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RESULTS ON RESOLVABILITY AND METRIC DIMENSION IN GRAPHS

A. T. SHAHIDA1 AND M. S. SUNITHA

ABSTRACT. For an ordered subset W = {w1, w2, . . . , wk} of V (G) and a vertex
v ∈ V , the metric representation of v with respect to W is a k-vector, which is
defined as r(v/W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)), where d(u, v) represents
the distance between the vertices u and v. The set W is called a resolving set for
G if r(u/W ) = r(v/W ) implies that u = v for all u, v ∈ V (G). In this paper, the
total number of resolving sets for a path graph Pn is obtained. Established that
total number of resolving sets in a simple connected graph G is greater than or
equal to 2n−k−1, where k = dim(G). Discussed about Km,n m ≥ 2, n > m−2,
does not admit independent basis. Established that every basis for hypercube
Q3 is either independent or connected and every basis of Petersen graph (P )

is independent. Characterized the graph G with dim(G) = 2, which does not
admit an independent basis.

1. INTRODUCTION

The concepts of metric dimension of a graph and its related properties such
as basis were introduced by P.J. Slater [3] and independently by Harary and
Melter [4]. The metric dimension of a graph is the least number of vertices in a
set with the property that the list of distances from any vertex to those in the set
uniquely identifies that vertex. Slater introduced this concept by motivated from
the robot navigation problem. The motivation behind this work is due to the
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large range of application of resolving sets in various fields such as navigation
in robotic networks, problems of pattern recognition and image processing.

2. PRELIMINARIES

All the graphs considered in this paper are undirected, simple, finite and con-
nected. The order and size of G are denoted by n and r respectively. We use
standard terminology, the terms not defined here may found in [4], [1] and [5].
A graph G = (V,E) consists of two sets: V , the (non empty) vertex set of the
graph and E, the edge set of the graph, such that each edge e in E is assigned an
unordered pair of vertices (u, v), called the end vertices of e. A graph G = (V,E)

is said to be a graph on n vertices and r edges if |V | = n and |E| = r and are
respectively known as order and size of G. A graph with finite number of ver-
tices is called finite graph. A graph with no loops and multiple edges is called
a simple graph. A graph G = (V,E) is connected if there is a path joining each
pair of nodes. A component of a graph is a maximal connected subgraph. If a
graph has only one component it is connected, otherwise it is disconnected. For a
connected graph G = (V,E), the distance between any two vertices a and b, de-
noted by d(a, b), is the length of the shortest path joining a and b. Let G = (V,E)

be a connected, undirected graph and v1, v2, v3 ∈ V . A vertex v is said to resolve
the vertices v1 and v3 if the distance of v1 from v2 is different from distance of
v3 from v2. For an ordered subset W = {w1, w2, . . . , wk} of V (G) and for any
vertex v ∈ V , the (metric)representation of v with respect to W is the k-vector
which is denoted and defined as r(v/W ) = (d(v, w1), d(v, w2), . . . , d(v, wk)). The
set W is called a resolving set for G if r(v1|W ) = r(v2|W ) implies that v1 = v2
for all v1, v2 ∈ V (G). A resolving set of minimum cardinality for a graph G is
called a minimum resolving set. A minimum resolving set is usually called a
basis for G. The minimum cardinality of a resolving set of G is called the metric
dimension of G and is denoted by dim(G). A resolving set W is called a minimal
resolving set of a connected graph G if no proper subset of W is a resolving set
of G. A basis W for a graph G is said to connected if the subgraph induced by
W is connected. A basis W of G is said to be independent if no two vertices of
W are adjacent. [2] A connected graph G of order n > 2 has dimension n− 1 if
and only if G = Kn. [5] For Qn,

dim(Qn) is n, if n ≤ 4; n− 1, if 5 ≤ n ≤ 6; 6, if 7 ≤ n ≤ 8; 7, if 9 ≤ n ≤ 10.
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[3] Let G be a connected graph of order n ≤ 4. Then dim(G) = n − 2 if and
only if

G = Kr,s(r, s ≥ 1), G = Kr + K̄s(r ≥ 1, s ≥ 2), or G = Kr + (K1 ∪Ks)(r, s ≥ 1).

3. MAIN RESULTS

Theorem 3.1. For Paths Pn, n ≥ 2, total number of resolving sets is 2+
∑n−1

k=2 nCk.

Proof. For n ≥ 2, dim(Pn) = 1 and Pn has only 2 bases, that are the end vertices.
Since every two element subsets of V (Pn) is a resolving set, the number of re-
solving sets of order 2 of Pn is nC2. Similarly number of resolving sets of order 3
of Pn is nC3, number of resolving sets of order 4 of Pn is nC4 and so on. Hence
the total number of resolving sets of Pn is 2 + nC2 + nC3 + . . . + nCn−1

= 2 +
∑n−1

k=2 nCk. �

Theorem 3.2. Total number of resolving sets in a simple connected graph G is
greater than or equal to 2n−k − 1, where k = dim(G).

Proof. Let G be a simple connected graph with |V | = n, dim(G) = k and W be a
resolving set with |W | = k. Let W1 ⊃ W and W1 6= V .

Claim: W1 is a resolving set. Since W ⊂ W1, the metric representation of every
vertex of G with respect to W1, the first k-positions have distinct coordinates
and the remaining position may or may not be equal. So all the vertices get
different metric representation with respect to W1, therefore W1 is a resolving
set of G. Hence the claim. Since G − 〈W 〉 has n − k vertices, total number of
subset with respect to G− 〈W 〉 is 2n−k. So there are 2n−k − 1 supersets of W as
resolving set. Therefore total number of resolving sets of a graph G with dim(G)

is greater than or equal to 2n−k − 1. �

Theorem 3.3. Km,n,m ≥ 2, n > m− 2, does not admit independent basis.

Proof. The set of vertices of Km,n can be taken as V = V1 ∪ V2, where |V1| = m

and |V2| = n, V1 ∩ V2 = ∅. Since dim(Km,n) = m + n − 2 and the possible
independent basis consists of m− 1 vertices from V1 and any n− 1 vertices from
V2, which is not independent. Therefore Km,n,m ≥ 2, n > m− 2 does not admit
an independent basis. �

Theorem 3.4. Every basis for hypercube Q3 is either independent or connected.
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Proof. Note that dim(Q3) = 3. There are three types of subsets W of V (Q3) such
that |W | = 3. The subgraph induced by W is any of P3, K3 and P2 ∪ P1.
Case 1: If 〈W 〉 = P3, then W is a basis and also connected basis. Note that the
vertex set of each subgraph W of Q3 of the form P3 is a connected basis.
Case 2: If 〈W 〉 = K3,then W is a basis and also an independent basis. Note
that the vertex set of each subgraph W of Q3 of the form K3 is an independent
basis.
Case 3: If 〈W 〉 = P2 ∪ P1, then W is not a basis. Since if possible, assume W is
a basis, then atleast two pair of vertices with have same metric representation.
For example in Figure 1, let W = {v1, v2, v8} then the vertices v3 and v6 have
the same metric representation (2, 1, 2) and the vertices v4 and v5 have the same
metric representation (1, 2, 1). Therefore W is not a basis. In general any basis
of Q3 is either connected or independent. �
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FIGURE 1. Hypercube Q3.

Theorem 3.5. Every basis of Petersen graph (P ) is independent.

Proof. For Petersen graph, dim(P ) = 3 and d(u, v) ≤ 2 ∀u, v ∈ V (P ).
Claim: For W = {v1, v2, v3} ⊂ V (P ) and if 〈W 〉 is either P3 or P2 ∪ P1, then W

is not a basis for P . Proof for the Claim: Consider 〈W 〉 is either P3 or P2 ∪ P1.
Case 1: If 〈W 〉 = P3. Without loss of generality we assume that if P3 is a
path with internal vertex as v1, then three such paths exist, say v5 − v1 − v6,
v2− v1− v6 and v5− v1− v2. If W = {v1, v5, v6}, then the vertices v3 and v7 have
the same metric representation (2, 2, 2) with respect to W . If W = {v1, v2, v6},
then the vertices v4 and v10 have the same metric representation (2, 2, 2) with
respect to W . If W = {v1, v2, v5}, then the vertices v4 and v10 have the same
metric representation (2, 2, 1) with respect to W . So in general if P3 is a path
with internal vertex vi, then 〈W 〉 = P3, and W is not a resolving set of P .
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FIGURE 2. Petersen graph (P ).
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FIGURE 3. Sub graphs of P .

Case 2: If 〈W 〉 = P2 ∪ P1 .Let P2 be the path: v1 − v2. Now the vertex of
P1 can be any one from the set {v4, v8, v9, v10}, which is the set of vertices not
adjacent to v1 and v2. Therefore the following possibilities arises.
If W = {v1, v2, v4}, then the vertices v7 and v10 have the same metric represen-
tation (2, 2, 2). If W = {v1, v2, v8}, then the vertices v4 and v9 have the same
metric representation (2, 2, 2). If W = {v1, v2, v9}, then the vertices v8 and v10

have the same metric representation (2, 2, 2). If W = {v1, v2, v10}, then the ver-
tices v4 and v9 have the same metric representation (2, 2, 2). In general consider
if 〈W 〉 = P2 ∪ P1 with P2 = vi − vj, then W is not a resolving set. �
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Theorem 3.6. A graph G with dim(G) = 2 does not admit an independent basis
if and only if G is either K3, C4 or P1 + P3.

Proof. Assume that G is a simple connected graph with n vertices, dim(G) = 2

and it does not have an independent basis. Therefore there are two possibilities.
Case (1) V (G) does not have an independent subset of vertices. In this case
every vertex of G is adjacent to each other. So it must be a complete graph Kn

of order n and hence dim(G) = n− 1⇒ 2 = n− 1 (by assumption). ⇒ n = 3⇒
G = K3.
Case (2). There exists an independent two element subset of V (G) which is
not a resolving set. If W = {w1, w2} be an independent subset of V and is
not a basis, then there exist at least two vertices u1 and v1 in V −W such that
d(u1,W ) = d(v1,W ).
Claim: (a) d(u1, w1) = d(u1, w2) = d(v1, w1) = d(v1, w2) = 1. (b) There
does not exist more than one such pair of vertices. Proof of the Claim: (a) If
possible assume that d(u1, w1) = d(u1, w2) = d(v1, w1) = d(v1, w2) = k > 1.
So the graph is as shown in the Figure 4(B). Label the vertices between w1

and u1 as u11, u12, u13, . . . , u1k, the vertices between u1 and w2 are labeled as
u21, u22, u23, . . . , u2k, the vertices between w1 and v1 as v11, v12, v13, . . . , v1k and
the vertices between v1 and w2 as v21, v22, v23, . . . , v2k. Then W = {w1, u1} form
an independent basis, since with respect to W the vertices in V −W get the label
as (1, k− 1), (2, k− 2), . . . , (k− 1, 1), (k+ 1, 1), (k+ 2, 2), . . . , (2k− 1, k− 1), (2k−
2, k − 2), . . . , (1, k + 1). Which is not possible by assumption. So the graph is
as shown either in Figure 4(A) or in Figure 4(C) or in Figure 4(E) but not as in
Figure 4(D). Therefore d(u1, w1) = d(u1, w2) = d(v1, w1) = d(v1, w2) = 1.
Claim: (b) If possible assume there exist k pair of vertices (ui, vi) such that
d(ui,W ) = d(vi,W ), ui, vi ∈ V −W . Then the graph is as shown in Figure 4(C).
So we can find at least one independent set W ⊂ V such that |W | = 2, say
N = {ui, vj}, i, j = 1, 2, . . . , k, form an independent basis. Which is not possible
by assumption. So the graph must be as in Figure 4(A) or in Figure 4(E). So it
is C4 or P1 + P3, hence the proof. Converse part is trivial, since dim(K3) = 2,
dim(C4) = 2 and dim(P1 + P3) = 2 and no basis of each of these graphs is
independent. �
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FIGURE 4. Graphs with dim(G) = 2 and do not possess indepen-
dent basis.

4. CONCLUSION

In this paper determined total number of resolving sets for some classes of
graphs. Determined total number of basis in a graph and studied about those
graphs which do not possess independent basis. Characterized graph with

dim(G) = 2,

which do not admit independent basis.
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