Advances in Mathematics: Scientific Journal **9** (2020), no.4, 1893–1898 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.47 Spec. Issue on NCFCTA-2020

SEVERAL TYPES OF GENERALIZED DOUBLE FUZZY \mathcal{Z} DISCONNECTED SPACES

A. VADIVEL, SHIVENTHIRA DEVI SATHAANANTHAN, S. TAMILSELVAN, AND G. SARAVANAKUMAR¹

ABSTRACT. In this paper we introduce the concepts of pre generalized double fuzzy \mathcal{Z} -open, generalized double fuzzy \mathcal{Z} -extremally disconnected spaces. Also we introduce the concepts of generalized double fuzzy \mathcal{Z} -basically disconnected space and related sets such as (r, κ) -generalized fuzzy \mathcal{Z} open- F_{σ} , (r, κ) -generalized fuzzy \mathcal{Z} closed- G_{δ} sets and maps such as generalized double fuzzy $\mathcal{Z}F_{\sigma}$ -open, $\mathcal{Z}G_{\delta}$ -continuous and $\mathcal{Z}F_{\sigma}$ -irresolute function. Some characterizations of the concepts are studied.

1. INTRODUCTION AND PRELIMINARIES

In 1986, Atanassov [1] started 'Intuitionistic fuzzy sets' and Coker [2] in 1997, initiated Intuitionistic fuzzy topological space". The term "double" instead of "intuitionistic" coined by Garcia and Rodabaugh [4] in 2005. In the previous two decades many analysts [7–9, 14] accomplishing more applications on double fuzzy topological spaces. The class of *L*-fuzzy ω -extremally disconnected spaces is defined by Sudha et al. [13]. From 2011, \mathcal{Z} -open sets and maps were introduced in topological spaces by El-Maghrabi and Mubarki [6].

X denotes a non-empty set, $I_1 = [0, 1)$, $I_0 = (0, 1]$, I = [0, 1], $0 = \underline{0}(X)$, $1 = \underline{1}(X)$, $r \in I_0 \& \kappa \in I_1$ and always $1 \ge r + \kappa$. I^X is a family of all fuzzy sets on

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A40, 54D30, 03E72.

Key words and phrases. pgDFZO, gDFZed, (r,κ) -gfZo- F_{σ} , (r,κ) -gfZo- G_{δ} , gDFZb-disconnected space.

X. In 2002, Double fuzzy topological spaces (briefly, dfts), (X, η, η^*) , (r, κ) -fuzzy open (resp. (r, κ) -fuzzy closed) (briefly (r, κ) -fo (resp. (r, κ) -fc)) set were given by Samanta and Mondal [11].

All other undefined notions are from [3, 5, 6, 8–12] and cited there in.

2. Generalized double fuzzy \mathcal{Z} -extremally disconnected spaces

Definition 2.1. Let (X, ρ_1, ρ_1^*) & (Y, ρ_2, ρ_2^*) be dfts. A function $f : (X, \rho_1, \rho_1^*) \rightarrow (Y, \rho_2, \rho_2^*)$ is called pre generalized double fuzzy \mathcal{Z} -open (briefly, $pgDF\mathcal{Z}O$) if $f(\gamma)$ is an (r, κ) -gf $\mathcal{Z}o$ in I^Y forall (r, κ) -gf $\mathcal{Z}o$ set $\gamma \in I^X$.

Remark 2.1. Let (X, ρ_1, ρ_1^*) be dfts. $\forall \gamma \in I^X$, the following statements hold:

(i) $GZI_{\rho,\rho^*}(\gamma, r, \kappa) = GZC_{\rho,\rho^*}(\underline{1} - \gamma, r, \kappa).$ (ii) $GZC_{\rho,\rho^*}(\gamma, r, \kappa) = GZI_{\rho,\rho^*}(\underline{1} - \gamma, r, \kappa).$

Proposition 2.1. Let (X, ρ_1, ρ_1^*) & (Y, ρ_2, ρ_2^*) be dfts. A function $f : (X, \rho_1, \rho_1^*) \rightarrow (Y, \rho_2, \rho_2^*)$ is a

- (i) gDFZIrr function iff $f(GZC_{\rho_1,\rho_1^*}(\gamma, r, \kappa)) \leq GZC_{\rho_2,\rho_2^*}(f(\gamma), r, \kappa) \forall fs \gamma$ in I^X .
- (ii) $gDF\mathcal{Z}O$ surjective function, then \forall fs γ in I^{Y} . $f^{-1}(G\mathcal{Z}C_{\rho_{2},\rho_{2}^{*}}(\gamma,r,\kappa)) \leq G\mathcal{Z}C_{\rho_{1},\rho_{1}^{*}}(f^{-1}(\gamma),r,\kappa).$

Definition 2.2. A dfts (X, ρ, ρ^*) is said to be an generalized double fuzzy \mathcal{Z} extremely disconnected (briefly, $gDF\mathcal{Z}ed$) space if $G\mathcal{Z}C_{\rho,\rho^*}(\gamma, r, \kappa)$ is an (r, κ) -gf $\mathcal{Z}o$ set $\forall (r, \kappa)$ -gf $\mathcal{Z}o$ set $\gamma \in I^X$.

Example 1. The dfts (X, ρ, ρ^*) is gDFZed space, where $X = \{l, m, n\}$ with the topologies

	1,	$\textit{if } \gamma \in \{\underline{0},\underline{1}\},$		0,	$\textit{if } \gamma \in \{\underline{0},\underline{1}\},$
	$\frac{3}{4}$	$\gamma = \underline{0.5},$		$\frac{1}{4}$	$\gamma = \underline{0.5},$
$\rho(\gamma) = \left\langle \right.$	$\frac{1}{2}$	$\gamma \in \{\underline{0.3}, \underline{0.7}\},$	$\rho^*(\gamma) = \langle$	$\frac{1}{2}$	$\gamma \in \{\underline{0.3}, \underline{0.7}\},$
	$\frac{1}{4}$	$\gamma \in \{\underline{0.4}, \underline{0.6}\},$		$\frac{3}{4}$	$\gamma \in \{\underline{0.4}, \underline{0.6}\},$
	0	0. <i>W</i> .		1	0. <i>W</i> .

Proposition 2.2. Let (X, ρ_1, ρ_1^*) and (Y, ρ_2, ρ_2^*) be dfts's. If a function $f : (X, \rho_1, \rho_1^*) \rightarrow (Y, \rho_2, \rho_2^*)$ is a gDFZIrr, gDFZO surjective function such that (X, ρ_1, ρ_1^*) is an gDFZed then, (Y, ρ_2, ρ_2^*) is gDFZed.

Theorem 2.1. Let (X, ρ, ρ^*) be a dfts. Then:

- (i) (X, ρ, ρ^*) is an gDFZed space.
- (ii) $\forall (r, \kappa)$ -gfZc set γ , GZI_{ρ, ρ^*} (γ, r, κ) is an (r, κ) -gfZc set.
- (iii) $\forall (r,\kappa) gf Zo \text{ set } \gamma, GZC_{\rho,\rho^*}(\gamma,r,\kappa) \bigvee GZC_{\rho,\rho^*}(\underline{1} GZC_{\rho,\rho^*}(\gamma,r,\kappa)r,\kappa) = \underline{1}.$
- (iv) $\forall (r,\kappa) gf Zo \text{ sets } \gamma \& \mu \ni GZC_{\rho,\rho^*}(\gamma,r,\kappa) \lor \mu = \underline{1}$, then $GZC_{\rho,\rho^*}(\gamma,r,\kappa) \lor GZC_{\rho,\rho^*}(\mu,r,\kappa) = \underline{1}$

are equivalent.

Theorem 2.2. A dfts (X, ρ, ρ^*) is $gDF\mathcal{Z}ed$ space iff $\forall a (r, \kappa)$ - $gf\mathcal{Z}o$ set γ & $a (r, \kappa)$ - $gf\mathcal{Z}c$ set μ set $\ni \gamma \leq \mu$, $G\mathcal{Z}C_{\rho,\rho^*}(\gamma, r, \kappa) \leq G\mathcal{Z}I_{\rho,\rho^*}(\mu, r, \kappa)$.

3. Generalized Double Fuzzy \mathcal{Z} -Basically Disconnected Spaces

Definition 3.1. Let (X, ρ, ρ^*) be a dfts. A fs $\gamma \in I^X$ is said to be an (r, κ) -generalized fuzzy

- (i) \mathbb{Z} open- F_{σ} (briefly, (r, κ) - $gf\mathbb{Z}o$ - F_{σ}) if γ is an (r, κ) - $gf\mathbb{Z}o$ and (r, κ) -fuzzy F_{σ} set.
- (ii) \mathcal{Z} closed- G_{δ} (briefly, (r, κ) - $gf\mathcal{Z}c$ - G_{δ}) if γ is an (r, κ) - $gf\mathcal{Z}c$ and (r, κ) -fuzzy G_{δ} set.
- (iii) \mathcal{Z} clopen-GF (briefly, (r, κ) - $gf\mathcal{Z}$ co-GF) if γ is an (r, κ) - $gf\mathcal{Z}$ o- F_{σ} & (r, κ) - $gf\mathcal{Z}$ c- G_{δ} set.
- (iv) ZG_{δ} -closure of γ is defined by $GZG_{\delta}C_{\rho,\rho^*}(\gamma, r, \kappa) = \bigwedge \{\mu \in I^X \setminus \gamma \leq \mu \text{ and } \mu \text{ is } (r, \kappa) gfZc G_{\delta} \}.$
- (v) $\mathcal{Z}F_{\sigma}$ -interior of γ is defined by $G\mathcal{Z}F_{\sigma}I_{\rho,\rho^*}(\gamma, r, \kappa) = \bigvee \{\mu \in I^X \setminus \mu \leq \gamma \& \mu \text{ is } (r, \kappa) gf\mathcal{Z}o F_{\sigma} \}.$

Remark 3.1. Let (X, ρ, ρ^*) be a dfts. $\forall \gamma \in I^X$, $r \in I_0 \& \kappa \in I_1$, the statements hold:

- (i) $G\mathcal{Z}F_{\sigma}I_{\rho,\rho^*}(\gamma, r, \kappa) = G\mathcal{Z}G_{\delta}C_{\rho,\rho^*}(\underline{1} \gamma, r, \kappa).$
- (ii) $G\mathcal{Z}G_{\delta}C_{\rho,\rho^*}(\gamma,r,\kappa) = G\mathcal{Z}F_{\sigma}I_{\rho,\rho^*}(\underline{1}-\gamma,r,\kappa).$

Definition 3.2. A dfts (X, ρ, ρ^*) is called generalized double fuzzy Z-basically (briefly gDFZ-b) disconnected space if the $GZG_{\delta}C_{\rho,\rho^*}(\gamma, r, \kappa)$ is an (r, κ) -gfZo- $F_{\sigma}, \forall (r, \kappa)$ -gfZo- $F_{\sigma} \gamma$ in I^X .

Definition 3.3. Let (X, ρ_1, ρ_1^*) & (Y, ρ_2, ρ_2^*) be dfts's. A function $f : (X, \rho_1, \rho_1^*) \rightarrow (Y, \rho_2, \rho_2^*)$ is called

1896 A. VADIVEL, S. DEVI SATHAANANTHAN, S. TAMILSELVAN, AND G. SARAVANAKUMAR

- (i) generalized double fuzzy $\mathcal{Z}F_{\sigma}$ -open (briefly, $gDF\mathcal{Z}F_{\sigma}O$) if $f(\gamma)$ is an (r, κ) $gf\mathcal{Z}o$ - F_{σ} set in I^{Y} , $\forall (r, \kappa)$ - $gf\mathcal{Z}o$ - F_{σ} in I^{X} .
- (ii) generalized double fuzzy $\mathcal{Z}G_{\delta}$ -continuous (briefly, $gDF\mathcal{Z}G_{\delta}Cts$) if $f^{-1}(\gamma)$ is an (r, κ) - $gf\mathcal{Z}c$ - G_{δ} set in I^X , $\forall (r, \kappa)$ -fc and (r, κ) fuzzy G_{δ} set γ in I^Y .
- (iii) generalized double fuzzy $\mathcal{Z}F_{\sigma}$ -irresolute (briefly, $gDF\mathcal{Z}F_{\sigma}Irr$) if $f^{-1}(\gamma)$ is an (r, κ) - $gf\mathcal{Z}o$ - F_{σ} set in I^X , $\forall (r, \kappa)$ - $gf\mathcal{Z}o$ - F_{σ} in I^Y .

Proposition 3.1. Let (X, ρ_1, ρ_1^*) & (Y, ρ_2, ρ_2^*) be dfts's. If a function $f : (X, \rho_1, \rho_1^*)$ $\rightarrow (Y, \rho_2, \rho_2^*)$ is (i) $gDFZF_{\sigma}O$ surjective function, then \forall fs γ in I^Y , $f^{-1}(GZG_{\delta} C_{\rho_2,\rho_2^*}(\gamma, r, \kappa)) \leq GZG_{\delta}C_{\rho_1,\rho_1^*}(f^{-1}\gamma, r, \kappa)$. (ii) $gDFZF_{\sigma}Irr$ function iff $f(GZG_{\delta} C_{\rho_1,\rho_1^*}(\gamma, r, \kappa)) \leq GZG_{\delta}C_{\rho_2,\rho_2^*}(f(\gamma), r, \kappa)$, \forall fuzzy set γ in I^X .

Theorem 3.1. Let (X, ρ_1, ρ_1^*) & (Y, ρ_2, ρ_2^*) be dfts's. A function $f : (X, \rho_1, \rho_1^*) \rightarrow (Y, \rho_2, \rho_2^*)$ is $gDF\mathcal{Z}F_{\sigma}Irr$, $gDF\mathcal{Z}F_{\sigma}O$ onto function $\ni (X, \rho_1, \rho_1^*)$ is a $gDF\mathcal{Z}$ -b disconnected space, then (Y, ρ_2, ρ_2^*) is $gDF\mathcal{Z}$ -b disconnected space.

Theorem 3.2. For a dfts (X, ρ, ρ^*) , the statements:

- (i) (X, ρ, ρ^*) is a gDFZ-b disconnected space.
- (ii) \forall an (r,κ) -gfZc-G_{δ} set γ , GZF_{σ}I_{ρ,ρ^*} (γ,r,κ) is an (r,κ) -gfZc-G_{δ} set.
- (iii) $\forall an (r, \kappa) gf Zo F_{\sigma} set \gamma, GZG_{\delta}C_{\rho,\rho^*}(\gamma, r, \kappa) \lor GZG_{\delta}C_{\rho,\rho^*}(\underline{1} GZG_{\delta}C_{\rho,\rho^*}(\gamma, r, \kappa)r, \kappa) = \underline{1}.$
- (iv) $\forall an (r, \kappa) gfo F_{\sigma} set \gamma \& \mu \ni GZG_{\delta}C_{\rho,\rho^*}(\gamma, r, \kappa) \lor \mu = \underline{1}, GZG_{\delta}C_{\rho,\rho^*}(\gamma, r, \kappa) \lor GZG_{\delta}C_{\rho,\rho^*}(\mu, r, \kappa) = \underline{1}$

are equivalent.

Theorem 3.3. A dfts (X, ρ, ρ^*) is a gDFZ-b disconnected iff $\forall (r, \kappa)$ -gfZo- F_{σ} set γ and (r, κ) -gfZc- G_{δ} set $\mu \ni \gamma \leq \mu$, $GZG_{\delta}C_{\rho,\rho^*}(\gamma, r, \kappa) \leq GZF_{\sigma}I_{\rho,\rho^*}(\mu, r, \kappa)$.

REFERENCES

- [1] K. ATANASSOV: Intuitionistic fuzzy sets, Fuzzy sets and system, 20(1) (1986),84–96.
- [2] D. COKER: An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1997), 81–89.
- [3] F. M. MOHAMMED, M. S. M. NOORANI, A. GHAREEB: Generalized fuzzy b-closed and generalized *-fuzzy b-closed sets in double fuzzy topological spaces, Egyptian Journal of Basic and Applied Sciences, 3 (2016), 61–67.

- [4] J. G. GARCIA, S. E. RODABAUGH: Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued intuitionistic sets, intuitionistic fss and topologies, Fuzzy Sets and Systems, **156** (2005), 445–484.
- [5] E. P. LEE, Y. B. IM: *Mated fuzzy topological spaces*, International Journal of Fuzzy Logic and Intelligent Systems, **11** (2001), 161–165.
- [6] A. I. EL-MAGHARABI, A. M. MUBARKI: *Z*-open sets and *Z*-continuity in topological spaces, International Journal of Mathematical Archive, **2**(10) (2011), 1819–1827.
- [7] F. M. MOHAMMED, A. GHAREEB: More on generalized b-closed sets in double fuzzy topological spaces, Songklanakarin J. Sci. Technol., 38(1) (2016), 99–103.
- [8] F. M. MOHAMMED, M. S. M. NOORANI, A. GHAREEB: New notions from (α, β) Generalized Fuzzy Preopen sets, GU J. Sci., **30**(1) (2017), 311–331.
- [9] P. PERIYASAMY, V. CHANDRASEKAR, G. SARAVANAKUMAR, A. VADIVEL: Fuzzy e-closed and generalized fuzzy e-closed sets in double fuzzy topological spaces, JETIR, 6(3) (2019), 34–40.
- [10] A. A. RAMADAN, S. E. ABBAS, A. EL-LATIF: Compactness in intuitionistic fuzzy topological spaces, International Journal of Mathematics and Mathematical Sciences, 1 (2005), 19–32.
- [11] S. K. SAMANTA, T. K. MONDAL: On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131 (2002), 323–336.
- [12] S. D. SATHAANANTA, A. VADIVEL, S. TAMILSELVAN, G. SARAVANAKUMAR: Generalised Fuzzy Z-Mappings in Double Fuzzy Topological Spaces, submitted.
- [13] M. SUDHA, E. ROJA, M. K. UMA On L-fuzzy ω-extremally disconnected spaces, Sci. Magna, 6 (2010), 121–126.
- [14] A. M. ZAHRAN, M. A. ABD-ALLAH, A. GHAREEB: Several types of double fuzzy irresolute functions, International Journal of Computational Cognition, 8(2) (2010), 19–23.

1898 A. VADIVEL, S. DEVI SATHAANANTHAN, S. TAMILSELVAN, AND G. SARAVANAKUMAR

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE (AUTONOMOUS), KARUR, TAMIL NADU-639 005 DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY, ANNAMALAINAGAR-608002, TAMIL NADU, INDIA Email address: avmaths@gmail.com

DEPARTMENT OF MATHEMATICS EASTERN UNIVERSITY, VANTHARUMOOLAI CHENKALADY, SRI LANKA

MATHEMATICS SECTION (FEAT) Annamalai University Annamalainagar-608002, Tamil Nadu, India

DEPARTMENT OF MATHEMATICS M.KUMARASAMY COLLEGE OF ENGINEERING(AUTONOMOUS) KARUR-639113, INDIA