ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.4, 1955–1963 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.54 Spec. Issue on NCFCTA-2020

SOME THEOREMS IN INTUITIONISTIC MULTI FUZZY SUBFIELDS OF A FIELD

M. VASU

ABSTRACT. In this paper, some properties of intuitionistic multi fuzzy subfield of a field are defined and studied. Also some definitions, results and Theorems are given.

1. INTRODUCTION

After the introduction of fuzzy sets by L.A.Zadeh [13], several researchers explored on the generalization of the notion of fuzzy set ([3–10]). The concept of intuitionistic Multi fuzzy subset was introduced by K.T.Atanassov [1], as a generalization of the notion of fuzzy set. Azriel Rosenfeld [2] defined a fuzzy groups. Vasu.M, Sivakumar.D and Arjunan.K [12] defined an anti-Multi fuzzy subfield of a field. We introduce the concept of intuitionistic Multi fuzzy subfield of a field and established some results.

2. Preliminaries

Definition 2.1. Let X be a non-empty set. A fuzzy subset A of X is a function $A: X \to [0, 1]$.

²⁰¹⁰ Mathematics Subject Classification. 03F55, 08A72, 20N25.

Key words and phrases. Fuzzy set, multi fuzzy subset, intuitionistic multi fuzzy subset, multi fuzzy subfield, intuitionistic multi fuzzy subfield.

M. VASU

Definition 2.2. A multi fuzzy subset A of a set X is defined as an object of the form $A = \{\langle x, A_1(x), A_2(x), A_3(x), ..., A_n(x) \rangle | x \in X\}$, where $A_i : X \to [0, 1]$ for all *i*. Here A is called multi fuzzy subset of X with dimension n. It is denoted as $A = \langle A_1, A_2, A_3, ..., A_n \rangle$.

Definition 2.3. An intuitionistic fuzzy set (IFS) A in X is defined as an object having the form $A = (x, \mu_{A_i}(x), \gamma_{A_i}(x))/x \in X$, where $\mu_{A_i} : X \to [0, 1]$ and $\gamma_{A_i} : X \to [0, 1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and every x in X satisfying $0 \le \mu_{A_i}(x) + \gamma_{A_i}(x) \le 1$.

Definition 2.4. An intuitionistic multi fuzzy subset A of a set X is defined as an object of the form

$$A = \left(x, \mu_{A_1}(x), \ mu_{A_2}(x), \dots, \mu_{A_n}(x), \gamma_{A_1}(x), \gamma_{A_2}(x), \dots, \gamma_{A_n}(x)\right) / x \in X,$$

where $\mu_{A_i} : X \to [0,1]$ and $\gamma_{A_i} : X \to [0,1]$ for all *i*, define the degrees of membership and the degrees of non-membership of the element $x \in X$ respectively and every *x* in *X* satisfying $0 \le \mu_{A_i}(x) + \gamma_{A_i}(x) \le 1$ for all *i*. It is denoted as $A_i = (\mu_{A_i}, \gamma_{A_i})$, where $\mu_{A_i} = (\mu_{A_1}, \mu_{A_2}, ..., \mu_{A_n})$ and $\gamma_{A_i} = (\gamma_{A_1}, \gamma_{A_2}, ..., \gamma_{A_n})$.

Definition 2.5. Let A and B be any two intuitionistic multi fuzzy subset of X. We define the following relations and operations:

- (i) $A \subseteq B$ if and only if $\mu A_i(x) \leq \mu B_i(x)$ and $\gamma A_i(x) \geq \gamma B_i(x)$ for all $x \in X$ and for all *i*.
- (ii) A = B if and only if $\mu A_i(x) = \mu B_i(x)$ and $\gamma A_i(x) = \gamma B_i(x)$ for all $x \in X$ and for all *i*.
- (iii) $A \cap B$ if and only if $(A \cap B)(x) = \min \mu A_i(x), \mu B_i(x), \max \mu A_i(x), \gamma B_i(x)$ for all $x \in X$ and for all *i*.
- (iv) $A \cup B$ if and only if $(A \cup B)(x) = \max \mu A_i(x), \mu B_i(x), \min \gamma A_i(x), \gamma B_i(x)$ for all $x \in X$ and for all i.

Definition 2.6. Let $(F, +, \cdot)$ be a field. A multi fuzzy subset A of F is said to be a multi fuzzy subfield (MFSF) of F if the following conditions are satisfied:

- (i) $A_i(x-y) \ge \min A_i(x), A_i(y)$, for all $x, y \in F$, for all i,
- (ii) $A_i(xy-1) \ge \min A_i(x), A_i(y)$, for all $x, y \ne 0 \in F$, for all i, where 0 is the additive identity element of F.

Definition 2.7. Let $(F, +, \cdot)$ be a field. An intuitionistic multi fuzzy subset A of F is said to be an intuitionistic multi fuzzy subfield (ILFSF) of F if it satisfies the following axioms:

- (i) $\mu_{A_i}(x-y) \ge \min \mu_{A_i}(x), \mu_{A_i}(y)$, for all $x, y \in F$, for all i.
- (ii) $\mu_{A_i}(xy-1) \ge \min \mu_{A_i}(x), \mu_{A_i}(y)$ for all $x, y \ne 0$ in F, for all i.
- (iii) $\nu_{A_i}(x-y) \leq \min \nu_{A_i}(x), \nu_{A_i}(y)$ for all x, y in F, for all i.
- (iv) $\nu_{A_i}(xy-1) \leq \min \nu_{A_i}(x), \nu_{A_i}(y)$ for all $x, y \neq 0$ in *F*, for all *i* where 0 is the additive identity element of *F*.

3. Some Properties

Theorem 3.1. Let $(F, +, \cdot)$ be a field. If A is an intuitionistic Multi fuzzy subfield of F, then

- (i) $\mu_{A_i}(x+y) = \mu_{A_i}(x) \vee \mu_{A_i}(y)$ with $\mu_{A_i}(x) \neq \mu_{A_i}(y)$,
- (ii) $\nu_{A_i}(x+y) = \nu_{A_i}(x) \wedge \nu_{A_i}(y)$ with $\nu_{A_i}(x) \neq \nu_{A_i}(y)$, for each x and y in F.
- (iii) $\mu_{A_i}(xy) = \mu_{A_i}(x) \lor \mu_{A_i}(y)$ with $\mu_{A_i}(x) \neq \mu_{A_i}(y)$,
- (iv) $\nu_{A_i}(xy) = \nu_{A_i}(x) \wedge \nu_{A_i}(y)$ with $\nu_{A_i}(x) \neq \nu_{A_i}(y)$, for each x and $y \neq 0$ in F for all i.

Theorem 3.2. Let A be an intuitionistic Multi fuzzy subfield of a field $(F, +, \cdot)$.

- (i) If $\mu_{A_i}(x) < \mu_{A_i}(y)$, for some x and y in F, then $\mu_{A_i}(x+y) = \mu_{A_i}(x) = \mu_{A_i}(y+x)$ for all *i*.
- (ii) If $\nu_{A_i}(y) < \nu_{A_i}(x)$, for some x and y in F for all i, then $\nu_{A_i}(x+y) = \nu_{A_i}(x) = \nu_{A_i}(y+x)$.
- (iii) If $\mu_{A_i}(x) < \mu_{A_i}(y)$, for some x and $y \neq 0$ in F for all i, then $\mu_{A_i}(xy) = \mu_{A_i}(x) = \mu_{A_i}(yx)$.
- (iv) If $\nu_{A_i}(y) < \nu_{A_i}(x)$, for some x and $y \neq 0$ in F for all i, then $\nu_{A_i}(xy) = \nu_{A_i}(x) = \nu_{A_i}(yx)$.

Proof. Let *A* be an intuitionistic Multi fuzzy subfield of a field *F*.

(i) Also we have $\mu_{A_i}(x) < \mu_{A_i}(y)$, for some x and y in F, Then, $\mu_{A_i}(x+y) \ge \mu_{A_i}(x) \lor \mu_{A_i}(y) = \mu_{A_i}(x)$; and $\mu_{A_i}(x) = \mu_{A_i}(x+y-y) \ge \mu_{A_i}(x+y) \lor \mu_{A_i}(-y) \ge \mu_{A_i}(x+y) \lor \mu_{A_i}(y) = \mu_{A_i}(x+y)$. Therefore, $\mu_{A_i}(x+y) = \mu_{A_i}(x)$. Hence $\mu_{A_i}(x+y) = \mu_{A_i}(x) = \mu_{A_i}(y+x)$.

M. VASU

- (ii) Also we have $\nu_{A_i}(y) < \nu_{A_i}(x)$, for some x and y in F. Then, $\nu_{A_i}(x+y) \le \nu_{A_i}(x) \land \nu_{A_i}(y) = \nu_{A_i}(x)$; and $\nu_{A_i}(x) = \nu_{A_i}(x+y-y) \le \nu_{A_i}(x+y) \land \nu_{A_i}(-y) \le \nu_{A_i}(x+y) \land \nu_{A_i}(y) = \nu_{A_i}(x+y)$. Therefore, $\nu_{A_i}(x+y) = \nu_{A_i}(x)$. Hence $\nu_{A_i}(x+y) = \nu_{A_i}(x) = \nu_{A_i}(y+x)$.
- (iii) Also we have $\mu_{A_i}(x) < \mu_{A_i}(y)$, for some x and $y \neq 0$ in F for all i. Then, $\mu_{A_i}(xy) \ge \mu_{A_i}(x) \lor \mu_{A_i}(y) = \mu_{A_i}(x)$; and $\mu_{A_i}(x) = \mu_{A_i}(xyy-1) \ge \mu_{A_i}(xy) \lor \mu_{A_i}(y-1) \ge \mu_{A_i}(xy) \lor \mu_{A_i}(y) = \mu_{A_i}(xy)$. Therefore, $\mu_{A_i}(xy) = \mu_{A_i}(x)$. Hence $\mu_{A_i}(xy) = \mu_{A_i}(x) = \mu_{A_i}(yx)$.
- (iv) Also we have $\nu_{A_i}(y) < \nu_{A_i}(x)$, for some x and $y \neq 0$ in F. Then, $\nu_{A_i}(xy) \leq \nu_{A_i}(x) \wedge \nu_{A_i}(y) = \nu_{A_i}(x)$; and $\nu_{A_i}(x) = \nu_{A_i}(xyy-1) \leq \nu_{A_i}(xy) \wedge \nu_{A_i}(y-1) \leq \nu_{A_i}(xy) \wedge \nu_{A_i}(y) = \nu_{A_i}(xy)$. Therefore $\nu_{A_i}(xy) = \nu_{A_i}(x)$. Hence $\nu_{A_i}(xy) = \nu_{A_i}(x) = \nu_{A_i}(yx)$.

Theorem 3.3. Let A be an intuitionistic Multi fuzzy subfield of a field $(F, +, \cdot)$.

- (i) If $\mu_{A_i}(x) > \mu_{A_i}(y)$, for some x and y in F, then $\mu_{A_i}(x+y) = \mu_{A_i}(y) = \mu_{A_i}(y+x)$.
- (ii) If $\nu_{A_i}(y) > \nu_{A_i}(x)$, for some x and y in F for all i, then $\nu_{A_i}(x+y) = \nu_{A_i}(y) = \nu_{A_i}(y+x)$, for all x and y in F.
- (iii) If $\mu_{A_i}(x) > \mu_{A_i}(y)$, for some x and $y \neq 0$ in F for all i, then $\mu_{A_i}(xy) = \mu_{A_i}(y) = \mu_{A_i}(yx)$.
- (iv) If $\nu_{A_i}(y) > \nu_{A_i}(x)$, for some x and $y \neq 0$ in F for all i then $\nu_{A_i}(xy) = \nu_{A_i}(y) = \nu_{A_i}(yx)$.

Proof. It is trivial.

Theorem 3.4. Let A be an intuitionistic Multi fuzzy subfield of a field $(F, +, \cdot)$.

- (i) If $\mu_{A_i}(x) > \mu_{A_i}(y)$, for some x and y in F for all i, then $\mu_{A_i}(x+y) = \mu_{A_i}(y) = \mu_{A_i}(y+x)$.
- (ii) If $\nu_{A_i}(y) < \nu_{A_i}(x)$, for some x and y in F for all i, then $\nu_{A_i}(x+y) = \nu_{A_i}(x) = \nu_{A_i}(y+x)$.
- (iii) If $\mu_{A_i}(x) > \mu_{A_i}(y)$, for some x and $y \neq 0$ in F for all i, then $\mu_{A_i}(xy) = \mu_{A_i}(y) = \mu_{A_i}(yx)$.
- (iv) If $\nu_{A_i}(y) < \nu_{A_i}(x)$, for some x and $y \neq 0$ in F for all i, then $\nu_{A_i}(xy) = \nu_{A_i}(x) = \nu_{A_i}(yx)$.

Proof. It is trivial.

Theorem 3.5. Let A be an intuitionistic Multi fuzzy subfield of a field $(F, +, \cdot)$.

- (i) If $\mu_{A_i}(x) < \mu_{A_i}(y)$, for some x and y in F for all i, then $\mu_{A_i}(x+y) = \mu_{A_i}(x) = \mu_{A_i}(y+x)$.
- (ii)) If $\nu_{A_i}(y) > \nu_{A_i}(x)$, for some x and y in F for all i, then $\nu_{A_i}(x+y) = \nu_{A_i}(y) = \nu_{A_i}(y+x)$.
- (iii) If $\mu_{A_i}(x) < \mu_{A_i}(y)$, for some x and $y \neq 0$ in F for all i, then $\mu_{A_i}(xy) = \mu_{A_i}(x) = \mu_{A_i}(yx)$.
- (iv) If $\nu_{A_i}(y) > \nu_{A_i}(x)$, for some x and $y \neq 0$ in F for all i, then $\nu_{A_i}(xy) = \nu_{A_i}(y) = \nu_{A_i}(yx)$.

Proof. It is trivial.

Theorem 3.6. Let A be an intuitionistic Multi fuzzy subfield of a field $(F, +, \cdot)$ such that $Im \ \mu_A = \alpha$ and $Im \ \nu_A = \beta$, where α and β in L. If $A = B \cup C$, where B and C are intuitionistic Multi fuzzy subfields of F, then either $B \subseteq C$ or $C \subseteq B$.

Proof. Let $A = B \cup C = \langle (x), \mu_A(x), \nu_A(x) \rangle / x$ in F, $B = \langle (x), \mu_B(x), \nu_B(x) \rangle / x$ in F and $C = \langle (x), \mu_C(x), \nu_C(x) \rangle / x$ in F.

<u>Case (i)</u>: Assume that $\mu_B(x) > \mu_C(x)$ and $\mu_B(y) < \mu_C(y)$, for some x and y in R. Then,

$$\alpha = \mu_A(x) = \mu_B \cup \mu_C(x) = \mu_B(x) \lor \mu_C(x) = \mu_B(x) > \mu_C(x).$$

Therefore, $\alpha > \mu_C(x)$, and

$$\alpha = \mu_A(y) = \mu_B \cup \mu_C(y) = \mu_B(y) \lor \mu_C(y) = \mu_C(y) > \mu_B(y).$$

Therefore, $\alpha > \mu_B(y)$. So that, $\mu_C(y) > \mu_C(x)$ and $\mu_B(x) > \mu_B(y)$. Hence $\mu_B(x+y) = \mu_B(y)$, for all x and y in F and $\mu_C(x+y) = \mu_C(x)$, for all x and y in F. But then,

(3.1)
$$\alpha = \mu_A(x+y) = \mu_B \cup C(x+y) = \mu_B(x+y) \lor \mu_C(x+y) = \mu_B(y) \lor \mu_C(x) < \alpha.$$

<u>Case (ii)</u>: Assume that $\nu_B(x) < \mu_C(x)$ and $\nu_B(y) > \nu_C(y)$, for some x and y in F. Then,

$$\beta = \nu_A(x) = \nu_B \cup C(x) = \nu_B(x) \land \nu_C(x) = \nu_B(x) < \nu_C(x).$$

Therefore, $\beta < \nu_C(x)$. And

$$\beta = \nu_A(y) = \nu_B \cup C(y) = \nu_B(y) \land \nu_C(y) = \nu_C(y) < \nu_B(y).$$

M. VASU

Therefore, $\beta < \nu_B(y)$. So that, $\nu_C(y) < \nu_C(x)$ and $\nu_B(x) < \nu_B(y)$. Hence $\nu_B(x+y) = \nu_B(y)$ and $\nu_C(x+y) = \nu_C(x)$, for x and y in F. But then,

(3.2) $\beta = \nu_A(x+y) = \nu_B \cup C(x+y) = \nu_B(x+y) \wedge \nu_C(x+y) = \nu_B(y) \wedge \nu_C(x) > \beta$

It is a contradiction by (3.1) and (3.2). Therefore, either $B \subseteq C$ or $C \subseteq B$ is true.

Theorem 3.7. If A_i and B_i are any two intuitionistic *L*-fuzzy subfields of a field $(F, +, \cdot)$, then their intersection $A_i \cap B_i$ is an intuitionistic *L*-fuzzy subfield of *F*.

Theorem 3.8. The intersection of a family of intuitionistic L-fuzzy subfields of a field $(F, +, \cdot)$ is an intuitionistic L-fuzzy subfield of F.

Theorem 3.9. If A is an intuitionistic Multi fuzzy subfield of a field $(F, +, \cdot)$, then A is an intuitionistic Multi fuzzy subfield of F.

Proof. Let *A* be an intuitionistic Multi fuzzy subfield of a field *F*. Consider $A = \langle (x), \mu_A(x), \nu_A(x) \rangle$, for all *x* in *F*, we take

$$A = B = \langle (x), \mu_B(x), \nu_B(x) \rangle,$$

where $\mu_B(x) = \mu_A(x), \nu_B(x) = 1 - \mu_A(x)$. Clearly,

$$\mu_B(x-y) \ge \mu_B(x) \lor \mu_B(y),$$

for all x and y in F and $\mu_B(xy-1) \ge \mu_B(x) \lor \mu_B(y)$, for all x and $y \ne 0$ in F. Since A is an intuitionistic Multi fuzzy subfield of F, we have $\mu_A(x-y) \ge \mu_A(x) \lor \mu_A(y)$, for all x and y in F, which implies that $1 - \nu_B(x-y) \ge (1 - \nu_B(x)) \lor (1 - \nu_B(y))$, which implies that

$$\nu_B(x-y) \le 1 - (1 - \nu_B(x)) \lor (1 - \nu_B(y)) = \nu_B(x) \land \nu_B(y).$$

Therefore,

$$\nu_B(x-y) \le \nu_B(x) \land \nu_B(y),$$

for all x and y in F. And, $\mu_A(xy-1) \ge \mu_A(x) \lor \mu_A(y)$, for all x and $y \ne 0$ in F, which implies that $1 - \nu_B(xy-1) \ge (1 - \nu_B(x)) \lor (1 - \nu_B(y))$ which implies that $\nu_B(xy-1) \le 1 - (1 - \nu_B(x)) \lor (1 - \nu_B(y)) = \nu_B(x) \lor \nu_B(y)$.

Therefore,

$$\nu_B(xy-1) \le \nu_B(x) \land \nu_B(y)$$

for all x and $y \neq 0$ in F.

Hence B = A is an intuitionistic Multi fuzzy subfield of a field R.

Remark 3.1. The converse of the above theorem is not true. It is shown by the following example.

Example 1. Consider the field $Z_5 = 0, 1, 2, 3, 4$ with addition modulo 5 and multiplication modulo 5 operations. Then

$$A = \left< 0, 0.7, 0.2 \right>, \left< 1, 0.5, 0.1 \right>, \left< 2, 0.5, 0.4 \right>, \left< 3, 0.5, 0.1 \right>, \left< 4, 0.5, 0.4 \right>$$

is not an intuitionistic Multi fuzzy subfield of Z_5 , but

$$A = \langle 0, 0.7, 0.3 \rangle, \langle 1, 0.5, 0.5 \rangle, \langle 2, 0.5, 0.5 \rangle, \langle 3, 0.5, 0.5 \rangle, \langle 4, 0.5, 0.5 \rangle$$

is an intuitionistic Multi fuzzy subfield of Z_5 .

Theorem 3.10. If A is an intuitionistic Multi fuzzy subfield of a field $(F, +, \cdot)$, then A is an intuitionistic Multi fuzzy subfield of F.

Proof. Let A be an intuitionistic Multi fuzzy subfield of a field F. That is $A = \langle (x), \mu_A(x), \nu_A(x) \rangle$, for all x in F. Let $A = B = \langle (x), \mu_B(x), \nu_B(x) \rangle$, where $\mu_B(x) = 1 - \nu_A(x), \nu_B(x) = \nu_A(x)$. Clearly,

$$\nu_B(x-y) \le \nu_B(x) \land \nu_B(y),$$

for all x and y in F and $\nu_B(xy-1) \le \nu_B(x) \land \nu_B(y)$, for all x and y = 0 in F. Since A is an intuitionistic Multi fuzzy subfield of F, we have $\nu_A(x-y) \le \nu_A(x) \land \nu_A(y)$, for all x and y in F, which implies that

$$1 - \mu_B(x - y) \le (1 - \mu_B(x)) \land (1 - \mu_B(y)),$$

which implies that

$$\mu_B(x-y) \ge 1 - (1 - \mu_B(x)) \land (1 - \mu_B(y)) = \mu_B(x) \lor \mu_B(y).$$

Therefore,

$$\mu_B(x-y) \ge \mu_B(x) \lor \mu_B(y),$$

for all x and y in F. And $\nu_A(xy-1) \leq \nu_A(x) \wedge \nu A(y)$, for all x and y in F, which implies that

$$1 - \mu_B(xy - 1) \le (1 - \mu_B(x)) \land (1 - \mu_B(y)),$$

which implies that

$$\mu_B(xy-1) \ge 1 - (1 - \mu_B(x)) \land (1 - \mu_B(y)) = \mu_B(x) \lor \mu_B(y).$$

Therefore,

$$\mu_B(xy-1)\mu_B(x) \lor \mu_B(y),$$

for all x and y in F. Hence B = A is an intuitionistic Multi fuzzy subfield of a field F.

Remark 3.2. The converse of the above theorem is not true. It is shown by the following example.

Example 2. Consider the field $Z_5 = 0, 1, 2, 3, 4$ with addition modulo 5 and multiplication modulo 5 operations. Then

(3, 0.6, 0.4), (4, 0.5, 0.4)

is not an intuitionistic Multi fuzzy subfield of Z_5 , but

 $A = \langle 0, 0.9, 0.1 \rangle, \langle 1, 0.6, 0.4 \rangle, \langle 2, 0.6, 0.4 \rangle, \langle 3, 0.6, 0.4 \rangle, \langle 4, 0.6, 0.4 \rangle$

is an intuitionistic Multi fuzzy subfield of Z_5 .

REFERENCES

- [1] K. T. ATANASSOV: Intuitionistic fuzzy sets theory and applications, Physica-Verlag, A Springer-Verlag company, Bulgaria, 1999.
- [2] A. ROSENFELD: *Fuzzy Groups*, Journal of mathematical analysis and applications, **35** (1971), 512–517.
- [3] R. BISWAS: Fuzzy fields and fuzzy linear spaces redefined, Fuzzy sets and systems, North Holland, 1989.
- [4] M. MUTHUSAMY, N. PALANIAPPAN, K. ARJUNAN: Notes on intuitionistic fuzzy subfields, International J. of Math.Sci. Engg. Appls., 4(5) (2010), 345–354.
- [5] P. BHATTACHARYA: *Fuzzy Subgroups: Some Characterizations*, Journal of Mathematical Analysis and Applications, **128** (1987), 241–252.
- [6] R. KUMAR: *Fuzzy Algebra*, University of Delhi Publication Division, 1 (1993), 33–44.
- [7] R. KUMAR: Fuzzy irreducible ideals in rings, Fuzzy Sets and Systems, 42 (1991), 369–379.
- [8] S. ABOU-ZAID: On generalized characteristic fuzzy subgroups of a finite group, Fuzzy sets and systems, **5** (1991), 235–241.
- [9] F. I. SIDKY, M. A. MISHREF: *Fuzzy cosets and cyclic and Abelian fuzzy subgroups*, Fuzzy sets and systems, **43** (1991), 243–250.
- [10] P. SIVARAMAKRISHNA DAS: *Fuzzy groups and level subgroups*, Journal of Mathematical Analysis and Applications, **84** (1981), 264–269.
- [11] W. B. VASANTHA KANDASAMY: *Smarandache fuzzy algebra*, American research press, Rehoboth, 2003.

- [12] M. VASU, D. SIVAKUMAR, K. ARJUNAN: *A study on anti-Multi fuzzy subfield of a field*, Indian journal of research, 1(1)(2012), 78–79.
- [13] L. A. ZADEH: Fuzzy sets, Information and control, 8 (1965), 338–353.

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE FOR WOMEN SIVAGANGAI-630562, TAMIL NADU, INDIA