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ON VON NEUMANN REGULAR MODULES

G. N. SUDHARSHANA1 AND D. SIVA KUMAR

ABSTRACT. Results gotten for a module M over a commutative ring have been
broadened to module over a ring which is not necessarily commutative. It has
been indicated that an R-module M is V N -regular module if and only if M is a
multiplication module and R/(0 : M) is strongly regular ring. It has also been
indicated that the notions of prime submodule, completely prime submodule,
maximal submodule coincide in a strong symmetric V N -regular module.

1. INTRODUCTION

In this manuscript, we develop the outcomes admitted for a V N -regular mod-
ule over a commutative ring to a V N -regular module over a ring which is not
necessarily commutative. Following [2], an element a ∈ R is said to M -V N -
regular if aM = a2M where R is a commutative ring and M is an R-module,
respectively. Since R is commutative, aM =< a >2 M if and only if an element
a ∈ R is M -V N -regular, where < a > is the ideal generated by a. An R-module
M is said to be V N -regular module if for any m ∈M , Rm = aM for some a ∈ R,
where a is a M -V N -regular element. We present the V N -regular modules over
rings definitions which are not necessarily commutative and obtain the neces-
sary and sufficient condition for an R-module M to be V N -regular module in
Section 2.
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In this manuscript, all rings are with nonzero identity and all modules are
nonzero unital. The ring R is said to be regular if given a1 ∈ R, we can find a2
in R in a ways that a1 = a1a2a1. The ring R is said to be strongly regular if given
a1 ∈ R, we can find a2 in R in a ways that a1 = a2a

2
1. The two notions of regular

and strongly regular coincide if R is a commutative ring. since R is regular and
idempotents are central if and only if a ring R is strongly regular .

In recent years, some significant scientific results about several types of mod-
ule had been accounted, see [3]-[7]. Anderson et al.[3] called VN-regular mod-
ule as JT -regular module (Jayaraman and Ticker) and weakly JT -regular mod-
ule if every a ∈ R is M -V N -regular. In between these modules, they have
shown that there are two other regular modules, namely strongly F -regular and
F -regular. In fact they have shown that a module M is JT -regular which implies
that M is strongly F -regular. It follows that M is F -regular which implies that
M is weakly JT regular.

In this manuscript, we follow the notation given in [2] and develop the out-
comes gotten by [2] for modules over commutative rings to modules over rings
which are not necessarily commutative. We have given illustrations of VN-
regular modules over ring which is not commutative. Throughout this manu-
script R stands for a ring which is not necessarily commutative unless otherwise
specified and M stands for an R-module. The ideal (A : B) is represented by
(A : B) = {a ∈ R : aB ⊆ A}, where A and B are any two submodules of
M. The annihilator of M is denoted by (0 : M). A of M is called proper if
A 6= M . A definition of a maximal submodule is that a proper submodule A of
M is not consists in any other proper submodule of M . P is completely prime if
a ∈ R,m ∈ M , such that am ∈ P , where P is proper submodule, then we have
m ∈ P or aM ⊆ P . P of M is said to be a prime submodule if for all ideals I of
R and submodules A of M such that IA ⊆ P , we have A ⊆ P or IM ⊆ P . If M
is a module over R, where R signifies a commutative ring then the two notions,
completely prime submodule and prime submodule coincide.

Every submodule of M is of the form IM then a module M is called a mul-
tiplication module, for some ideal I of R. If there exists a submodule B of M
such that A + B = M and A ∩ B = 0, then a submodule A of M is called a
complemented submodule. L(R) and L(M) signifies the lattice of all ideals of
R and the lattice of all submodules of M , respectively.
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2. CHARACTERIZATIONS OF V N -REGULAR MODULES

Definition 2.1. An element a ∈ R is said to be M -V N -regular if aM =< a >2 M ,
where Let M is an R-module.

Definition 2.2. If for any m ∈M , Rm = aM for some a ∈ R then b R-module M
is called V N -regular module, where a is a M -V N -regular element.

Now we provide a counter examples V N -regular module over a ring which is
not commutative.

Example 1. Let

R =

{(
a b

0 c

)/
a, b, c ∈ Z2

}
be the ring with usual matrix addition and matrix multiplication. Then the R-
module

M =

{(
0 0

0 0

)(
0 1

0 0

)}
is a V N -regular module as for

m =

(
0 1

0 0

)
,

Rm = aM =< a >2 M where

a =

(
1 1

0 0

)
.

For other element in M the choice of a is obvious.

Example 2. Consider the ring R as in the example 2.3. Then the R-module RR is
not a V N -regular module as for

m =

(
1 1

0 0

)
,

Rm 6= aM =< a >2 M where

a =

(
1 0

0 0

)
.

There does not exist a in R such thatRm = aM =< a >2 M .
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Definition 2.3. If f−f 2 ∈ (0 : M), then f ∈ R is called weak idempotent element.

Lemma 2.1. Let M be an R-module. If R/(0 : M) is strongly regular, then for any
r ∈ R , a ∈ R and for all m ∈M , there exist r′ ∈ R such that ram = ar

′
m.

Proof. Let a ∈ R. Suppose R/(0 : M) is strongly regular. Then there exist
b̄ ∈ R/(0 : M) such that ā = b̄ā2 . It follows that ā = āb̄ā. Let r ∈ R. Since āb̄
is central we have r̄ā = r̄(āb̄ā) = (āb̄)r̄ā = ār̄′ for some r̄′ = b̄r̄ā ∈ R/(0 : M).
Then ram = ar

′
m for all m ∈M . �

Lemma 2.2. Let R/(0 : M) be strongly regular and M be an R-module. If for any
element a in R, we have aM =< a > M .

Proof. Suppose R/(0 : M) is strongly regular. Let a ∈ R. It is obvious that
aM ⊆< a > M . Let x ∈< a > M . Then x can be written as x =

∑
i,j riarjmi,

where the sum is finite, for some ri, rj ∈ R and mi ∈ M . Then x =
∑

i riam
′
i for

some m′
i = rjm ∈M . Thus x =

∑
i ar

′
im

′
i by Lemma 2.1. Hence < a > M ⊆ aM

and aM =< a > M holds. �

Lemma 2.3. Let R/(0 : M) be strongly regular and let f1, f2 ∈ R be weak idem-
potent elements of R, Then

(i) 1− f1, f1f2, f1 + f2(1− f1) are weak idempotent elements of R.
(ii) f1M ∩ aM = f1aM ∀ a ∈ R.
(iii) f1M + f2M = (f1 + f1(1− f1))M .
(iv) f1M = f2M ⇐⇒ (f1) + (0 : M) = (f2) + (0 : M)

(v) f1M has a complement in L(M).

Proof.
(i) Let f1, f2 ∈ R be any weak idempotent elements of R. Then f̄1, f̄1 are

idempotent elements of R/(0 : M), so 1− f1 is idempotent element of R/(0 :

M). Since f̄1 is central (f̄1f̄2)
2 = f̄1(f̄2f̄1)f̄2 = f̄1

2
f̄2

2
= f̄1f̄2. Hence f̄1f̄2 is an

idempotent element of R/(0 : M). As f̄1 is central, we have (f1 + f2(1− f1))2 =

f1 + f2(1− f1). It follows that 1 − f1, f1f2, f1 + f2(1 − f1) are weak idempotent
elements of R.

(ii) Let f1am ∈ f1aM . Then f1am = af
′
1m ∈ aM , by Lemma 2.1. Hence

f1aM ⊆ f1M ∩ aM . Since f1 − f 2
1 ∈ (0 : M), we get f1m = f 2

1m for all m ∈ M .
Let m1 ∈ f1M ∩ aM . This implies m1 = f1m

′ and m1 = am” for some m
′,

m” ∈ M . Thus m1 = f1m
′

= f 2
1m

′
= f1(f1m

′
) = f1m1 and since f1m1 = f1am

”,
we have m1 = f1am

”. Thus m1 ∈ f1aM . Therefore f1aM = f1M ∩ aM .
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(iii) Obviously (f1 + f1(1 − f1))M ⊆ f1M + f2M . Let f1m ∈ f2M . It is clear
that f̄1 = f̄2

2
+ f̄2(1̄ − f̄1)f̄1 = f̄1

2
+ f̄1f̄2(1̄ − f̄1) since f̄1 is central. It follows

that f1M ⊆ f1(f1 + f2(1 − f1))M . Hence f1M = f1(f1 + f2(1 − f1))M . Hence
f1M = f1(f1+2(1−f1))M = (f1+f2(1−f1))f1M ⊆ (f1+f2(1−f1))M . Similarly
f2M ⊆ (f1 + f2(1 − f1))M . It follows that f1M + f2M ⊆ (f1 + f2(1 − f1))M .
Hence f1M + f2M = (f1 + f2(1− f1))M holds.

(iv) Assume that f1M = f2M . As in Lemma 1(iv)[2],
< f1 > +(0 : M) =< f2 > +(0 : M) holds.

Conversely, now to claim f1M = f2M . Let f1m ∈ f1M since f1 ∈< f1 > +(0 :

M), it follows from the assumption that f1 =
∑

i,j rif2rj + x for some ri, rj ∈ R
and x ∈ (0 : M). Then f1m =

∑
i,j rif2rjm =

∑
i rif2m

′ for some m′
= rjm ∈M .

Hence f1m =
∑

i f2r
′
im

′ by Lemma 2.1. It follows that f2M ⊆ f2M and similarly
f2M ⊆ f1M . Hence f1M = f2M holds.

(v) Let m ∈M . Then m = 1.m = (f1 + (1− f1))m ∈ f1M + (1− f1)M . Hence
f1M + (1− f1)M = M . Since by(ii) f1M ∩ (1− f1)M = f1(1− f1)M = 0. Hence
f1M has a complement in L(M). �

Lemma 2.4. Suppose R/(0 : M) is strongly regular then for every a ∈ R we have
aM = eM for some weak idempotent element e in R.

Proof. Let a ∈ R. For ā ∈ R/(0 : M) there exists b̄ ∈ R/(0 : M) such that
ā = b̄ā2. Hence ā = āb̄ā and it follows that ab is a weak idempotent in R. Clearly
abM ⊆ aM . Let am ∈ aM . Since ā = āb̄ā, it follows that (a − aba)m = 0 for
all m ∈ M . Hence am = abam ∈ abM . Therefore aM = abM for some weak
idempotent ab in R. �

Lemma 2.5. Suppose J1, J2 be any two ideals of R such that J1 + J2 = R and
J1J2 ⊆ (0 : M), where M is an R-module. Then the subsequent axioms are
satisfies:

(i) J1 + (0 : M) =< f1 > +(0 : M) for some f1 ∈ J1
(ii) J2 + (0 : M) =< 1− f1 > +(0 : M) for some (1− f1) ∈ J2
(iii) J1M =< f1 > M and J2M =< 1 − f1 > M for some f1 and (1 − f1) such

that f1 ∈ J1 and (1− f1) ∈ J2.

Proof.
(i) Let J1 + J2 = R, there exist i ∈ J1 and j ∈ J2 such that i + j = 1. As

i(1 − i) = (1 − j)j = ij ∈ (0 : M) this implies that i,(1 − i) and j,(1 − j) are
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weak idempotent elements of R. It is clear that < i >⊆ J1. Let r ∈ J1. Then
r = r(i+ j) = ri+ rj ∈< i > +J1J2 ⊆< i > +(0 : M). Hence < i > +(0 : M) =

J1 + (0 : M) for some weak idempotent i ∈ J1.
The proof of (ii) is same as proof of (i).
(iii) Let

∑
k ikmk ∈ J1M , where the sum is finite. As ik ∈ J1 + (0 : M), by (i)

it follows that ik =
∑

i,j rif1rj + x for some ri,rj ∈ R and x ∈ (0 : M). Then
ikmk =

∑
i,j rif1rjmk ∈< f1 > M . Thus J1M ⊆< f1 > M . Let y ∈< f1 > M .

As f1 ∈< f1 > +(0 : M) by (i) f1 = i + x
′ for some i ∈ I, x′ ∈ (0 : M).

Then y =
∑

i,j rif1rjm =
∑

i,j ri(i + x
′
)rjm ∈< i > M ⊆ J1M . It follows that

J1M =< f1 > M for some f1 ∈ J1. Similarly J2M =< 1 − f1 > M for some
weak idempotent (1− f1) ∈ J2. �

Definition 2.4. An R-module M is said to be strong symmetric if for any a, b ∈ R,
m ∈M such that abm = bam.

Note: If R is a commutative ring, every R-module M is strong symmetric. There
exist R-module M which is strong symmetric even though R is not commutative
ring.

Now we give an illustration of a strong symmetric module.

Example 3. The Module in Example 1 is strong symmetric module even though R
is not commutative ring.

Lemma 2.6. Assume M is a strong symmetric R-module and let f1, f2 ∈ R be any
two weak idempotent elements of R. Then f1M + f2M = (f1 + f2(1− f1))M .

Proof. Obviously, (f1+f2(1−f1))M ⊆ f1M+f2M . Let f1m ∈ f1M . It is clear that
f̄1 = f̄1

2
+ f̄2(1− f1)f̄1 as v̄ ∈ R/(0 : M). It follows that f1m = (f 2

1 +f1(1−f1))m
for all m ∈M as M is strong symmetric.

This shows that f1M ⊆ f1(f1 + f2(1− f1))M and hence
f1M = f1(f1 + f2(1− f1))M = (f1 + f2(1− f1))f1M as M is strong symmetric.
Hence f1M = (f1 + f2(1 − f1))f1M ⊆ (f1 + f2(1 − f1))M . Similarly
f2M ⊆ (f1 + f2(1− f1))M and therefore f1M + f2M ⊆ (f1 + f2(1− f1))M .

This shows that f1M + f2M = (f1 + f2(1− f1))M . �

The subsequent theorem finds the condition under which any element a ∈ R
to be M -V N -regular element.

Theorem 2.1. a ∈ R is M -V N -regular if R/(0 : M) is strongly regular.
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Proof. Since R/(0 : M) is strongly regular, we have for ā ∈ R/(0 : M) there
exists b̄ ∈ R/(0 : M) such that ā = ā2b̄. Then a − a2b ∈ (0 : M). This im-
plies a − a2b = x for some x ∈ (0 : M), we have a = a2b + x ∈< a2 >

+(0 : M). Hence < a > +(0 : M) ⊆< a2 > +(0 : M). Therefore, we have
< a > +(0 : M) =< a2 > +(0 : M).

Let am ∈ aM . Since a ∈< a > +(0 : M), we have a =
∑

i,j ria
2rj + x

′ for
some ri,rj ∈ R and x′ ∈ (0 : M). Then am =

∑
i,j ria

2rjm =
∑

i ria
2m

′
i for some

m
′
i = rjm ∈M . We have am =

∑
i a

2r
′
im

′
i by Lemma 2.1. This implies

aM ⊆< a >< a > M . Clearly < a >< a > M ⊆< a > M . By Lemma 2.2
< a >2 M ⊆ aM . Hence aM =< a >2 M . �

Theorem 2.2. Suppose R/(0 : M) is strongly regular. Then the following condi-
tions are equivalent.

(i) Every element of R is M -V N -regular.
(ii) (J1 ∩ J2)M = J1J2M ∀ J1, J2 ∈ L(R).
(iii) J1M = J2

1M ∀ J1 ∈ L(R).

Proof.
(i) =⇒ (ii). Under condition (i) satisfied. Let J1, J2 ∈ L(R). Let a ∈ R. By

(i) we have aM =< a >2 M . Clearly J1J2M ⊆ (J1 ∩ J2)M . Let x ∈ (J1 ∩ J2)M .
Then x =

∑
i aimi where the sum is finite and for some ai ∈ J1∩J2 and mi ∈M .

Since aM =< a >< a > M , For any i, aimi =
∑

n(
∑

i,j riarj)(
∑

k,l rkarl)mn

for some ri,rj,rk,rl ∈ R and mn ∈ M . Hence by Lemma 2.1, aimi = a2mp for
some mp ∈ M . Thus x = a.am

′
p ∈ J1J2M since a ∈ J1 ∩ J2. This implies that

(J1 ∩ J2)M ⊆ J1J2M and hence (J1 ∩ J2)M = J1J2M holds.
(ii) =⇒ (iii). Under condition (ii) satisfied. Let J1 ∈ L(R). It follows by (ii)

that J1M = (J1 ∩ J1)M = J2
1M .

(iii) =⇒ (i). Under condition (iii) satisfied. Let a ∈ R, then by (iii), < a >

M =< a >2 M . Hence by Lemma 2.2, we have aM =< a >2 M . �

Lemma 2.7. [1] Let M be a finitely generated strong symmetric R-module and let
I be an ideal of R such that IM = M then there exists x ≡ 1(modI) such that
xM = 0.

Proof. Suppose M has two generators. Let m1,m2 be the generators of M . Since
m1 ∈ IM , m1 = i1m

′ where i1 ∈ I, m′ ∈M . As m′ ∈M , m′
= β11m1 +β12m2 for
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some β11,β12 ∈ R. So m1 = i1(β11m1+β12m2) = (i1β11)m1+(i1β12)m2. Therefore

(2.1) m1 = i11m1 + i12m2

for some i11 = i1β11 ∈ I, i12 = i1β12 ∈ I. Again, Since m2 ∈ IM , m2 = i2m
”

where i2 ∈ I, m” ∈ M . As m” ∈ M , m” = β21m1 + β22m2 for some β21,β22 ∈ R.
So m2 = i2(β21m1 + β22m2) = (i2β21)m1 + (i2β22)m2. Therefore

(2.2) m2 = i21m1 + i22m2

for some i21 = i2β21 ∈ I, i22 = i2β22 ∈ I. From (2.1),

(2.3) (1− i11)m1 − i12m2 = 0.

From (2.2),

(2.4) −i21m1 + (1− i22)m2 = 0 .

Let x = (1 − i11)(1 − i22) − i12i21. Then xm1 = ((1 − i11)(1 − i22) − i12i21)m1 =

(1 − i22)(1 − i11)m1 − i12i21m1 since M is strong symmetric. By (2.3), xm1 =

(1 − i22)(i12m2) − i12i21m1 = (1 − i22)(i12m2) − i12((1 − i22)m2) by (2.4). Since
M is strong symmetric, we have xm1 = 0. Similarly xm2 = 0. Let m ∈ M ,
m = α1m1 + α2m2 for some α1, α2 ∈ R. Then xm = x(α1m1 + α2m2) = 0

since M is strong symmetric and xm1 = xm2 = 0. Hence xm = 0 for all
m ∈M .Thus xM = 0. We write (1− y)M = 0 where y ∈ I since x is of the form
x = (1− i11)(1− i22)− i12i21. Hence for n generators, we can easily find

x =



1− i11 −i12 . . . −i1n
−i21 1− i22 . . . −i2n
. . . . . .

. . . . . .

. . . . . .

−in1 −in2 . . . 1− inn


�

Now we find the necessary condition for an element a ∈ R to be M -V N -
regular.

Theorem 2.3. Let M is a strong symmetric R-module and it is finitely generated.
Then a is M -V N -regular if and only if R/(0 : M) is strongly regular.
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Proof. Suppose R/(0 : M) is strongly regular. Let a ∈ R. Then by Theorem 2.1,
we have a is M -V N -regular.

Conversely, suppose that a is M -V N -regular. Then aM =< a >2 M . As M is
strong symmetric, we have < a > M =< a >2 M . By Lemma 2.7, (1− r) < a >

M = 0 for some r ∈< a >. It follows that (1 − r)am = 0 for all m ∈ M . Then
(1−

∑
i,j riarj)am = 0 for some ri,rj ∈ R . Since M is strong symmetric, we have

0 = a(1−
∑

i,j riarj)m = a(m−
∑

i,j riarjm) = a(m−
∑

i,j arjrim) = (a−a2r′)m
for all m ∈ M and for some r′ =

∑
i,j rjri ∈ R. It follows that ā = ā2r̄′ and

hence R/(0 : M) is strongly regular. �

Lemma 2.8. Let M is a strong symmetric R-module and it is finitely generated.
Then a ∈ R is M -V N -regular if and only if aM =< e > M for some e ∈ R.

Proof. Let a be M -V N -regular. According to Theorem 2.3, R/(0 : M) is strongly
regular. Since by Lemma 2.4, we have aM = eM for some e ∈ R. By Lemma
2.2, we have aM =< e > M for some e ∈ R.

Conversely, suppose that aM =< e > M for e ∈ R. As M is strong symmetric,
one obtain < a >2 M =< a >< e > M =< a > eM = e < a > M = e2M =

eM = aM . Therefore aM =< a >2 M . �

Lemma 2.9. Let M is a strong symmetric V N -regular R-module and it is finitely
generated. Then R/(0 : M) is strongly regular.

Proof. Let b ∈ R. Since M is finitely generated, we have < b > M is also finitely
generated. As M is strong symmetric, we have bM is finitely generated. Then
bM =

∑n
i=1Rmi for some m1,m2,...,mn ∈ M . As M is a V N -regular module,

for each i, there exists a M -V N -regular element bi ∈ R such that Rmi = biM .
According to Lemma 2.8, for each i, there exists ei ∈ R such that biM =< ei >

M = eiM .
Now by utilizing Lemma 2.6,

∑n
i=1Rmi =

∑n
i=1 biM =

∑n
i=1 eiM = eM for

some e ∈ R. So bM = eM . This implies bM =< e > M for e ∈ R. By Lemma 2.8,
we have b ∈ R is M -V N -regular and hence by Theorem 2.3, we have R/(0 : M)

is strongly regular. �

Lemma 2.10. Suppose M is a multiplication R-module and R/(0 : M) is strongly
regular. Then M is a V N -regular module.

Proof. As Rm is finitely generated, this implies that Rm = IM for some finitely
generated ideal I ⊆ (Rm : M). As R/(0 : M) is strongly regular, by Lemma
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2.4, we have for any a ∈ R, aM = eM for some weak idempotent element e in
R and since I is finitely generated, IM =

∑n
i=1 aiM =

∑n
i=1 eiM = fM , since

by Lemma 2.3(iii), for some weak idempotent element f ∈ R. Consequently,
Rm = (Rm : M)M = IM = fM for some weak idempotent element f ∈ R, and
hence M is a V N -regular module. �

Theorem 2.4. Let M is a strong symmetric R-module and it is finitely generated.
Then the following conditions are equivalent.

(i) M is a V N -regular module.
(ii) M is a multiplication module and R/(0 : M) strongly regular.

Proof.
(i) =⇒ (ii) As M is a finitely generated strong symmetric V N -regular module,

then by Lemma 2.9 it is clear that R/(0 : M) is strongly regular.
We have for each m ∈ M , Rm =< a >2 M = aM . Let A be a submodule

of M . Let x ∈ A. Then Rx = IxM for some ideal Ix of R. Let I =
∑

x∈N Ix.
Then x ∈ IxM ⊆ IM , this implies that A ⊆ IM . Let i ∈ I be such that
i = i1 + i2 + ... + in(say). Then im = i1m + i2m + ... + inm ∈ A. This implies
IM ⊆ A and hence A = IM implies that M is a multiplication module.

(ii) =⇒ (i) follows by Lemma 2.10. �

Lemma 2.11. If M is a strong symmetric module then every prime submodule of
M is a completely prime submodule of M .

Proof. Let P be a prime submodule of M . Let a ∈ R, m ∈ M such that am ∈ P .
SinceM is strong symmetric module, for any r ∈ R,m ∈M we have arm = ram.
Let < m > be a submodule generated by m. Then for any x ∈< m > we have
x = rm for some r ∈ R. Hence ax = arm = ram ∈ P . Hence a < m >⊆ P .
Since a ∈ (P :< m >), an ideal, it follows that < a >< m >⊆ P . As P is a prime
submodule, we have < m >⊆ P or < a > M ⊆ P . Thus m ∈ P or aM ⊆ P .
Thus P is completely prime submodule. �

Lemma 2.12. If M is a strong symmetric V N -regular module then every prime
submodule of M is a maximal submodule of M .

Proof. Let A be a prime submodule of M . Let B be a submodule such that
A ⊂ B. Let x ∈ B/A. By definition 2.2, Rx = aM =< a >2 M . For any m ∈ M ,
let am ∈ aM . Then am ∈ a2M since M is a strong symmetric. Consequently
am = a2m

′ for some m′ ∈M . Thus a(m− am′
) ∈ A.
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Since A is prime, aM ⊆ A or (m− am′
) ∈ A. If aM ⊆ A then Rx ⊆ A implies

that x ∈ A, a contradiction. So (m− am′
) ∈ A. Since aM = Rx ⊆ B, am′ ∈ B.

Since (m − am
′
) ∈ A, it follows that (m − am

′
) ∈ B. As am′ ∈ B, we have

m ∈ B. Thus B = M . Hence A is a maximal submodule of M . �
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