ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.4, 1503–1509 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.4 Spec. Issue on NCFCTA-2020

κ -ANTI-FUZZY SUBGROUP

B. ANITHA

ABSTRACT. An overview of κ -anti fuzzy subgroup of a group is presented and some related basic results are approached in this paper. In addition, the κ -anti fuzzy subgroup of a group is characterized. Moreover some properties of κ -anti fuzzy subgroup under group homomorphism are investigated.

1. INTRODUCTION

The idea of fuzzy set which is presented by Zadeh [13] have been made use of in the classical mathematics reusage. Fuzzy subgroup of a group was investigated by Rosenfeld [6]. The definition of Fuzzy ideals of a ring was put forth by W. Liu [4]. The ideologies of $(\in, \in \lor q)$ -fuzzy groups [5, 6] and $(\in, \in \lor q)$ fuzzy subring [1] was explained clearly by Bhakat and Das. The illustrations of (λ, μ) -fuzzy groups [10] and (λ, μ) -fuzzy subring [11] was presented by B. Yao. The research done by Shen [8] was based on anti-fuzzy subgroups and the study of the product of anti-fuzzy subgroups was done by Dong [3]. While α fuzzy subgroup got introduced by Sharma [7], the theories of λ -fuzzy subgroup got presented by Sowmya and Sr.Magie Jose [9]. This paper aims at the concept of κ -anti fuzzy subgroup of a group and the characteristics of the same are discussed.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 03E72.

Key words and phrases. Anti fuzzy subgroup, κ -anti fuzzy subgroup, homomorphism.

B. ANITHA

2. PRELIMINARIES

Definition 2.1. [5] A fuzzy subset (FS) A in a set X is a function $A : X \to [0, 1]$.

Definition 2.2. If E is a FS of Y, then we denote $E_{(\iota)} = \{ \upsilon \in Y | E(\upsilon) < \iota \}$ $\forall \iota \in [0, 1].$

Definition 2.3. [1] A FS E of a group G is called a fuzzy subgroup (FSG) if $\forall q, n \in G$,

- (i) $E(qn) \ge \min\{E(q), E(n)\}$
- (ii) $E(q^{-1}) \ge E(q)$.

Definition 2.4. [2] A FS E of a group G is called an anti fuzzy subgroup (AFSG) if $\forall q, n \in G$,

- (i) $E(qn) \le \max\{E(q), E(n)\}\$
- (ii) $E(q^{-1}) \le E(q)$.

Definition 2.5. [12] A FS E of a group G is called a (λ, μ) -anti-fuzzy subgroup $((\lambda, \mu)AFSG)$ if $\forall r, n, q \in G$,

- (i) $E(rn) \wedge \mu \leq E(r) \vee E(n) \vee \lambda$
- (ii) $E(q^{-1}) \wedge \mu \leq E(q) \vee \lambda$.

Definition 2.6. [9] Let *E* be a FS in a groupoid *G* and $\lambda \in (0, 1]$ Then *E* is called a λ -fuzzy subgroupoid (λ -FSGD) of *G* if $E(qn) \ge E(q) \land E(n) \land \lambda$.

Definition 2.7. [9] Let *E* be a FS in a groupoid *G* and $\lambda \in (0, 1]$ Then *E* is called a λ -fuzzy subgroup (λ -FSG) of *G* if

(i) $E(qn) \ge E(q) \land E(n) \land \lambda$ (ii) $E(q) \land E(q^{-1}) \ge E(q) \land \lambda$.

3. κ -Anti-Fuzzy Subgroup

Definition 3.1. Let P be a FS in a groupoid G and $\kappa \in (0, 1]$ Then P is said to be a κ -anti fuzzy subgroupoid (κ -AFSGD) of G if $P(\upsilon\zeta) \leq P(\upsilon) \lor P(\zeta) \lor \kappa$ for every $\upsilon, \zeta \in G$.

Definition 3.2. Let P be a FS in a groupoid G and $\kappa \in (0, 1]$ Then P is said to be a κ -anti fuzzy subgroup (κ -AFSG) of G if

(i) $P(v\zeta) \le P(v) \lor P(\zeta) \lor \kappa$ (ii) $P(v) \lor P(v^{-1}) \le P(v) \lor \kappa$, for every $v, \zeta \in G$.

Remark 3.1. Every AFSG is a κ -AFSG, but the converse is not true. It is shown by the following example.

Example 1. Let G be the group of integers with respect to addition. Define fuzzy subset P as follows:

$$P(x) = \begin{cases} 0.7 & \text{if } x \in 6Z\\ 0.5 & \text{if } x \notin 6Z \end{cases}$$

Clearly P is not a AFSG of G since $P(4+2) \nleq max\{P(4), P(2)\}$ as P(4+2) = 0.7whereas $max\{P(4), P(2)\} = 0.5$.

Take $\kappa = 0.7$. Then $P(\upsilon\zeta) \leq P(\upsilon) \lor P(\zeta) \lor 0.7$ and $P(\upsilon) \lor P(\upsilon^{-1}) \leq P(\upsilon) \lor 0.7$, for every $\upsilon, \zeta \in G$. That is P is a κ -AFSG of G.

Theorem 3.1. If P is a κ -AFSGD of a finite group G, then P is a κ -AFSG of G.

Proof. Let $v \in G$. Since G is finite, it is possible to find an integer n > 0 such that $v^n = e$, where e is an identity in G. Hence $v^{-1} = v^{n-1}$. Now,

$$P(v^{-1}) = P(v^{n-1}) = P(v \cdot v^{n-2}) \le P(v) \lor P(v^{n-2}) \lor \kappa = P(v) \lor \kappa.$$

That is, $P(v) \lor P(v^{-1}) \le P(v) \lor P(v) \lor \kappa = P(v) \lor \kappa$. Thus P is a κ -AFSG of G.

Theorem 3.2. Intersection of two κ -AFSG of G is again a κ -AFSG of G.

Proof. Let P and Q be two κ -AFSG of G.

$$(P \cap Q)(v\zeta) = P(v\zeta) \lor Q(v\zeta) \le (P(v) \lor Q(\zeta) \lor \kappa) \lor (Q(v) \lor Q(\zeta) \lor \kappa)$$
$$= (P(v) \lor Q(v) \lor (P(\zeta) \lor Q(\zeta) \lor \kappa)$$
$$= (P \cap Q)(v) \lor (P \cap Q)(\zeta) \lor \kappa.$$

Also

$$(P \cap Q)(v) \lor (P \cap Q)(v^{-1}) = (P(v) \lor Q(v)) \lor (P(v^{-1}) \lor Q(v^{-1}))$$
$$= (P(v) \lor P(v^{-1})) \lor (Q(v) \lor Q(v^{-1}))$$
$$\leq (P(v) \lor \kappa) \lor (Q(v) \lor \kappa)$$
$$= P(v) \lor Q(v) \lor \kappa = (P \cap Q)(v) \lor \kappa.$$

Therefore $P \cap Q$ is a κ - AFSG of G.

1505

Corollary 3.1. Intersection of a family of κ -AFSG of a G is again a κ -AFSG of G.

Remark 3.2. The union of two κ -AFSG not necessarily be a κ -AFSG. The example below depicts the same.

Example 2. Let G = Z, the set of integers under ordinary addition. Define two FS in G as follows:

$$P(v) = \begin{cases} 0.4 & \text{if } v \in 4Z \\ 0.6 & \text{if } v \notin 4Z \end{cases} \text{ and } Q(v) = \begin{cases} 0.3 & \text{if } v \in 3Z \\ 0.6 & \text{if } v \in 3Z \end{cases}$$

Then P and Q are 0.5- AFSG of G. Now,

$$(P \cup Q)(v) = \begin{cases} 0.4 & \text{if } v \in 4Z \\ 0.3 & \text{if } v \in 3Z - 4Z \\ 0.6 & \text{if } v \notin 4Z, v \notin 3Z \end{cases}.$$

Clearly $P \cup Q$ is not a 0.5–AFSG of G since $(P \cup Q)(4+9) \nleq (P \cup Q)(4) \lor (P \cup Q)(9) \lor 0.5$ as $(P \cup Q)(4+9) = 0.6$ whereas $(P \cup Q)(4) \lor (P \cup Q)(9) \lor 0.5 = 0.5$. Hence $P \cup Q$ is not a κ -AFSG of G.

Theorem 3.3. Let P be a κ -AFSG of a group G. Then $P(e) \leq P(v) \lor \kappa, \forall v \in G$.

Proof. Let $v, v^{-1} \in G$. Then

$$P(e) = P(vv^{-1}) \le P(v) \lor P(v^{-1}) \lor \kappa \le P(v) \lor \kappa.$$

Theorem 3.4. If *P* is a κ -AFSG of a group *G*, then $P(v\zeta^{-1}) = P(e) \Rightarrow P(v) \le P(\zeta) \lor \kappa \forall v \in G$.

Proof. If *P* is a κ -AFSG of a group *G*, for all $v, \zeta \in G$, $P(v) = P(v\zeta^{-1}\zeta) \leq P(v\zeta^{-1}) \vee P(\zeta) \vee \kappa = P(e) \vee P(\zeta) \vee \kappa = P(\zeta) \vee \kappa$.

Theorem 3.5. Let P be FS of a group G and let $q = \sup\{P(v) : v \in G\} \neq 0$. Then P is a κ -AFSG of $G \forall \kappa \geq q$.

Proof. Let $\kappa \ge q = \sup\{P(v) : v \in G\}$. $P(v) \le \kappa, \forall v \in G$. Therefore $P(v\zeta) \le \kappa$ and $P(v) \lor P(\zeta) \lor \kappa = \kappa$. That is $P(v\zeta) \le P(v) \lor P(\zeta) \lor \kappa$.

Also since, $P(v^{-1}) \lor \kappa = \kappa$. $P(v) \lor P(v^{-1}) \le P(v^{-1}) \lor \kappa = \kappa$. Hence P is a κ -AFSG of G.

Theorem 3.6. Let $\iota \in (0,1]$, $P(e) \leq \iota$ and P be a $\kappa \in [0,\iota]$ -AFSG of a Group G. Then the level set $P_{(\iota)}$ is a subgroup (SG) of G.

Proof. Clearly *P* is non empty. Let $v, \zeta \in P_{(\iota)}$ then $P(v) \leq \iota$, $P(\zeta) \leq \iota$. Since *P* is a κ -AFSG of G, $P(v\zeta) \leq P(v) \lor P(\zeta) \lor \kappa \leq \iota$. Hence $v\zeta \in P_{(\iota)}$.

Also $v \in P_{(\iota)}$ implies $P(v) \leq \iota$. Since P is a κ -AFSG of G, $P(v) \lor P(v^{-1}) \leq P(v) \lor \kappa \leq \iota$. It shows that $P(v^{-1}) \leq \iota$. This means $v^{-1} \in P_{(\iota)}$. Therefore $P_{(\iota)}$ is a SG of G.

Theorem 3.7. Let P be a FS of a group G such that $P_{(\iota)}$ is a SG of G. $\forall \iota \in [0, 1]$, $P(e) \leq \iota$, then P is a $\kappa = \vartheta$ -AFSG of G, where $\vartheta = inf\{P(\upsilon) : \upsilon \in G\}$.

Proof. Let $v, \zeta \in G$ and let $P(v) = \iota_1$ and $P(\zeta) = \iota_2$. Then $v \in P_{(\iota_1)}, \zeta \in P_{(\iota_2)}$. Let us assume that $\iota_1 \ge \iota_2$. Then $P_{(\iota_2)} \subseteq P_{(\iota_1)}$. Thus $v, \zeta \in P_{(\iota_1)}$ and since $P_{(\iota_1)}$ is a subgroup of $G, v\zeta \in P_{(\iota_1)}$. Therefore $P(v\zeta) \le \iota_1 = P(v) \lor P(\zeta) \lor \kappa$, where $\kappa = \vartheta$. Also let $v \in G$ and $P(v) = \iota$. Then $v \in P_{(\iota)}$. Since $P_{(\iota)}$ is SG of $G, v^{-1} \in P_{(\iota)}$. Which implies that $P(v^{-1}) \le \iota$. Now $P(v) \lor P(v^{-1}) \le P(v) \lor \kappa = \iota$, where $\kappa = \vartheta$. Thus P is a $\kappa = \vartheta$ -AFSG of G.

Theorem 3.8. A FS P in a group G is a κ -AFSG of G if and only if $P(v\zeta^{-1}) \leq P(v) \vee P(\zeta) \vee \kappa$.

Proof. Suppose *P* is a κ -AFSG of *G*. Then

$$P(v\zeta^{-1}) = P(v\zeta^{-1}\zeta\zeta^{-1}) \le P(v\zeta^{-1}) \lor P(\zeta\zeta^{-1}) \lor \kappa$$
$$\le P(v\zeta^{-1}) \lor P(\zeta) \lor P(\zeta^{-1}) \lor \kappa$$
$$\le P(v\zeta^{-1}) \lor P(\zeta) \lor \kappa \le P(v) \lor P(\zeta^{-1}) \lor P(\zeta) \lor \kappa$$
$$\le P(v) \lor P(\zeta) \lor \kappa.$$

Conversely, let $P(\upsilon\zeta^{-1}) \leq P(\upsilon) \vee P(\zeta) \vee \kappa$ for a FS *P*in *G*,

$$P(\zeta^{-1}) = P(e\zeta^{-1}) \le P(e) \lor P(\zeta) \lor \kappa \le P(\zeta) \lor \kappa.$$

Hence

$$P(\zeta^{-1}) \lor P(\zeta) \le P(\zeta) \lor P(\zeta) \lor \kappa = P(\zeta) \lor \kappa.$$

Then

$$P(v\zeta) = P(v(\zeta^{-1})^{-1}) \le P(v) \lor P(\zeta^{-1}) \lor \kappa.$$

So $P(v\zeta) \vee P(\zeta) \leq P(v) \vee P(\zeta^{-1}) \vee \kappa \vee P(\zeta) \leq P(v) \vee P(\zeta) \vee \kappa$ (since $P(\zeta^{-1}) \vee P(\zeta) \leq P(\zeta) \vee \kappa$).

But

$$P(v\zeta) \le P(v\zeta) \lor P(\zeta) \le P(v) \lor P(\zeta) \lor \kappa.$$

Hence *P* is a κ - AFSG of *G*.

Theorem 3.9. Let P be the characteristic function of a non-empty subset H of a group G. Then P is a κ -AFSG of G if and only if H is a SG of G.

Proof. Clearly P is a FS in G. First let P be a κ -AFSG of G. For $v, \zeta \in H$, P(v) = 1 and $P(\zeta) = 1$. Now,

$$P(v\zeta) \le P(v) \lor P(\zeta) \lor \kappa = 1 \lor 1 \lor \kappa \Rightarrow P(v\zeta) = 1.$$

Thus $v\zeta \in H$. Also $P(v) \lor P(v^{-1}) \le P(v) \lor \kappa = 1 \Rightarrow P(v^{-1}) = 1 \Rightarrow v^{-1} \in H$. Therefore H is a SG of G.

Conversely, if H is a SG of G then its characteristic function is FSG of G and hence is a κ -AFSG of G.

4. Homomorphism and κ -Anti-Fuzzy Subgroup

Theorem 4.1. A homomorphic preimage of a κ -AFSG E of a group G_2 is a κ -AFSG of group G_1 where $\eta^{-1}(E)(\upsilon) = E(\eta(\upsilon)); \forall \upsilon \in G_1$.

Proof. Let $\eta : G_1 \to G_2$ be a group homomorphism. Let E be a κ -AFSG of a group G_2 . For $v, \zeta \in G_1$,

$$\eta^{-1}(E)(\upsilon\zeta) = E[\eta(\upsilon\zeta)] = E[\eta(\upsilon)\eta(\zeta)] \le E[\eta(\upsilon)] \lor E[\eta(\zeta)] \lor \kappa$$
$$= \eta^{-1}(E)(\upsilon) \lor \eta^{-1}(E)(\zeta) \lor \kappa.$$

Also

$$\begin{split} \eta^{-1}(E)(\upsilon) &\lor \eta^{-1}(E)(\upsilon^{-1}) = E[\eta(\upsilon)] \lor E[\eta(\upsilon^{-1})] = E[\eta(\upsilon)] \lor E[\eta(\upsilon)^{-1}] \\ &\le E[\eta(\upsilon)] \lor \kappa = \eta^{-1}(E)(\upsilon) \lor \kappa. \end{split}$$

Thus $\eta^{-1}(E)$ is a κ -AFSG of a group G_1 .

Theorem 4.2. Let P be a κ -AFSG of a group G_1 . If $\eta : G_1 \to G_2$ is a bijective homomorphism, then $\eta(P)$ is a κ -AFSG of a group G_2 where

$$\eta(P)(\zeta) = \inf_{\upsilon \in G_1} \{ P(\upsilon) | \eta(\upsilon) = \zeta \},$$

for all $\zeta \in G_2$.

1508

Proof. Let $\zeta_1, \zeta_2 \in G_2$, we have,

(i)
$$\eta(P)(\zeta_1\zeta_2) = \inf\{P(v_1v_2)|\eta(v_1v_2) = \zeta_1\zeta_2\}$$

 $\leq \inf\{P(v_1) \lor P(v_2) \lor \kappa | \eta(v_1) = \zeta_1, \eta(v_2) = \zeta_2\}$
 $= \inf\{P(v_1)|\eta(v_1) = \zeta_1\} \lor \inf\{P(v_2)|\eta(v_2) = \zeta_2\} \lor \kappa$
 $= \eta(P)(\zeta_1) \lor \eta(P)(\zeta_2) \lor \kappa.$
(ii) $\eta(P)(\zeta) \lor \eta(P)(\zeta^{-1}) = \inf\{P(v)|\eta(v) = \zeta\} \lor \inf\{P(v^{-1})|\eta(v^{-1}) = \zeta^{-1}\}$
 $= \inf\{P(v) \lor P(v^{-1})|\eta(v) = \zeta, \eta(v^{-1}) = \zeta^{-1}\}$
 $\leq \inf\{P(v) \lor \kappa | \eta(v) = \zeta\} = \inf\{P(v) \lor | \eta(v) = \zeta\} \lor \kappa$
 $= \eta(P)(\zeta) \lor \kappa.$

Thus $\eta(P)$ is a κ -AFSG of a group G_2 .

REFERENCES

- [1] S. K. BHAKAT: On the definitions of fuzzy group, Fuzzy. Set. Syst., 51(1992), 235–241.
- [2] R. BISWAS: Fuzzy subgroups ans anti Fuzzy subgroups, Fuzzy. Set. Syst., 35(1990), 121– 124.
- [3] B. DONG: *Direct product of anti-fuzzy subgroups*, J Shaoxing Teachers College in Chinese., **5**(1992), 29–34.
- [4] W. LIU: Fuzzy invariant subgroups and fuzzy ideals, Fuzzy. Set. Syst., 59(1993), 205-210.
- [5] RAJESHKUMAR: Fuzzy Algebra, Publication Division, University of Delhi, 1993.
- [6] A. ROSENFELD: Fuzzy groups, J. Math. Anal. And Appl., 35(1971), 512–517.
- [7] P. K. SHARMA: *α-fuzzy subgroups*, Int. J. Fuzzy. Math. Syst., **3**(1) (2013), 47–59.
- [8] Z. SHEN: *The anti-fuzzy subgroup of a group*, J. Liaoning Normat University in Chinese (Nat. Sci.), **18**(2) (1995), 99–101.
- [9] K. SOWMYA, S. M. JOSE: λ-fuzzy subgroup, Int. J. Recent Tech. Engg., 7(6) (2019), 780–784.
- [10] B. YAO, (λ, μ)-fuzzy normal subgroups and (λ, μ)-fuzzy quotients subgroups, J. Fuzzy. Math.,
 13(3) (2005), 695–705.
- [11] B. YAO: (λ, μ)-fuzzy subrings and (λ, μ)-fuzzy ideals, J. Fuzzy. Math., 15(4) (2007), 981–987.
- [12] Y. FENG, B. YAO: On (λ, μ)-anti-fuzzy subgroups, J. Inequal. Appl., 78 (2012). https://doi.org/10.1186/1029-242X-2012-78.
- [13] L. A. ZADEH: Fuzzy Set, Inf. Cont., 8 (1965), 338-353.

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE, CHIDAMBARAM-608102 TAMIL NADU, INDIA