ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 1875–1881 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.45 Spec. Issue on NCFCTA-2020

A NOTE ON PSEUDO SP-ALGEBRA

K. SHANMUGA PRIYA¹ AND M. MULLAI

ABSTRACT. As a generalization of SP-Algebra, the concept of pseudo SP-Algebra is imported and some of their properties are researched in this paper. Pseudo SP-Ideal, identity pseudo SP-Algebra and characterization of their properties are defined and proved. Decomposition of any pseudo SP-Ideal of a pseudo SP-Algebra is also introduced in this paper.

1. INTRODUCTION

Two branches of abstract algebra were established in [1–4]. Following this, many authors mounted various algebras which have been acted as a generalization or subclasses of these two algebras. In all these papers, they investigated the algebraic structures in special algebras and made an assessment between those algebras. In 2016, K. Shanmuga Priya and M. Mullai established a new notion of algebra known as SP-Algebra [5]. They used the concept of SP-Ideal in SP-Algebra to assemble quotient SP-Algebra. Homomorphism and kernal of SP-Algebra were additionally described through them. They extended SP-Algebra to SP-Ring [6] and discussed its properties. The idea of SP-Ring was applied to polyomials named SP-polyomials in [7]. Young Bae Jun and Sun Shin Ahn introduced the notion of Pseudo BH-algebra [9] and Pseudo BCH- Algebra [8] as a generalization of BH-algebra and BCH-Algebra in 2015. They also investigated some of its properties. In this paper, the perception of pseudo SP-Algebra, as a

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 08A30, 08A35, 08A40.

Key words and phrases. Pseudo SP-Algebra, Pseudo SP-Ideal, Identity Pseudo SP-Algebra.

K. SHANMUGA AND M. MULLAI

generalization of SP-Algebra is introduced and the notion of pseudo SP-Ideal in pseudo SP-Algebra is defined. Moreover characterization of their properties in pseudo SP-Algebra are also established.

2. PSEUDO SP-ALGEBRA

Definition 2.1. [5] An Algebra (S_P , *, e_{S_P}) of type (2, 0) is said to be SP-Algebra if

 (SP_1) : $c * c = e_{S_P}$, (SP_2) : $c * e_{S_P} = c$, (SP_3) : if $c * f = e_{S_P}$ and $f * c = e_{S_P}$, then c = f, (SP_4) : (c * f) * (f * h) = (c * h),

where $c, f, h \in S_P$ and '*' is any binary operation and ' e_{S_P} ' is any constant.

Example 1. [5] If S_P is any non-void finite set and $P(S_P)$ denotes the power set of S_P , then $(P(S_P), \Delta, \phi)$ is a SP-Algebra, where $\Delta = (A-B) \cup (B-A)$, ϕ is an empty set and $A, B \in P(S_P)$.

Definition 2.2. [5] A non-void subset I_{S_P} of SP-Algebra S_P is said to be SP-Ideal if

(1) e_{SP} ∈ I_{SP};
(2) for every c, f ∈ I_{SP}, c* f ∈ I_{SP};
(3) if f* c ∈ I_{SP} and c ∈ I_{SP}, then f ∈ I_{SP}, where c, f ∈ SP.

Example 2. [5] $I_{S_P} = \{\phi, \{a\}, \{b\}, \{a, b\}\}$ is a SP-Ideal of $(P(S_P), \Delta, \phi)$, where $S_P = \{a, b, c\}$.

Definition 2.3. A pseudo SP-Algebra is a non empty set S_P with a constant e_{S_P} and two binary operations '*' and ' δ ' satisfying the following axioms:

- (1) $c * c = c \delta c = e_{S_P};$
- (2) $c * e_{S_P} = c \delta e_{S_P} = c;$
- (3) if $c * f = f \delta c = e_{S_P}$, then c = f;
- (4) $(c * f) \delta (f * h) = (c \delta f) * (f \delta h)$, then $c * h = c \delta h$, $\forall c, f$ and $h \in S_P$.

Example 3. Consider the set $S_P = \{0, 1, 2\}$. Then S_P is a pseudo SP-Algebra with operations '*' and ' δ ' defined as follows:

Definition 2.4. A non empty subset I_{S_P} of the pseudo SP-Algebra (S_P , *, δ , e_{S_P}) is called pseudo SP-Ideal of S_P if

1876

*	0	1	2
0	0	1	2
1	1	0	2
2	2	2	0
δ	0	1	2
0	0	1	2
1	1	0	1
2	2	2	0

(1) $e_{S_P} \in S_P$;

(2) $c * f, c\delta f \in I_{S_P}$, whenever $c, f \in I_{S_P}$;

(3) if $c * f, c\delta f \in I_{S_P}$ and $f \in I_{S_P} \Rightarrow c \in I_{S_P}, \forall c, f \in S_P$.

Example 4. $I_{S_P} = \{0\}$ and S_P are pseudo SP-Ideals of the example 3.

Note 1. If the pseudo SP-Algebra $(S_P, *, \delta, e_{S_P})$ satisfies $e_{S_P} * (c * f) = (e_{S_P} * c) * (e_{S_P} * f)$ and $e_{S_P} \delta (c\delta f) = (e_{S_P} \delta c) \delta (e_{S_P} \delta f), \forall c, f \in S_P$, then S_P is called identity pseudo SP-Algebra.

Theorem 2.1. For any identity pseudo SP-Algebra $(S_P, *, \delta, e_{S_P})$, the set $K_{S_P} = \{c \in S_P / e_{S_P} * c = e_{S_P}, e_{S_P} \delta c = e_{S_P}\}$ is a pseudo SP-Ideal.

Proof. Let $(S_P, *, \delta, e_{S_P})$ be an identity pseudo SP-Algebra.

To prove K_{S_P} is a pseudo SP-Ideal:

- (1) Clearly $e_{S_P} \in K_{S_P}$, since $e_{S_P} * e_{S_P} = e_{S_P}$ and $e_{S_P} \delta e_{S_P} = e_{S_P}$
- (2) Let $c, f \in K_{S_P}$. Then $e_{S_P} * c = e_{S_P} \delta c = e_{S_P}$, $e_{S_P} * f = e_{S_P} \delta f = e_{S_P}$. To prove $c* f \in K_{S_P}$ and $c\delta f \in K_{S_P}$, i.e., to prove $e_{S_P} * (c*f) = e_{S_P} \delta (c \delta f) = e_{S_P}$,

$$e_{S_P} * (c * f) = (e_{S_P} * c) * (e_{S_P} * f)$$

= $(e_{S_P} * c) * e_{S_P}$
= $e_{S_P} * c$
= e_{S_P} .

Similarly, $e_{S_P} \delta(c\delta f) = e_{S_P}$. Hence, (c * f) and $(c\delta f) \in K_{S_P}$.

(3) Let (c * f), $(c\delta f) \in K_{S_P}$ and $f \in K_{S_P}$ $\Rightarrow e_{S_P} * (c * f) = e_{S_P}$ and $e_{S_P} \delta$ (c δf) = e_{S_P} K. SHANMUGA AND M. MULLAI

$$\Rightarrow (e_{S_P} *c) * (e_{S_P} *f) = e_{S_P} \text{ and } (e_{S_P} \delta c) \delta (e_{S_P} \delta f) = e_{S_P}$$
$$\Rightarrow e_{S_P} *c = e_{S_P} \text{ and } e_{S_P} \delta c = e_{S_P}, \text{ since } f \in K_{S_P}$$
$$\Rightarrow \mathbf{c} \in K_{S_P}.$$

Hence, K_{S_P} is a pseudo SP-Ideal of $(S_P, *, \delta, e_{S_P})$.

Theorem 2.2. If $(S_P, *, \delta, e_{S_P})$ is an identity pseudo SP-Algebra and if $c \in K_{S_P}$ and $f \notin K_{S_P}$, then $c * f \in S_P \cdot K_{S_P}$ and $c \delta f \in S_P \cdot K_{S_P}$.

Proof. Let $(S_P, *, \delta, e_{S_P})$ be an identity pseudo SP-Algebra. Let $c \in K_{S_P}$ and $f \notin f$ K_{S_P} . To prove $c * f, c\delta \mathbf{f} \in S_P \cdot K_{S_P}$, suppose, $c * f, c\delta \mathbf{f} \in K_{S_P}$. Then, $f \in K_{S_P}$, since K_{S_P} is a pseudo SP-Ideal, which is a conflict to our hypothesis. Hence, $c * f, c\delta \mathbf{f} \in S_P - K_{S_P}$.

Theorem 2.3. If I_{S_P} is a pseudo SP-Ideal of pseudo SP-Algebra (S_P , *, δ , e_{S_P}) then

- (i) $(h * f) \delta c = e_{S_P} \Rightarrow c \in I_{S_P}, \forall c, f \in I_{S_P} \text{ and } h \in S_P;$
- (ii) $(h\delta f) * c = e_{S_P} \Rightarrow h \in I_{S_P}, \forall c, f \in I_{S_P} \text{ and } h \in S_P.$

Proof. Let I_{S_P} be a pseudo SP-Ideal of pseudo SP-Algebra (S_P , *, δ , e_{S_P}). (i) Let $(h * f)\delta c = e_{S_P}$, where $c, f \in I_{S_P}$ and $h \in S_P$; \Rightarrow $(h * f)\delta c \in I_{S_P}$, since $e_{S_P} \in I_{S_P}$; \Rightarrow $(h * f) \in I_{S_P}$, since $(h * f)\delta c \in I_{S_P}$ and $c \in I_{S_P}$; $\Rightarrow h \in I_{S_P}$, since $f \in I_{S_P}$. (ii) Given, $(h\delta f) * c = e_{S_P}$, where $c, f \in I_{S_P}$ and $h \in S_P$. \Rightarrow ($h\delta f$) * $c \in I_{S_P}$, since $e_{S_P} \in I_{S_P}$;

$$\Rightarrow$$
 $(h\delta f) \in I_{S_P}$, since $c \in I_{S_P}$;

 $\Rightarrow h \in I_{S_P}$, since $f \in I_{S_P}$.

Theorem 2.4. Let I_{S_P} be a closure subset of a pseudo SP-Algebra (S_P , *, δ , e_{S_P}) and $e_{S_P} \in I_{S_P}$, then $c \in I_{S_P}$, $f \in S_P \cdot I_{S_P} \Rightarrow f * c, f \delta c \in S_P \cdot I_{S_P}$, $\forall c, f \in S_P$ iff I_{S_P} is a Pseudo SP-Ideal of the Pseudo SP-Algebra S_P .

Proof. Let $f *c, f \delta c \in S_P - I_{S_P}$, $\forall c \in I_{S_P}$ and $f \in S_P - I_{S_P}$. To prove I_{S_P} is a Pseudo SP-Ideal, it is enough to prove that $f \in I_{S_P}$ if $f * c, f \delta c$ and $c \in I_{S_P}$. Suppose, $f \notin I_{S_P}$, then $f * c, f \delta c \in S_P - I_{S_P}$, which is a contraction to our assumption that, $f * c, f \delta c \in I_{S_P} \Rightarrow f \in I_{S_P}$. Hence, I_{S_P} is a pseudo SP-Ideal of S_P .

In reverse, assume that I_{S_P} is a pseudo SP-Ideal of S_P . Let $c, f \in S_P$, such that $c \in I_{S_P}$ and $f \notin I_{S_P}$. To prove $f * c \in S_P - I_{S_P}$, suppose $f * c \notin S_P - I_{S_P}$. Then

1878

⇒ $f * c \in I_{S_P}$ which implies ⇒ $f \in I_{S_P}$, since $c \in I_{S_P}$. This is a contradiction to $f \notin I_{S_P}$. Therefore $f * c \in S_P - I_{S_P}$. Similarly, $f \delta c \in S_P - I_{S_P}$.

Proposition 2.1. Let S_{P1} be a pseudo SP-Ideal of a pseudo SP-Algebra (S_P , *, δ , e_{S_P}) and S_{P2} be a pseudo SP-Ideal of S_{P1} , then S_{P2} is a pseudo SP-Ideal of S_P .

Proof. Given, S_{P1} is a pseudo SP-Ideal of S_P and S_{P2} is a pseudo SP-Ideal of S_{P1} . To prove: S_{P2} is a pseudo SP-Ideal of S_P .

Clearly, $e_{S_P} \in S_{P2}$ and $c * f, c\delta f \in S_{P2}$, $\forall c, f \in S_{P2}$, since S_{P2} itself is a pseudo SP-Ideal of S_{P1} .

It remains to prove that $c \in S_{P2}$, if $f, c * f, c\delta f \in S_{P2}$, for some $c \in S_P$. If $c \in S_{P1}$, then $c \in S_{P1}$, since S_{P2} is a pseudo SP-Ideal of S_{P1} .

Let $f, c * f, c\delta f \in S_{P2} \subseteq S_{P1}$. Then $\Rightarrow c \in S_{P1}$, since S_{P1} is a pseudo SP-Ideal, i.e., $\Rightarrow c \in S_{P1}$. Hence S_{P2} is a pseudo SP-Ideal of S_{P1} .

Definition 2.5. Let $(S_P, *, \delta, e_{S_P})$ be a pseudo SP-Algebra. For any $c, f \in S_P$, we define $H(c, f) = \{x \in S_P/(x * c)\delta f = e_{S_P}\}.$

Theorem 2.5. If I_{S_P} is a pseudo SP-Ideal of a pseudo SP-Algebra (S_P , *, δ , e_{S_P}), then $I_{S_P} = \bigcup H(c, f)$, where $c, f \in I_{S_P}$.

Proof. Let I_{S_P} be a pseudo SP-Ideal of SP-Algebra $(S_P, *, \delta, e_{S_P})$. We will prove that $I_{S_P} = \cup H(c, f)$, where $c, f \in I_{S_P}$. Let $c \in I_{S_P}$. Consider, $(c * c)\delta e_{S_P} = e_{S_P} \delta e_{S_P} = e_{S_P}$. Hence $c \in H(c, e_{S_P}) \Rightarrow H(c, e_{S_P}) \subseteq H(c, f)$, since $c \in H(c, f)$ $\Rightarrow \cup H(c, e_{S_P}) \subseteq \cup UH(c, f)$, where $c, f \in I_{S_P}$ $\Rightarrow c \in \cup H(c, f)$, where $c, f \in I_{S_P}$ $\Rightarrow I_{S_P} \subseteq \cup H(c, f)$. Conversely, let $x \in \cup H(c, f)$, where $c, f \in I_{S_P}$. $\Rightarrow x \in H(c, f)$, for some $c, f \in I_{S_P}$ $\Rightarrow (x * c)\delta f = e_{S_P} \in I_{S_P}$, since I_{S_P} is a pseudo SP-Ideal $\Rightarrow x * c \in I_{S_P}, f \in I_{S_P}$ $\Rightarrow x \in I_{S_P}, c \in I_{S_P}$. Hence, $\cup H(c, f) \subseteq I_{S_P} \Rightarrow I_{S_P} = \cup H(c, f)$. □

Corollary 2.1. If I_{S_P} is a pseudo SP-Ideal of pseudo SP-Algebra (S_P , *, δ , e_{S_P}), then $I_{S_P} = \bigcup H(c, e_{S_P}), \forall c \in S_P$.

Proof. We will prove $I_{S_P} = \bigcup H(c, e_{S_P}), \forall c \in S_P$. We have $\bigcup H(c, f) \subseteq I_{S_P}$, since

(2.1)
$$\cup H(c, e_{S_P}) \subseteq \cup H(c, f) = I_{S_P}.$$

Let $c \in I_{S_P}$ be arbitrary (i.e.,) $c \in H(c, e_{S_P})$. Then $c \in \bigcup H(c, e_{S_P})$, i.e.,

$$(2.2) I_{S_P} \subseteq \cup H(c, e_{S_P}).$$

From (2.1) and (2.2), we obtain $I_{S_P} = \bigcup H(c, e_{S_P})$.

Proposition 2.2. Let I_{S_P} be a non void closure subset of SP-Algebra $(S_P, *, \delta, e_{S_P})$ with the element e_{S_P} . If $I_{S_P} = \bigcup H(c, f)$, where $c, f \in I_{S_P}$, then I_{S_P} is a pseudo SP-Ideal of S_P .

Proof. To prove I_{S_P} is a pseudo SP-Ideal of S_P , it is enough to prove that if $r * s, r\delta s, s \in I_{S_P}$, then $r \in I_{S_P}$.

Let $r * s, r\delta s, s \in I_{S_P}$. Then $r \in H(s, r * s)$, since $(r * s)\delta(r * s) = e_{S_P}$ and further $r \in I_{S_P}$. Hence, I_{S_P} is a pseudo SP-Ideal of S_P .

Proposition 2.3. Let I_{S_P} be a subset of a pseudo SP-Algebra (S_P , *, δ , e_{S_P}) with the following conditions:

(i) $e_{S_P} \in I_{S_P}$,

(ii) $c * h, c\delta h, f * h, f\delta h \in I_{S_P}$ and $h \in I_{S_P} \Rightarrow c * f, c\delta f \in I_{S_P}, \forall c, f, h \in S_P$. Then I_{S_P} is a Pseudo SP-Ideal of S_P .

Proof. Let, I_{S_P} is a subset of pseudo SP-Algebra(S_P , *, δ , e_{S_P}). We will prove I_{S_P} is a Pseudo SP-Ideal of S_P .

Clearly, $e_{S_P} \in I_{S_P}$, by (i). Let $c, f \in I_{S_P}$. Then $\Rightarrow c * f, c\delta f \in I_{S_P}$, since $c * e_{S_P}, c\delta e_{S_P}, f * e_{S_P}, f\delta e_{S_P} \in I_{S_P}$.

Next, let $c * f, c\delta f, f \in I_{S_P}$. Then $e_{S_P} * f, e_{S_P} \delta f, c * f, c\delta f \in I_{S_P}$, i.e., $c \in I_{S_P}$, by (ii). Hence, I_{S_P} is a pseudo SP-Ideal of S_P .

3. CONCLUSION

In this paper, the concept of pseudo SP-Algebra is introduced with definitions and suitable examples. Some theorems on pseudo SP-Algebra and pseudo SP-Ideals are also established. Using this concept, the properties of pseudo SP-Algebra will be investigated in future.

1880

A NOTE ON PSEUDO SP-ALGEBRA

References

- [1] T. ISEKI, S. TANAKA: An Introduction to the the ory Of BCK-Algebra, Math. Japonica., 23(1) (1978), 1-26.
- [2] K. ISEKI: On BCI-Algebra, Math. Seminar Notes., 8 (1980), 125-130.
- [3] L. M. PALASINSKI: *Some Remarks on BCK-Algebra*, Bulletin of the Section of Logic., **9**(2) (1980), 85-87.
- [4] J. MENG, Y.B. JUN: BCK-Algbras, Kyungmoon Saco., Seoul, 1994.
- [5] K. SHANMUGA PRIYA, M. MULLAI: SP-Ideal and its Properties, Proceeding of the International Conference on Current Scenario in Pure and Applied Mathematics, 14-16 February 2018.
- [6] K. SHANMUGA PRIYA, M. MULLAI: SP-Ring and its Properties, International Journal of Mathematical Trends and Technology., 46(2) (2017), 66-78.
- [7] K. SHANMUGA PRIYA, M. MULLAI: *Polynomials on SP-Ring*, Proceeding of the International Conference on Algebra and Discrete Mathematics(ICADM 2018) Madurai, Kamaraj University, Madurai, on January 08-10, 2018.
- [8] Y. B. JUN, S. S. AHN: On Pseudo BCH-algebras, Applied Mathematical Sciences., 9(39) (2015), 1931-1939.
- [9] Y. B. JUN, S. S. AHN: On Pseudo BH-Algebra, Honam Mathematical J., 37(2) (2015), 207-217.

DEPARTMENT OF MATHEMATICS ALAGAPPA UNIVERSITY KARAIKUDI-630003, TAMIL NADU, INDIA *E-mail address*: premsathya79@gmail.com

DEPARTMENT OF MATHEMATICS ALAGAPPA UNIVERSITY KARAIKUDI-630003, TAMIL NADU, INDIA *E-mail address*: mullaim@alagappauniversity.ac.in