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SEVERAL TYPES OF GENERALIZED DOUBLE FUZZY
Z DISCONNECTED SPACES

A. VADIVEL, SHIVENTHIRA DEVI SATHAANANTHAN, S. TAMILSELVAN,
AND G. SARAVANAKUMAR1

ABSTRACT. In this paper we introduce the concepts of pre generalized dou-
ble fuzzy Z-open, generalized double fuzzy Z-extremally disconnected spaces.
Also we introduce the concepts of generalized double fuzzy Z-basically dis-
connected space and related sets such as (r, κ)-generalized fuzzy Z open-Fσ,
(r, κ)-generalized fuzzy Zclosed-Gδ sets and maps such as generalized double
fuzzy ZFσ-open, ZGδ-continuous and ZFσ-irresolute function. Some charac-
terizations of the concepts are studied.

1. INTRODUCTION AND PRELIMINARIES

In 1986, Atanassov [1] started ’Intuitionistic fuzzy sets’ and Coker [2] in 1997,
initiated Intuitionistic fuzzy topological space". The term “double" instead of
“intuitionistic" coined by Garcia and Rodabaugh [4] in 2005. In the previous
two decades many analysts [7–9, 14] accomplishing more applications on dou-
ble fuzzy topological spaces. The class of L-fuzzy ω-extremally disconnected
spaces is defined by Sudha et al. [13]. From 2011, Z-open sets and maps were
introduced in topological spaces by El-Maghrabi and Mubarki [6].
X denotes a non-empty set, I1 = [0, 1), I0 = (0, 1], I = [0, 1], 0 = 0(X), 1 =

1(X), r ∈ I0 & κ ∈ I1 and always 1 ≥ r + κ. IX is a family of all fuzzy sets on
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X. In 2002, Double fuzzy topological spaces (briefly, dfts), (X, η, η∗), (r, κ)-fuzzy
open (resp. (r, κ)-fuzzy closed) (briefly (r, κ)-fo (resp. (r, κ)-fc)) set were given
by Samanta and Mondal [11].

All other undefined notions are from [3,5,6,8–12] and cited there in.

2. GENERALIZED DOUBLE FUZZY Z -EXTREMALLY DISCONNECTED SPACES

Definition 2.1. Let (X, ρ1, ρ∗1) & (Y, ρ2, ρ
∗
2) be dfts. A function f : (X, ρ1, ρ

∗
1) →

(Y, ρ2, ρ
∗
2) is called pre generalized double fuzzy Z-open (briefly, pgDFZO) if f(γ)

is an (r, κ)-gfZo in IY forall (r, κ)-gfZo set γ ∈ IX .

Remark 2.1. Let (X, ρ1, ρ∗1) be dfts. ∀ γ ∈ IX , the following statements hold:

(i) GZIρ,ρ∗(γ, r, κ) = GZCρ,ρ∗(1− γ, r, κ).
(ii) GZCρ,ρ∗(γ, r, κ) = GZIρ,ρ∗(1− γ, r, κ).

Proposition 2.1. Let (X, ρ1, ρ∗1) & (Y, ρ2, ρ
∗
2) be dfts. A function f : (X, ρ1, ρ

∗
1)→

(Y, ρ2, ρ
∗
2) is a

(i) gDFZIrr function iff f(GZCρ1,ρ∗1(γ, r, κ)) ≤ GZCρ2,ρ∗2(f(γ), r, κ) ∀ fs γ
in IX .

(ii) gDFZO surjective function, then ∀ fs γ in IY .
f−1(GZCρ2,ρ∗2(γ, r, κ)) ≤ GZCρ1,ρ∗1(f

−1(γ), r, κ).

Definition 2.2. A dfts (X, ρ, ρ∗) is said to be an generalized double fuzzy Z ex-
tremely disconnected (briefly, gDFZed) space if GZCρ,ρ∗(γ, r, κ) is an (r, κ)-gfZo
set ∀ (r, κ)-gfZo set γ ∈ IX .

Example 1. The dfts (X, ρ, ρ∗) is gDFZed space, where X = {l,m, n} with the
topologies

ρ(γ) =



1, if γ ∈ {0, 1},
3
4

γ = 0.5,

1
2

γ ∈ {0.3, 0.7},
1
4

γ ∈ {0.4, 0.6},
0 o.w.

ρ∗(γ) =



0, if γ ∈ {0, 1},
1
4

γ = 0.5,

1
2

γ ∈ {0.3, 0.7},
3
4

γ ∈ {0.4, 0.6},
1 o.w.

Proposition 2.2. Let (X, ρ1, ρ∗1) and (Y, ρ2, ρ
∗
2) be dfts’s. If a function f : (X, ρ1, ρ

∗
1)

→ (Y, ρ2, ρ
∗
2) is a gDFZIrr, gDFZO surjective function such that (X, ρ1, ρ∗1) is an

gDFZed then, (Y, ρ2, ρ∗2) is gDFZed.
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Theorem 2.1. Let (X, ρ, ρ∗) be a dfts. Then:

(i) (X, ρ, ρ∗) is an gDFZed space.
(ii) ∀ (r, κ)-gfZc set γ, GZIρ,ρ∗(γ, r, κ) is an (r, κ)-gfZc set.

(iii) ∀ (r, κ)-gfZo set γ, GZCρ,ρ∗(γ, r, κ)
∨
GZCρ,ρ∗(1−GZCρ,ρ∗(γ, r, κ)r, κ) = 1.

(iv) ∀ (r, κ)-gfZo sets γ & µ 3 GZCρ,ρ∗(γ, r, κ) ∨ µ = 1, then
GZCρ,ρ∗(γ, r, κ) ∨GZCρ,ρ∗(µ, r, κ) = 1

are equivalent.

Theorem 2.2. A dfts (X, ρ, ρ∗) is gDFZed space iff ∀ a (r, κ)-gfZo set γ & a
(r, κ)-gfZc set µ set 3 γ ≤ µ, GZCρ,ρ∗(γ, r, κ) ≤ GZIρ,ρ∗(µ, r, κ).

3. GENERALIZED DOUBLE FUZZY Z -BASICALLY DISCONNECTED SPACES

Definition 3.1. Let (X, ρ, ρ∗) be a dfts. A fs γ ∈ IX is said to be an (r, κ)-
generalized fuzzy

(i) Zopen-Fσ (briefly, (r, κ)-gfZo-Fσ) if γ is an (r, κ)-gfZo and (r, κ)-fuzzy Fσ
set.

(ii) Zclosed-Gδ (briefly, (r, κ)-gfZc-Gδ) if γ is an (r, κ)-gfZc and (r, κ)-fuzzy Gδ

set.
(iii) Zclopen-GF (briefly, (r, κ)-gfZco-GF ) if γ is an (r, κ)-gfZo-Fσ & (r, κ)-

gfZc-Gδ set.
(iv) ZGδ-closure of γ is defined by GZGδCρ,ρ∗(γ, r, κ) =

∧
{µ ∈ IX\γ ≤ µ and µ

is (r, κ)-gfZc-Gδ}.
(v) ZFσ-interior of γ is defined by GZFσIρ,ρ∗(γ, r, κ) =

∨
{µ ∈ IX\µ ≤ γ & µ is

(r, κ)-gfZo-Fσ}.

Remark 3.1. Let (X, ρ, ρ∗) be a dfts. ∀ γ ∈ IX , r ∈ I0 & κ ∈ I1, the statements
hold:

(i) GZFσIρ,ρ∗(γ, r, κ) = GZGδCρ,ρ∗(1− γ, r, κ).
(ii) GZGδCρ,ρ∗(γ, r, κ) = GZFσIρ,ρ∗(1− γ, r, κ).

Definition 3.2. A dfts (X, ρ, ρ∗) is called generalized double fuzzy Z-basically
(briefly gDFZ-b) disconnected space if the GZGδCρ,ρ∗(γ, r, κ) is an (r, κ)-gfZo-
Fσ, ∀ (r, κ)-gfZo-Fσ γ in IX .

Definition 3.3. Let (X, ρ1, ρ∗1) & (Y, ρ2, ρ
∗
2) be dfts’s. A function f : (X, ρ1, ρ

∗
1) →

(Y, ρ2, ρ
∗
2) is called



1896 A. VADIVEL, S. DEVI SATHAANANTHAN, S. TAMILSELVAN, AND G. SARAVANAKUMAR

(i) generalized double fuzzy ZFσ-open (briefly, gDFZFσO) if f(γ) is an (r, κ)-
gfZo-Fσ set in IY , ∀ (r, κ)-gfZo-Fσ in IX .

(ii) generalized double fuzzy ZGδ-continuous (briefly, gDFZGδCts) if f−1(γ) is
an (r, κ)-gfZc-Gδ set in IX , ∀ (r, κ)-fc and (r, κ)fuzzy Gδ set γ in IY .

(iii) generalized double fuzzy ZFσ-irresolute (briefly, gDFZFσIrr) if f−1(γ) is
an (r, κ)-gfZo-Fσ set in IX , ∀ (r, κ)-gfZo-Fσ in IY .

Proposition 3.1. Let (X, ρ1, ρ∗1) & (Y, ρ2, ρ
∗
2) be dfts’s. If a function f : (X, ρ1, ρ

∗
1)

→ (Y, ρ2, ρ
∗
2) is (i) gDFZFσO surjective function, then ∀ fs γ in IY ,

f−1(GZGδ Cρ2,ρ∗2(γ, r, κ)) ≤ GZGδCρ1,ρ∗1(f
−1γ, r, κ). (ii) gDFZFσIrr function

iff f(GZGδ Cρ1,ρ∗1(γ, r, κ)) ≤ GZGδCρ2,ρ∗2(f(γ), r, κ), ∀ fuzzy set γ in IX .

Theorem 3.1. Let (X, ρ1, ρ∗1) & (Y, ρ2, ρ
∗
2) be dfts’s. A function f : (X, ρ1, ρ

∗
1) →

(Y, ρ2, ρ
∗
2) is gDFZFσIrr, gDFZFσO onto function 3 (X, ρ1, ρ

∗
1) is a gDFZ-b

disconnected space, then (Y, ρ2, ρ
∗
2) is gDFZ-b disconnected space.

Theorem 3.2. For a dfts (X, ρ, ρ∗), the statements:

(i) (X, ρ, ρ∗) is a gDFZ-b disconnected space.
(ii) ∀ an (r, κ)-gfZc-Gδ set γ, GZFσIρ,ρ∗(γ, r, κ) is an (r, κ)-gfZc-Gδ set.

(iii) ∀ an (r, κ)-gfZo-Fσ set γ, GZGδCρ,ρ∗(γ, r, κ)∨GZGδCρ,ρ∗(1−GZGδCρ,ρ∗(γ,

r, κ)r, κ) = 1.
(iv) ∀ an (r, κ)-gfo-Fσ set γ & µ 3GZGδCρ,ρ∗(γ, r, κ)∨µ = 1,GZGδCρ,ρ∗(γ, r, κ)∨

GZGδCρ,ρ∗(µ, r, κ) = 1

are equivalent.

Theorem 3.3. A dfts (X, ρ, ρ∗) is a gDFZ-b disconnected iff ∀ (r, κ)-gfZo-Fσ set
γ and (r, κ)-gfZc-Gδ set µ 3 γ ≤ µ, GZGδCρ,ρ∗(γ, r, κ) ≤ GZFσIρ,ρ∗(µ, r, κ).
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