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AN EDGE PRIME OF SOME GRAPHS

M. SIMARINGA1 AND K. SANTHOSHKUMAR

ABSTRACT. Let G = (V,E) be a (l,m) graph. A bijection g : E → {1, 2, ...,m}
is said to be an edge prime labeling if for each edge ab ∈ E, we have

gcd(g+(a), g+(b)) = 1,

where g+(a) =
∑

ac∈E g(ac). Moreover, a bijection g : E → {1, 2, ...,m} is
semiedge prime labeling if for each ab ∈ E, either gcd(g+(a), g+(b)) = 1 or
g+(a) = g+(b). A graph that admits an edge prime (or semiedge prime) labeling
is said to be an edge prime (or semiedge prime) graph. In this paper, we prove
that if G has an edge prime, then G ∪ Pn is an edge prime graph. Also, we
obtain θ(3[m]) � θ(3[n]), n 6≡0(mod 5) and some graphs superimposing of path
are an edge (or semiedge) prime graph.

1. INTRODUCTION

Let G = (V,E) be a simple, finite, undirected graph with vertex set V and
edge set E of order |V | = l and |E| = m. For all other notations and termi-
nology in graph, we refer Balakrishnan. R and Renganathan. K [1]. A graph
labeling is an assignment of integers to the vertices or edges or both subject to
the certain conditions. An excellent survey on graph labeling is maintained by
Gallian [2]. A graph with vertex set V is said to have a prime labeling if its
vertices are labeled with distinct integers 1, 2, 3, ..., |V | such that for each edge
xy the lables assigned to x and y are relatively prime. A graph which admits
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prime labeling is called a prime graph. The notion of a prime labeling was orig-
inated by Roger Entinger and it was discussed in a paper by Tout et.al., [5]. The
following is taken from [4] “Shiu et.al., [4] was introduced the concept an edge
(or semiedge) prime graph.

Let G = (V,E) be a graph with l vertices and m edges. A bijecction func-
tion g : E → {1, 2, 3, ...,m} is called an edge prime labeling if for each edge
ab ∈ E(G), we have gcd(g+(a), g+(b)) = 1, where g+(a) =

∑
ac∈E g(ac). More-

over, a bijection g : E → {1, 2, 3, ...,m} is a semiedge prime labeling if for each
edge ab ∈ E(G), we have either gcd(g+(a), g+(b)) = 1 or g+(a) = g+(b). A
graph which admits an edge (or semiedge) prime labeling is called an edge (or
semiedge) prime graph. They [3] obtained a necessary and sufficient condition
for disjoint union of path to be edge prime.

We use (x, y) instead of gcd(x, y) if there is no ambiguous. They [3] also
determined that all 2- regular graphs, bipartite and tripartite graphs are edge
prime. Also, they [3] investigated that bipartite and tripartite graphs are a
semiedge prime. The generalized theta graph θ(S1, S2, ..., Sk) consists of a pair
of end vertices joined by k ≥ 3 internally disjoint paths of lengths S1, S2, ..., Sk,

k ≥ 1 .

Let DS(m,n) be the double star with V (DS(m,n)) = {a, b, ri, sj : 1 ≤ i ≤
m, 1 ≤ j ≤ n} and E(DS(m,n)) = {ab, ari, bsj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.”
The following definition taken from [3] “If G1(p1, q1) and G2(p2, q2) are two con-
nected graphs, then the graph obtained by superimposing any selected vertex
of G2 on any selected vertex of G1 is denoted by G1 � G2. The resultant graph
G = G1 �G2 contains p1 + p2 − 1 vertices q1 + q2 edges.”

In the present work Cn denoted by the cycle with n vertices and Pn denotes
the path of n vertices. In the wheel Wn = Cn +K1, the vertex corresponding to
K1 is called the open vertex and the vertices, corresponding to Cn are called the
rim vertices.

In this paper, we investigate if G is an edge prime graph, then G ∪ Pn is
edge prime graph, θ(3[m]) � θ(3[n]), n 6≡0(mod 5), bipartite and tripartite graphs
superimposing of path are edge (a semiedge) prime graphs.

2. MAIN RESULTS

Theorem 2.1. If G has an edge prime, then G ∪ Pn is an edge prime.
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Proof. Let G(d∗, e∗) be an edge prime graph. Define g : E(G) → {1, 2, ..., e∗}
with the property that for each edge rs ∈ E(G), the numbers g+(r), g+(s) are
relatively prime. Consider the path Pn with vertex set {ch : 1 ≤ h ≤ n} edge
set {chch+1 : 1 ≤ h ≤ n − 1}. Define a new graph G1 = G ∪ Pn with vertex set
V 1 = V ∪ {ch : 1 ≤ h ≤ n} and edge set E1 = E ∪ {chch+1 :≤ h ≤ n− 1}. Define
the bijective function g : E1(G1)→ {1, 2, ..., d∗+e∗, d∗+e∗+1, ..., d∗+e∗+n−1}
by g(ab) = f(ab) for all ab ∈ E(G), g(chch+1) = g + h, 1 ≤ h ≤ n − 1. To prove
that G1 is an edge prime graph. In earlier, G is an edge prime graph, it is enough
to prove that for any ab ∈ E1 which is not in G, the numbers g+(a), g+(b) are
relatively prime, For any edge chch+1 ∈ E1, 2 ≤ h ≤ n − 1, (g+(ch), g+(ch+1)) =

(2e∗ + 2h − 1, 2e∗ + 2h + 1) = 1, (g+(c1), g+(c2)) = (e∗ + 1, 2e∗ + 2h − 1) = 1,
(g+(cn−1), g

+(cn)) = (2e∗ + 2n − 3, e∗ + n − 1) = 1. It is easily verified that,
for any edge rs ∈ E(G), g+(r), g+(s) are relatively prime. Hence G is an edge
prime. �

Theorem 2.2. The graph G = K(2,m) � Pn is an edge prime.

Proof. Let G = K2,m � Pn be a graph. Then V (G) = {aα, bβ, cγ : 1 ≤ α ≤ 2,

1 ≤ β ≤ m, 1 ≤ γ ≤ n} and E(G) = {aαbβ : 1 ≤ α ≤ 2, 1 ≤ β ≤ m} ∪
{a1c1} ∪ {cγcγ+1 : 1 ≤ γ ≤ n − 1}. G has 2m + n edges. Let g : E(G) →
{1, 2, ..., 2m+ n} be defined by, for each 1 ≤ β ≤ m, g(a1bβ) = 2β − 1, g(a2bβ) =

2m + 2− 2β, g(a1c1) = 2m + 1, for each 1 ≤ γ ≤ n− 1, g(cγcγ+1) = 2m + 1 + γ.
Clearly, g+(a2) = m2 + m, g+(a1) = m2 + 2m + 1, g+(cγ) = 4m + 2γ + 1, 1 ≤
γ ≤ n − 1, g+(cn) = 2m + n. It can be easily verified that (g+(a1), g

+(bβ)) =

(g+(a2), g
+(bβ)) = (g+(a1), g

+(c1)) = (g+(cα), g
+(cα+1)) = 1. Hence, G is an

edge prime. �

Theorem 2.3. The graph G = θ(3[m])� θ(3[n]), n6≡1(mod5) is an edge prime.

Proof. Let G = θ(3[m])� θ(3[n]), n6≡0(mod 5) be a graph.
Then V (G) = {a, b, c, aw, bw, rx, cx : 1 ≤ w ≤ n, 1 ≤ x ≤ m} and E(G) =

{aaw, awbw, bbw : 1 ≤ w ≤ n} ∪ {brx, rxcx, ccx : 1 ≤ x ≤ m}. Note that |E(G)| =
3(n + m). Define g : E(G) → {1, 2, ..., 3n + 3m} by for each 1 ≤ w ≤ n,
g(aaw) = w, g(awbw) = 2n+1−w, g(bbw) = 2n+w, for each 1 ≤ w ≤ m, g(brx) =

3n+m+1− x, g(rxcx) = 3n+m+ x, g(ccx) = 3n+3m+1− x. Clearly, g+(a) =
n(n+1)

2
, g+(aw) = 2n + 1, g+(bw) = 4n + 1, g+(b) = n(5n+1)

2
+ m(m+6n+1)

2
, g+(rx) =

6n + 2m + 1, g+(cx) = 6n + 4m + 1, g+(c) = m(5m+6n+1)
2

. It can be easily verified
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that, (g+(a), g+(aw)) = (g+(aw), g
+(bw)) = (g+(b), g+(bw)) = (g+(b), g+(rx)) =

(g+(rx), g
+(cx)) = (g+(cx), g

+(c)) = 1. Hence, G is an edge prime labeling. �

Theorem 2.4. The graph θ(3[m])� Pn,m6≡2(mod5) is an edge prime.

Proof. Let G = θ(3[m]) � Pn,m6≡2(mod5) be a graph. Then V (G) = {a, b, aα, bα,,
cβ : 1 ≤ α ≤ m, 1 ≤ β ≤ n} and E(G) = {aaα, aαbα, bαb : 1 ≤ α ≤ m} ∪
{bc1} ∪ {cγcγ+1 : 1 ≤ γ ≤ n − 1}. Hence, |E(G)| = 3m + n. Let the labeling
g : E(G) → {1, 2, ..., 3m + n} by g(aaα) = α, for each 1 ≤ α ≤ m, g(aαbα) =

2m + 1 − α, g(bαb) = 2m + 1 − α, g(acα) = 3m + 1, g(cγcγ+1) = 3m + 1 + γ for
1 ≤ γ ≤ n − 1. Clearly g+(a) = m2+7m+2

2
, g+(aα) = 2m + 1, g+(bα) = 4m +

1, g+(b) = 5m2+m
2

, g+(cγ) = 6m+ 2γ + 1 for 1 ≤ γ ≤ n− 1 and g+(cn) = 3m+ n.
It’s enough to prove that (g+(a), g+(aα)) = (g+(aα), g

+(bα)) = (g+(bα), g
+(b)) =

(g+(a), g+(c1)) = (g+(cα), g
+(cα+1)) = 1. Hence θ(3[m]) � Pn,m6≡2(mod5) is an

edge prime. �

Theorem 2.5. The graph θ(4[m])� Pn,m6≡1(mod3) is an edge prime.

Proof. Let G = θ(4[m])�Pn,m6≡1(mod3) be a graph. Then V (G) = {r, b, sd, td, ad,
ce : 1 ≤ d ≤ m, 1 ≤ e ≤ n} and E(G) = {rsd, sdtd, tdad, adb : 1 ≤ d ≤ m} ∪
{rc1, cfcf+1 : 1 ≤ f ≤ n− 1}. Also,|E(G)| = 4m + n. Define a bijective function
g : E(G) → {1, 2, ..., 4m + n} be as follows: g(rsd) = d for 1 ≤ d ≤ n, g(sdtd) =

2m+ 1− d for 1 ≤ d ≤ m, g(tdad) = 2m+ d, 1 ≤ d ≤ m, g(adb) = 4m+ 1− d for
1 ≤ d ≤ m, g(rc1) = 4m + 1, g(cfcf+1) = 4m + f + 1 for 1 ≤ f ≤ n − 1. Clearly,
g+(r) = m2+9m+2

2
, g+(sd) = 2n + 1, g+(td) = 4m + 1, g+(ad) = 6m + 1, g+(b) =

7m2+m
2

, g+(cf ) = 8m + 2f + 1 for 1 ≤ f ≤ n − 1 and g+(cn) = 4m + n. It can
be easily verified that (g+(r), g+(sd)) = ((g+(sd), g

+(td)) = (g+(td), g
+(ad)) =

(g+(ad), g
+(b) = (g+(r)), g+(c1)) = (g+(cf ), g

+(cf+1)) = 1. Hence θ(4[m]) �
Pn,m6≡1(mod3) is an edge prime. �

Theorem 2.6. The graph θ(m,m,m)� Pn is edge prime for m 6≡0(mod 7).

Proof. For m = 3, 4 the result follows from theorem 2.4 and 2.5. We may
assume that m ≥ 5. Let G = θ(m,m,m) � Pn, (m6≡0(mod 7)) be a graph.
Then V (G) = {a, b, ri, si, ti, cj : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n} and E(G) =

{ar1, as1, at1, rm−1b, sm−1b, tm−1b, ac1} ∪ {riri+1, sisi+1, titi+1, cjcj+1 :

1 ≤ i ≤ m − 2, 1 ≤ j ≤ n − 1}. Clearly, |E(G)| = 3m + n. Let g : E(G) →
{1, 2, 3, ..., 3m + n} be defined as follows: g(ar1) = 1, g(as1) = 2, g(at1) =

3, g(ac1) = 3m+ 1.
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g(ri−1ri) = 3i, g(si−1si) = 3i− 1, g(ti−1ti) = 3i− 2 for even i ≥ 2.

g(ri−1ri) = 3i− 2, g(si−1si) = 3i− 1, g(ti−1ti) = 3i for odd i ≥ 3.

g(rm−1b) = 3m, g(sm−1b) = 3m− 1, g(tm−1b) = 3m− 2 if m is even.
g(rm−1b) = 3m− 2, g(sm−1b) = 3m− 1, g(tm−1b) = 3m if m is odd.
g(cjcj+1) = 3m+ j + 1 for 1 ≤ j ≤ n− 1.

We note that g+(a) = 3m + 7, g+(ri) = g+(si) = g+(ti) = 6i + 1 for
1 ≤ i ≤ m − 1, g+(b) = 9m − 3, g+(cj) = 6m + 2j + 1 for
1 ≤ j ≤ n − 1. We know that, (g+(a), g+(r1)) = 1 = (g+(a), g+(c1)) for
1 ≤ i ≤ m− 2, (g+(ri), g

+(ri+1)) = (6i+ 1, 6i+ 7) = 1. Also, (g+(rm+1), g
+(b)) =

(6m − 5, 9m − 6) = 1, (g+(cj), g
+(cj+1)) = (6m + 2j + 1, 6m + 2j + 3) = 1 for

1 ≤ j ≤ n− 1. Hence, G is an edge prime labeling. �

Theorem 2.7. For even m = 2l ≥ 2, DS(m − 1,m) � P(n) is an edge prime if
m+ 1 is prime.

Proof. Let G = DS(m − 1,m) � Pn (for even m = 2l ≥ 2,m + 1 is prime)
be a graph. Then V (G) = {a, b, rα, sβ, tγ : 1 ≤ α ≤ m − 1, 1 ≤ β ≤ m,

1 ≤ γ ≤ n} and E(G) = {ab, at1, arα, bsβ, tγtγ+1 : 1 ≤ α ≤ m − 1, 1 ≤ β ≤ m,

1 ≤ γ ≤ n − 1}. G has 2m + n edges. Define g : E(G) → {1, 2, ..., 2m + n}
be as follows, g(ab) = m + 1, g(arα) = (2α−1)

{m+1} for 1 ≤ α ≤ m − 1, g(bsβ) = 2β

for 1 ≤ β ≤ m, g(at1) = 2m + 1, g(tγtγ+1) = 2m + γ + 1 for 1 ≤ γ ≤ n − 1.
We have, g+(a) = m2 + 2m + 1, g+(b) = (m + 1)2, g+(tγ) = 4m + 2γ + 1 for
1 ≤ γ ≤ n − 1, g+(tn) = 2m + n. It can be easily verified that (g+(a), g+(b)) =
(g+(a), g+(rα)) = (g+(b), g+(sα)) = (g+(a), g+(t1)) = (g+(tα), g

+(tα+1)) = 1.
Hence, G is an edge prime. �

Theorem 2.8. For odd m = 2l − 1 ≥ 1, DS(m,m) � Pn is an edge prime if
m2 +m+ 1 is prime.

Proof. Let G = DS(m,m) � Pn, (for odd m = 2l − 1 ≥ 1, m2 + m + 1 is
prime) be a graph. Then V (G) = {a, b, rα, sβ, tγ : 1 ≤ α, β ≤ m, 1 ≤ γ ≤ n}
and E(G) = {ab, at1, arα, bsβ, tγtγ+1 : 1 ≤ α, β ≤ m, 1 ≤ γ ≤ n − 1}. Here,
|E(G)| = 2m+n+1. Define a bijective function g : E(G)→ {1, 2, ..., 2m+n+1}
by g(ab) = 1, g(arα) = 2α+1 for 1 ≤ α ≤ m, g(bsβ) = 2β for 1 ≤ β ≤ m, g(at1) =
2m+ 2, g(tγtγ+1) = 2m+ γ + 2 for 1 ≤ γ ≤ n− 1. Clearly, g+(a) = m2 + 4m+ 3,
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g+(b) = m2+m+1, g+(tγ) = 4m+2γ+3, g+(tn) = 2m+n+1. It can be easily ver-
ified that (g+(a), g+(b)) = ((g+(a), g+(rα)) = (g+(b), g+(sα)) = (g+(a), g+(t1)) =

(g+(tγ), g+(tγ+1)) = 1. Hence, G is an edge prime. �

Theorem 2.9. The complete tripartite graph K1,1,n is edge prime.

Proof. Define g : E(K2,n) → {1, 2, ..., 2n} by g(s1tj) = 2j − 1 and g(s2tj) =

2n + 2 − 2j, 1 ≤ j ≤ n. Then g+(tj) = 2n + 1 for all j, g+(s1) = n2 and
g+(s2) = n2 + n. The labeling g is called the basic labeling of K2,n. If we add an
edge s1s2 and get the graph K1,1,n. Define g1 : E(K1,1,n) → {1, 2, ..., 2n + 1} by
follow the same g and g1(s1s2) = 2n + 1. Then thus we have g+1 (tj) = 2n + 1

for all j, g+1 (s1) = (n + 1)2 and g+1 (s2) = (n + 1)2 + n. Hence K1,1,n is an edge
prime. �

Theorem 2.10. Wm � Pn is semiedge prime.

Proof. Let G = Wm � Pn be a graph. Then V (G) = {a, bd, ce : 1 ≤ d ≤ m, 1 ≤
e ≤ n} and E(G) = {abd : 1 ≤ d ≤ n} ∪ {bdbd+1 : 1 ≤ d ≤ n − 1} ∪ {b1bn} ∪
{ac1} ∪ {cece+1 : 2 ≤ e ≤ n − 1}. Note that, |E(G)| = 2m + n. Let the labeling
g : E(G) → {1, 2, ..., 2m + n} be defined as follows and consider the following
cases.

Case 1: m is even.
g(aad) = 2m− 2d+ 1, for 1 ≤ d ≤ m, g(adad+1) = d+ 1 for odd d, g(adad+1) =

m + d for even d, g(ac1) = 2m + 1, g(cece+1) = 2m + 1 + e for 1 ≤ e ≤ n − 1.
Observe that g+(a) = m2 + 2m + 1, g+(a1) = 4m + 1, g+(ad) = 3m + 1 for
2 ≤ d ≤ m, g+(ce) = 4m+ 2e+ 1 for 1 ≤ e ≤ n− 1, g+(cn) = 2m+ n.

Case 2: m is odd.
g(aad) = 2m− 2d+ 1, for 1 ≤ d ≤ m, g(adad+1) = d+ 1 for odd d, g(adad+1) =

m+ d+ 1, for even d, g(ac1) = 2m+ 1, g(cece+1) = 2m+ e+ 1 for 1 ≤ e ≤ n− 1.
Observe that g+(a) = m2 + 2m + 1, g(ad) = 3m + 2, for 1 ≤ e ≤ m. g+(ce) =

4m + 1 + 2e for 1 ≤ e ≤ n − 1, g+(cn) = 2m + n, We know that (g+(a), g+(ad))
= (g+(ad), g

+(ad+1)) = (g+(a), g+(cd)) = (g+(cd), g
+(cd+1)) = 1. Hence, Wm� Pn

is an semiedge prime. �

Theorem 2.11. The graph P (2,m)� Pn is semiedge prime if m ≥ 6.

Proof. Let G = P (2,m)� Pn be a graph (m ≥ 6). Then
V (G) = {ad : 1 ≤ d ≤ m} ∪ {be : 1 ≤ e ≤ n} and
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E(G) = {adad+1 : 1 ≤ d ≤ m − 1} ∪ {adad+2 : 1 ≤ d ≤ n − 2} ∪ {a1b1} ∪
{beb(e+1) : 1 ≤ e ≤ n− 1}. Also, |E(G)| = 2m+ n− 3. Define a bijective function
g : E(G)→ {1, 2, 3, ..., 2m+n−3} be as follows g(adad+1) = d for 1 ≤ d ≤ m−1.
g(adad+2) = 2m−d−2 for 1 ≤ d ≤ m−2. g(a1b1) = 2m−2.g(bebe+1) = 2m+e−2

for 1 ≤ e ≤ n − 1. Observe that, g+(a1) = 4m − 2, g+(a2) = 2m − 1 = g+(am),
g+(am−1) = 3m− 2, g+(b1) = 4d− 3 for 3 ≤ d ≤ m− 2,g+(be) = 4m+2(e− 1)− 3

for 1 ≤ e ≤ n− 1 and g+(bn) = 2m+ n− 3. It is easily to verified that every two
adjacent vertices labels that are relatively prime. �

Theorem 2.12. The graph K2,m ∪Wn is semiedge prime.

Proof. Let G = K2,m ∪Wn be a graph. Then
V (G) = {a1, a2, bi : 1 ≤ i ≤ m} ∪ {r, ri : 1 ≤ i ≤ n} and
E(G) = {a1bi, a2bi : 1 ≤ i ≤ m} ∪ {rri : 1 ≤ i ≤ n} ∪ {riri+1 : 1 ≤ i ≤ n− 1}.

Also, |E(G)| = 2(m+ n). Define g : E(G)→ {1, 2, ..., 2m+ 2n} by as follows for
each 1 ≤ i ≤ m, g(a1bi) = 2i − 1, g(a2bi) = 2m + 2 − 2i, Consider the following
cases.

Case 1: n is even.
g(riri+1) = 2m + i + 1 for odd i, g(riri+1) = 2m + n + i for even i, g(rri) =

2m + 2n − 2i + 1 for 1 ≤ i ≤ n. Observe that g+(r) = 2mn + n2, g+(r1) =

6m+ 4n+ 1, g+(ri) = 6m+ 3n+ 1.
Case 2: n is odd.
g(riri+1) = 2m+ i+ 1 for odd i, g(riri+1) = 2m+ n+ i+ 1 for even i, g(rri) =

2m+ 2n− 2i+ 1 for 1 ≤ i ≤ n. Clearly, g+(r) = 2mn+ n2, g+(si) = 6m+ 3n+ 2

for 1 ≤ i ≤ n. It is easily to verified that every two adjacent vertices labels that
are relatively prime. �
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