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A NUMERICAL METHOD FOR FRACTIONAL VARIATIONS PROBLEMS
BASED ON FRACTIONAL ORDER EULER FUNCTIONS

V. SHAMEEMA1 AND M. C. RANJINI

ABSTRACT. In this paper, we present a numerical method based on Fractional

order Euler functions (FEFs) to obtain the solution of a class of fractional vari-

ational problems. We construct the operational matrix for fractional differenti-

ation of these functions and a numerical method is developed by applying the

properties of FEFs along with the operational matrix. Numerical examples in-

cluding comparison with other methods are illustrated to express the efficiency

and simplicity of the proposed method.

1. INTRODUCTION

Fractional calculus, which deals with the study of arbitrary order integrals and

derivatives, has found several applications over the years in many distinct fields.

It has been applied to model numerous real world problems in physics, signal

and image processing, mechanics and dynamic systems, biology, environmental

science, materials, economic, multidisciplinary in engineering fields etc., [1]. In

[2–5] some numerical methods were presented to obtain approximate solution

for problems in fractional calculus. It has been done in the field of fractional

calculus of variations as well [6,7].

The theory of the fractional calculus of variations was introduced by Riewe in

1996, to deal with nonconservative systems in mechanics [8]. It is a problem in
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which either the objective functional or the constraint equations or both contain

at least one fractional derivative term. Recently, special kinds of polynomials or

functions such as Legendre orthonormal polynomials [9], Jacobi orthonormal

polynomials [10], Haar wavelets [12] was implemented to obtain numerical

solution of these problems. In the present paper, Fractional order Euler polyno-

mials (FEPs) will be applied for solving a class of fractional variational problems.

This paper is structured as follows: The basic definitions and notations that

we have used, are given in section 2. Section 3 describes the generating formula

and properties of fractional order Euler functions. Section 4 is devoted to derive

the operational matrix for fractional differentiation of FEFs. In Section 5, we

present our proposed method for the solution of fractional variational problems.

In the last section some numerical examples along with the comparison with

other methods are discussed.

2. PRELIMINARIES

Definition 2.1. [15] The Caputo fractional derivative of order α > 0 is defined as

follows:

C
0 D

α
xf(x) =











1
(m−α)

∫ x

0
fm(t)

(x−t)α+1−m dt, m− 1 < α < m

dm

dxmf(x), α = m

.

Some of the properties of the operators Iα
x and C

0 D
α
x are given below [15]:

(1) C
0 D

α
x (I

α
x f(x)) = f(x)

(2) Iα
x (

C
0 D

α
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(3) C
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x (C) = 0

(4) C
0 D

α
x (x

p) =

{

Γ(p+1)
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xp−α, p ∈ R, p > n− 1, n− 1 < α < n

0, p ∈ N, p > n− 1, n− 1 < α < n

(5) C
0 D

α
x (λf(x) + g(x)) = λC

0 D
α
xf(x) +

C
0 Dα

xg(x) .
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3. FRACTIONAL ORDER EULER FUNCTIONS

In this section we recall definition and some properties of fractional order

Euler functions [14]. The analytic form of Eβ
m(x) is given by

m
∑

k=0

E
β
k (x) + Eβ

m(x) = 2xmβ .

Properties:

(1) Let Eβ(x) = [Eβ
0 (x), E

β
1 (x), . . . , E

β
m(x)]

T and Xβ = [1, xβ, . . . , xmβ]T , then

fractional order Euler functions can be represented in a matrix form as

Eβ(x) = BXβ

where,
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(
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(
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Bm(0) ... 2−22

m+1

(
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













(2)

∫ 1

0

Eβ
m(x)E

α
n (x)x

1−βdx = (−a)n−1 m(n + 1)

(m+ n+ 1)
Em+n+1(0) m,n > 1.

(3) Approximation of Functions: A function f(x), square integrable in

[0,1], can be expanded as f(x) =
∑

∞

i=0 ciE
β
i (x). To evaluate C, we solve

CT = ATD−1 where AT = [a0, a1, a, ..., am], aj =
∫ 1

0
E

β
j (x)f(x)x

1−β and

D = [dβij], dij =

∫ 1

0

E
β
i (x)E

β
j (x)x

β−1dx.

(4) Error Analysis: The error analysis is given by the following theorem.

Theorem 3.1. Suppose that Dkαf(x) ∈ C[0, 1] for k = 1, 2, ...m and

Y α
m = span{Eα

0 (x), E
α
1 (x), ...E

α
m(x)} is a vector space. If fm(x) is the best ap-

proximation of f out of Y α
m , then the mean error bound is presented as follows:

‖f − fm‖ 6
Mα

Γ((m+ 1)α+ 1)
√

(2m+ 2)α+ 1
,

where, Mα > supξ∈[0,1] |
C
0 D

(m+1)α
a+

f(x)|.
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4. OPERATIONAL MATRIX FOR FRACTIONAL DIFFERENTIATION FOR FEFS

Let Mα be the (m+1)×(m+1) Caputo fractional operational matrix of differ-

entiation of order α for FEFs of order mα. The Caputo fractional differentiation

of the vector Eα(x) can be expressed by

C
0 D

α
xE

α(x) = MαEα(x).

Now by using the matrix representation of FEFs and the properties of Caputo

derivatives, we have

C
0 D

α
xE

α(x) =C
0 Dα

xBXα = BC
0 D

α
xX

α = BNαXα

= BNα(B−1Eα(x)) = (BNαB−1)Eα(x),

where Nα is the operation matrix of Caputo fractional differentiation of the

vector Xα = [1, xα, x2α, ...xmα]T and it is given by

Nα =

















0 0 . . . 0 0
Γ(α+1)
Γ(0α+1)

0 . . . 0 0

0 Γ(2α+1)
Γ(α+1)

0 0 0
...

...
. . .

...
...

0 0 . . .
Γ(mα+1)

Γ((m−1)α+1)
0

















.

Then the Caputo fractional differentiation operational matrix for FEFs will be

Mα = (BNαB−1).

5. PROPOSED METHOD

Consider the problem of extremization of a functional J of the form

(5.1) J [y(x)] =

∫ 1

0

F [x, y(x),C0 Dα
xy(x)]dx, 0 < α ≤ 1

with

y(0) = y0, y(1) = y1,

where C
0 D

α
x is the fractional order derivative in the Caputo sense. If y(1) is

unspecified, we consider
[

∂F

∂C
0 D

α
xy

]

x=1

= 0.
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This problem can be solve by using the Euler-Lagrange equation

∂F

∂y
+C

x Dα
1

∂F

∂C
0 D

α
xy

= 0.

In our proposed method, We approximate y(x) in terms of FEFs as follows:

y(x) ≈ CTEα(x),

where CT =
[

c0 c1 ... cm
]

and Eα(x) =
[

Eα
0 (x) Eα

1 (x) ... Eα
m(x)

]

. Then

C
0 D

α
xy(x) = (C0 D

α
x )(C

TEα(x)) = CT (C0 D
α
xE

α(x)) = CT (MαEα(x))

The other terms in the functional of equation (5.1) can also be expressed in

terms of FEFs through FEFs approximation then J becomes

(5.2) J = J [c0, c1, ...cm].

i.e., the original fractional variational problem of extremization (5.1) becomes

extremization of a finite set of variables in (5.2). Taking partial derivatives of J

with respect to ci and setting them equal to zero, we get,

∂J

∂ci
= 0, i = 0, 1, ..., m.

Solving for ci by using equation (5) and the conditions

[CTE(x)]x=0 = y0

and
[

∂F

∂C
0 D

α
xy

]

x=1

= 0.

Substitutting all cis in equation (5), we get the desired solution.

6. NUMERICAL EXAMPLES

Example 1. Consider the problem of extremization of the functional

J [y(x)] =

∫ 1

0

1

2
(C0 D

α
xy(x)− 1)2dx, 0 < α ≤ 1

with y(0) = 1− 1
Γ(α+1)

and y(1) = 1.

For 0 < α ≤ 1, The exact solution of this problem is given by

yexact(x) = 1−
1

Γ(α+ 1)
+

xα

Γ(α + 1)
.
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Table 1 give the approximate solution of the above example for α = 0.5 and

α = 0.75 with different values of m and compares the results for with the exact

solution. For α = 1 we get the approximate solution same as the exact solution of

this problem 2. ie., yapp = x = yexact

(α = 0.5) Error (α = 0.75)

x yapp(m = 2) yapp(m = 3) yexact absolute error yapp(m = 2) yapp(m = 3) yapp(m = 4) yexcact absolute error

0 -0.12837917 -0.12837917 -1.2837917 1.387779×10−16 -0.088068 -0.088068 -0.088068 -0.088065252 2.748×10−6

0.125 0.27056341 0.27056341 0.27056311 2.944762×10−7 0.14067039 0.14067045 0.14067106 0.14067229 1.228647×10−6

0.250 0.43581083 0.43581083 0.43581042 4.164522×10−7 0.29662263 0.29662266 0.29662237 0.29662391 1.53673×10−6

0.375 0.56260964 0.56260964 0.56260913 5.100477×10−7 0.43334289 0.43334287 0.43334225 0.43334359 1.341347×10−6

0.5 0.66950598 0.66950598 0.66950539 5.889524×10−7 0.55890207 0.55890201 0.55890175 0.55890222 4.646998×10−6

0.625 0.76368355 0.76368355 0.76368289 6.584688 ×10−7 0.67676521 0.67676512 0.67676565 0.67676482 8.306047×10−6

0.750 0.84882658 0.84882658 0.84882586 7.213164×10−7 0.78883734 0.78883724 0.78883848 0.7888364 2.077168×10−6

0.875 0.92712367 0.92712367 0.92712289 7.791108×10−7 0.89631213 0.89631207 0.89631336 0.89631067 2.688511×10−6

1 1.0000008 1.0000008 1 8.329044 ×10−7 1.000002 1.000002 1.000002 1 2.000048×10−6

TABLE 1. Approximate solution yapp of the example 2 for α = 0.5 and

α = 0.75 with different values of m.
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FIGURE 1. (a):The approximate solution by FEFs with m=3 and exact solution of Ex-

ample 2 for α = 0.5.(b):The approximate solution by FEFs with m=4 and exact solution

of Example 2 for α = 0.75.

7. CONCLUSION

In this article, an operational matrix for fractional differentiation of fractional

order Euler functions is constructed. The fractional derivatives are described

in the Caputo sense. By using the operational matrix and FEFs, the fractional

variational problem is reduced to a system of linear algebraic equations. The
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numerical examples show that the approximate solution that we get from the

suggested method even with four FEFs is more closer to the exact solution than

that from other methods [11,12] where eight polynomials were taken.
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