in
the shortest path passing through vk. The edges in P1 will be used

1.(n− k − 1), 2.(n− k − 1), 3.(n− k − 1), . . . , k.(n− k − 1)

times respectively and the edges in P2 will be used

1.(k − 1), 2.(k − 1), 3.(k − 1), . . . , (n− k − 1)(k − 1)

times. Hence

T (vk) = 1.(n− k − 1) + 2.(n− k − 1) + 3.(n− k − 1) + . . .+ k.(n− k − 1)

+1.(k − 1) + 2.(k − 1) + 3.(k − 1) + . . .+ (n− k − 1)(k − 1)

=
(k − 1)k(n− k)

2
+

(n− k + 1)(n− k)(k − 1)

2

=
(k − 1)(n− k)[k + n− k + 1]

2

T (vk) =
(n+ 1)(k − 1)(n− k)

2
.

Hence, the transit index ,

TI(Pn) =
n∑

k=1

T (vk) =
n∑

k=1

(n+ 1)(n− k)(k − 1)

2

=
n(n+ 1)(n2 − 3n+ 2)

12

�
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Theorem 3.2. Let T be a tree and v be any vertex of T . Let {Tj} be the branches of
v, with vertex set {Vj = {uij, i = 1, 2, . . .}} and edge set Ej = {E(Vj)} = {eij, i =
1, 2, . . .}. Consider v as the root and vij as vertices below it as shown in the figure.
Let d(eij) denote the number of edges below eij. Then the transit of v is

T (v) =
∑
j

[
(n− 1− nj)

∑
i

d(eij)

]
=

∑
j

[
(n− 1− nj)

∑
i

d(v, uij)

]
,

where nj = |Vj|.

Proof. To find the transit of a vertex, we find the contribution of each edge to
T (v). In every shortest path passing through v, the edges will be used by vertices
lying below it to travel to all the vertices in other branches.

v

T1

Tj

T

FIGURE 2. Tree rooted at v

Hence the contribution of an edge uij of Tj is d(eij)(n− 1−nj). Hence contri-
bution of the whole branch Tj will be(n− 1− nj)

∑
i

d(eij)

∴ T (v) =
∑
j

[
(n− 1− nj)

∑
i

d(eij)

]
.
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Since the contribution of the edges in Tj can also be computed as
∑
i

d(v, uij),

we have

T (v) =
∑
j

[
(n− 1− nj)

∑
i

d(v, uij)

]
.

�

Remark 3.1. In a tree, T (v) =
∑
j

(n − 1 − nj)
nj(nj + 1)

2
, when v has all its

branches as paths.

Lemma 3.1. Let Pn be a path on n vertices. By adding a pendant vertex, the transit
index is maximised if the vertex is added to either of the ends and minimised when
it is added to the center vertex of Pn.

Proof. Consider the path Pn. Let us attach a new vertex v to the kth vertex
vk of Pn. Let I denote the increment in transit Index due to this action. i.e.
I = TI(Pn + v)− TI(Pn). We will show that I is minimum when k = n+1

2

I = Increment in T(u),∀u ∈ Pn

For u=k the increment is 2 + 3 + . . .+ k + 2 + 3 + . . .+ n− k + 1

For u=k-1 → 3 + 4 + . . .+ k
...
...

For u=2 k

For u=1 0

For u=k+1 3 + 4 + . . .+ n− k + 1

For u=k+2 4 + 5 + . . .+ n− k + 1
...
...

For u=n-1 n− k + 1

For u=n 0

∴ I = (k − 1)k(k + 1) + (n− k)(n− k + 1)(n− k + 2)
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Now if we consider I as a real function of k on the closed interval [1, n], its
extrema are either at boundaries or when dI

dk
= 0.

dI

dk
= 0 =⇒ k =

n+ 1

2

Hence extrema occurs at k = 1, n, n+1
2
.

k I(k)
1 (n-1)n(n+1)
n (n-1)n(n+1)

n+1
2

(n−1)(n+1)(n+3)
8

Clearly maximum is for k = 1, n and minimum for k = n+1
2

�

Lemma 3.2. Let e be an edge of G. If G and G − e are connected, TI(G) <

TI(G− e).

Proof. Let G be a connected graph. Let e = uv be such that G − e is connected.
By removing e, u and v becomes non adjacent. Since G − e is connected there
exist some shortest path P connecting u and v of length ≥ 2. This will increase
the transit of every internal vertex of P in G− e. Hence the proof. �

Remark 3.2. Among all connected graphs on n vertices, trees have the maximum
transit index. (Since trees are the minimal connected graphs on n vertices.)

Theorem 3.3. Among all trees on n vertices, the transit index is maximum for the
path Pn.

Proof. Proof by induction on n. The result is trivially true for n = 2, 3 as there
exist only one tree. For n = 4, there are only 2 non isomorphic trees. One is
the path P4 and other is the star S4. We have TI(P4) = 10 and TI(S4) = 6.
Hence true for n = 4. For n = 5, there are 3 non isomorphic trees, P5, S5 and
G as shown in the figure. Here TI(P5) = 30, T I(S5) = 12, T I(G) = 14. Hence
true for n = 5 also. Let us assume that transit index is maximum for Pn on all
trees on ≤ n vertices. Let us consider all trees on n + 1 vertices. Let the transit
index be maximum for some tree T , on n + 1 vertices. Let P be a path in T of
maximum length. If P = Pn+1, we are done. If not, let P = Pk, k ≤ n. By
induction hypothesis, among all trees on ≤ n vertices Pn has maximum transit
index. Now, with application inductively on the pendant vertices of P we can
show that P = Pn+1. Hence the proof. �
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P5

S5
G

FIGURE 3. Non isomorphic trees on 5 vertices

Remark 3.3. For a connected graph G on n vertices, 0 ≤ TI(G) ≤ n(n+1) (n
2−3n+2)

12
.

The bounds are attained by Kn and Pn respectively.

4. CORRELATION BETWEEN MON AND TRANSIT INDEX

Researchers have presented many molecular descriptors/topological indices
so far.

Octane Isomer TI(G) MON

n-octane 252 -
2-methyl-heptane 212 23.8
3-methyl-heptane 188 35
4-methyl-heptane 180 39
3-ethyl-hexane 156 52.4
2,2-dimethyl-hexane 156 77.4
2,3-dimethyl-hexane 149 78.9
2,4-dimethyl-hexane 152 69.9
2,5-dimethyl-hexane 174 55.7
3,3-dimethyl-hexane 128 83.4
3,4-dimethyl-hexane 132 81.7
2-methyl-3-ethyl-pentane 124 88.1
3-methyl-3-ethyl-pentane 108 88.7
2,2,3-trimethyl-pentane 104 99.9
2,2,4-trimethyl-pentane 122 100
2,3,3-trimethyl-pentane 98 99.4
2,3,4-trimethyl-pentane 114 95.9
2,2,3,3-tetramethylbutane 78 -

TABLE 1. Transit Index and Motor Octane Number of Octane Isomers
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Molecular descriptors are useful in structure-property and structure-activity
studies. Suggestions about the required characteristics of molecular descriptors
are discussed in [4]. A good correlation with at least one physical/chemical
property and some discrimination power among isomers are ideal. On investi-
gation it was found that transit index of octane isomers hold a strong negative
correlation with MON(motor octane number).
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FIGURE 4. Scatter Plot

In Table 1, transit index of octane isomers and MON are presented. Using the
table 1, the scatter plot between TI(G) and MON is exhibited in figure 4. The
correlation coefficient obtained is -0.9544
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