
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.4, 1955–1963
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.4.54 Spec. Issue on NCFCTA-2020

SOME THEOREMS IN INTUITIONISTIC MULTI FUZZY
SUBFIELDS OF A FIELD

M. VASU

ABSTRACT. In this paper, some properties of intuitionistic multi fuzzy subfield
of a field are defined and studied. Also some definitions, results and Theorems
are given.

1. INTRODUCTION

After the introduction of fuzzy sets by L.A.Zadeh [13], several researchers
explored on the generalization of the notion of fuzzy set ( [3–10]). The concept
of intuitionistic Multi fuzzy subset was introduced by K.T.Atanassov [1], as a
generalization of the notion of fuzzy set. Azriel Rosenfeld [2] defined a fuzzy
groups. Vasu.M, Sivakumar.D and Arjunan.K [12] defined an anti-Multi fuzzy
subfield of a field. We introduce the concept of intuitionistic Multi fuzzy subfield
of a field and established some results.

2. PRELIMINARIES

Definition 2.1. Let X be a non-empty set. A fuzzy subset A of X is a function
A : X → [0, 1].
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Definition 2.2. A multi fuzzy subset A of a set X is defined as an object of the
form A = {〈x,A1(x), A2(x), A3(x), ..., An(x)〉 /x ∈ X}, where Ai : X → [0, 1] for
all i. Here A is called multi fuzzy subset of X with dimension n. It is denoted as
A = 〈A1, A2, A3, ..., An〉 .

Definition 2.3. An intuitionistic fuzzy set (IFS) A in X is defined as an object
having the form A = (x, µAi

(x), γAi
(x))/x ∈ X, where µAi

: X → [0, 1] and γAi
:

X → [0, 1] define the degree of membership and the degree of non-membership of
the element x ∈ X respectively and every x in X satisfying 0 ≤ µAi

(x)+γAi
(x) ≤ 1.

Definition 2.4. An intuitionistic multi fuzzy subset A of a set X is defined as an
object of the form

A =
(
x, µA1(x), muA2(x), ..., µAn(x), γA1(x), γA2(x), ..., γAn(x)

)
/x ∈ X,

where µAi
: X → [0, 1] and γAi

: X → [0, 1] for all i, define the degrees of mem-
bership and the degrees of non-membership of the element x ∈ X respectively
and every x in X satisfying 0 ≤ µAi

(x) + γAi
(x) ≤ 1 for all i. It is denoted as

Ai = (µAi
, γAi

), where µAi
= (µA1 , µA2 , ..., µAn) and γAi

= (γA1 , γA2 , ..., γAn).

Definition 2.5. Let A and B be any two intuitionistic multi fuzzy subset of X. We
define the following relations and operations:

(i) A ⊆ B if and only if µAi(x) ≤ µBi(x) and γAi(x) ≥ γBi(x) for all x ∈ X
and for all i.

(ii) A = B if and only if µAi(x) = µBi(x) and γAi(x) = γBi(x) for all x ∈ X
and for all i.

(iii) A∩B if and only if (A∩B)(x) = minµAi(x), µBi(x),maxµAi(x), γBi(x)

for all x ∈ X and for all i.
(iv) A∪B if and only if (A∪B)(x) = maxµAi(x), µBi(x),min γAi(x), γBi(x)

for all x ∈ X and for all i.

Definition 2.6. Let (F,+, ·) be a field. A multi fuzzy subset A of F is said to be a
multi fuzzy subfield (MFSF) of F if the following conditions are satisfied:

(i) Ai(x− y) ≥ minAi(x), Ai(y), for all x, y ∈ F , for all i,
(ii) Ai(xy− 1) ≥ minAi(x), Ai(y), for all x, y 6= 0 ∈ F , for all i, where 0 is the

additive identity element of F .
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Definition 2.7. Let (F,+, ·) be a field. An intuitionistic multi fuzzy subset A of
F is said to be an intuitionistic multi fuzzy subfield (ILFSF) of F if it satisfies the
following axioms:

(i) µAi
(x− y) ≥ minµAi

(x), µAi
(y), for all x, y ∈ F , for all i.

(ii) µAi
(xy − 1) ≥ minµAi

(x), µAi
(y) for all x, y 6= 0 in F , for all i.

(iii) νAi
(x− y) ≤ min νAi

(x), νAi
(y) for all x, y in F , for all i.

(iv) νAi
(xy − 1) ≤ min νAi

(x), νAi
(y) for all x, y 6= 0 in F , for all i where 0 is

the additive identity element of F .

3. SOME PROPERTIES

Theorem 3.1. Let (F,+, ·) be a field. If A is an intuitionistic Multi fuzzy subfield
of F , then

(i) µAi
(x+ y) = µAi

(x) ∨ µAi
(y) with µAi

(x) 6= µAi
(y),

(ii) νAi
(x+ y) = νAi

(x) ∧ νAi
(y) with νAi

(x) 6= νAi
(y), for each x and y in F .

(iii) µAi
(xy) = µAi

(x) ∨ µAi
(y) with µAi

(x) 6= µAi
(y),

(iv) νAi
(xy) = νAi

(x) ∧ νAi
(y) with νAi

(x) 6= νAi
(y), for each x and y 6= 0 in F

for all i.

Theorem 3.2. Let A be an intuitionistic Multi fuzzy subfield of a field (F,+, ·).

(i) If µAi
(x) < µAi

(y), for some x and y in F , then µAi
(x + y) = µAi

(x) =

µAi
(y + x) for all i.

(ii) If νAi
(y) < νAi

(x), for some x and y in F for all i, then νAi
(x + y) =

νAi
(x) = νAi

(y + x).
(iii) If µAi

(x) < µAi
(y), for some x and y 6= 0 in F for all i, then µAi

(xy) =

µAi
(x) = µAi

(yx).
(iv) If νAi

(y) < νAi
(x), for some x and y 6= 0 in F for all i, then νAi

(xy) =

νAi
(x) = νAi

(yx).

Proof. Let A be an intuitionistic Multi fuzzy subfield of a field F .

(i) Also we have µAi
(x) < µAi

(y), for some x and y in F , Then, µAi
(x+y) ≥

µAi
(x) ∨ µAi

(y) = µAi
(x); and µAi

(x) = µAi
(x + y − y) ≥ µAi

(x + y) ∨
µAi

(−y) ≥ µAi
(x+y)∨µAi

(y) = µAi
(x+y). Therefore, µAi

(x+y) = µAi
(x).

Hence µAi
(x+ y) = µAi

(x) = µAi
(y + x).
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(ii) Also we have νAi
(y) < νAi

(x), for some x and y in F . Then, νAi
(x+ y) ≤

νAi
(x) ∧ νAi

(y) = νAi
(x); and νAi

(x) = νAi
(x + y − y) ≤ νAi

(x + y) ∧
νAi

(−y) ≤ νAi
(x+y)∧νAi

(y) = νAi
(x+y). Therefore, νAi

(x+y) = νAi
(x).

Hence νAi
(x+ y) = νAi

(x) = νAi
(y + x).

(iii) Also we have µAi
(x) < µAi

(y), for some x and y 6= 0 in F for all i.
Then, µAi

(xy) ≥ µAi
(x) ∨ µAi

(y) = µAi
(x); and µAi

(x) = µAi
(xyy − 1) ≥

µAi
(xy)∨ µAi

(y− 1) ≥ µAi
(xy)∨ µAi

(y) = µAi
(xy). Therefore, µAi

(xy) =

µAi
(x). Hence µAi

(xy) = µAi
(x) = µAi

(yx).

(iv) Also we have νAi
(y) < νAi

(x), for some x and y 6= 0 in F . Then,
νAi

(xy) ≤ νAi
(x)∧νAi

(y) = νAi
(x); and νAi

(x) = νAi
(xyy−1) ≤ νAi

(xy)∧
νAi

(y − 1) ≤ νAi
(xy) ∧ νAi

(y) = νAi
(xy). Therefore νAi

(xy) = νAi
(x).

Hence νAi
(xy) = νAi

(x) = νAi
(yx).

�

Theorem 3.3. Let A be an intuitionistic Multi fuzzy subfield of a field (F,+, ·).
(i) If µAi

(x) > µAi
(y), for some x and y in F , then µAi

(x + y) = µAi
(y) =

µAi
(y + x).

(ii) If νAi
(y) > νAi

(x), for some x and y in F for all i, then νAi
(x + y) =

νAi
(y) = νAi

(y + x), for all x and y in F .
(iii) If µAi

(x) > µAi
(y), for some x and y 6= 0 in F for all i, then µAi

(xy) =

µAi
(y) = µAi

(yx).

(iv) If νAi
(y) > νAi

(x), for some x and y 6= 0 in F for all i then νAi
(xy) =

νAi
(y) = νAi

(yx).

Proof. It is trivial. �

Theorem 3.4. Let A be an intuitionistic Multi fuzzy subfield of a field (F,+, ·).
(i) If µAi

(x) > µAi
(y), for some x and y in F for all i, then µAi

(x + y) =

µAi
(y) = µAi

(y + x).

(ii) If νAi
(y) < νAi

(x), for some x and y in F for all i, then νAi
(x + y) =

νAi
(x) = νAi

(y + x).

(iii) If µAi
(x) > µAi

(y), for some x and y 6= 0 in F for all i, then µAi
(xy) =

µAi
(y) = µAi

(yx).

(iv) If νAi
(y) < νAi

(x), for some x and y 6= 0 in F for all i, then νAi
(xy) =

νAi
(x) = νAi

(yx).

Proof. It is trivial. �
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Theorem 3.5. Let A be an intuitionistic Multi fuzzy subfield of a field (F,+, ·).
(i) If µAi

(x) < µAi
(y), for some x and y in F for all i, then µAi

(x + y) =

µAi
(x) = µAi

(y + x).

(ii) ) If νAi
(y) > νAi

(x), for some x and y in F for all i, then νAi
(x + y) =

νAi
(y) = νAi

(y + x).

(iii) If µAi
(x) < µAi

(y), for some x and y 6= 0 in F for all i, then µAi
(xy) =

µAi
(x) = µAi

(yx).

(iv) If νAi
(y) > νAi

(x), for some x and y 6= 0 in F for all i, then νAi
(xy) =

νAi
(y) = νAi

(yx).

Proof. It is trivial. �

Theorem 3.6. Let A be an intuitionistic Multi fuzzy subfield of a field (F,+, ·)
such that Im µA = α and Im νA = β, where α and β in L. If A = B ∪C, where B
and C are intuitionistic Multi fuzzy subfields of F , then either B ⊆ C or C ⊆ B.

Proof. Let A = B ∪ C = 〈(x), µA(x), νA(x)〉 /x in F , B = 〈(x), µB(x), νB(x)〉 /x in
F and C = 〈(x), µC(x), νC(x)〉 /x in F .
Case (i): Assume that µB(x) > µC(x)andµB(y) < µC(y), for some x and y in R.
Then,

α = µA(x) = µB ∪ µC(x) = µB(x) ∨ µC(x) = µB(x) > µC(x).

Therefore, α > µC(x), and

α = µA(y) = µB ∪ µC(y) = µB(y) ∨ µC(y) = µC(y) > µB(y).

Therefore, α > µB(y). So that, µC(y) > µC(x) and µB(x) > µB(y). Hence
µB(x+ y) = µB(y), for all x and y in F and µC(x+ y) = µC(x), for all x and y in
F . But then,

(3.1) α = µA(x+y) = µB∪C(x+y) = µB(x+y)∨µC(x+y) = µB(y)∨µC(x) < α.

Case (ii): Assume that νB(x) < µC(x) and νB(y) > νC(y), for some x and y in F .
Then,

β = νA(x) = νB ∪ C(x) = νB(x) ∧ νC(x) = νB(x) < νC(x).

Therefore, β < νC(x). And

β = νA(y) = νB ∪ C(y) = νB(y) ∧ νC(y) = νC(y) < νB(y).
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Therefore, β < νB(y). So that, νC(y) < νC(x) and νB(x) < νB(y). Hence
νB(x+ y) = νB(y) and νC(x+ y) = νC(x), for x and y in F . But then,

(3.2) β = νA(x+y) = νB∪C(x+y) = νB(x+y)∧νC(x+y) = νB(y)∧νC(x) > β

It is a contradiction by (3.1) and (3.2). Therefore, either B ⊆ C or C ⊆ B is
true. �

Theorem 3.7. If Ai and Bi are any two intuitionistic L-fuzzy subfields of a field
(F,+, ·), then their intersection Ai ∩Bi is an intuitionistic L-fuzzy subfield of F .

Theorem 3.8. The intersection of a family of intuitionistic L-fuzzy subfields of a
field (F,+, ·) is an intuitionistic L-fuzzy subfield of F .

Theorem 3.9. If A is an intuitionistic Multi fuzzy subfield of a field (F,+, ·), then
A is an intuitionistic Multi fuzzy subfield of F .

Proof. Let A be an intuitionistic Multi fuzzy subfield of a field F . Consider A =

〈(x), µA(x), νA(x)〉, for all x in F , we take

A = B = 〈(x), µB(x), νB(x)〉 ,

where µB(x) = µA(x), νB(x) = 1− µA(x). Clearly,

µB(x− y) ≥ µB(x) ∨ µB(y),

for all x and y in F and µB(xy−1) ≥ µB(x)∨µB(y), for all x and y 6= 0 in F . Since
A is an intuitionistic Multi fuzzy subfield of F , we have µA(x−y) ≥ µA(x)∨µA(y),
for all x and y in F , which implies that 1− νB(x− y) ≥ (1− νB(x))∨ (1− νB(y)),
which implies that

νB(x− y) ≤ 1− (1− νB(x)) ∨ (1− νB(y)) = νB(x) ∧ νB(y).

Therefore,
νB(x− y) ≤ νB(x) ∧ νB(y),

for all x and y in F . And,µA(xy − 1) ≥ µA(x) ∨ µA(y), for all x and y 6= 0 in F ,
which implies that 1− νB(xy− 1) ≥ (1− νB(x))∨ (1− νB(y)) which implies that
νB(xy − 1) ≤ 1− (1− νB(x)) ∨ (1− νB(y)) = νB(x) ∨ νB(y).

Therefore,
νB(xy − 1) ≤ νB(x) ∧ νB(y),

for all x and y 6= 0 in F .
Hence B = A is an intuitionistic Multi fuzzy subfield of a field R. �
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Remark 3.1. The converse of the above theorem is not true. It is shown by the
following example.

Example 1. Consider the field Z5 = 0, 1, 2, 3, 4 with addition modulo 5 and multi-
plication modulo 5 operations. Then

A = 〈0, 0.7, 0.2〉 , 〈1, 0.5, 0.1〉 , 〈2, 0.5, 0.4〉 , 〈3, 0.5, 0.1〉 , 〈4, 0.5, 0.4〉

is not an intuitionistic Multi fuzzy subfield of Z5, but

A = 〈0, 0.7, 0.3〉 , 〈1, 0.5, 0.5〉 , 〈2, 0.5, 0.5〉 , 〈3, 0.5, 0.5〉 , 〈4, 0.5, 0.5〉

is an intuitionistic Multi fuzzy subfield of Z5.

Theorem 3.10. If A is an intuitionistic Multi fuzzy subfield of a field (F,+, ·), then
A is an intuitionistic Multi fuzzy subfield of F .

Proof. Let A be an intuitionistic Multi fuzzy subfield of a field F . That is A =

〈(x), µA(x), νA(x)〉, for all x in F . Let A = B = 〈(x), µB(x), νB(x)〉, where
µB(x) = 1− νA(x), νB(x) = νA(x). Clearly,

νB(x− y) ≤ νB(x) ∧ νB(y),

for all x and y in F and νB(xy−1) ≤ νB(x)∧νB(y), for all x and y = 0 in F . Since
A is an intuitionistic Multi fuzzy subfield of F , we have νA(x−y) ≤ νA(x)∧νA(y),
for all x and y in F , which implies that

1− µB(x− y) ≤ (1− µB(x)) ∧ (1− µB(y)),

which implies that

µB(x− y) ≥ 1− (1− µB(x)) ∧ (1− µB(y)) = µB(x) ∨ µB(y).

Therefore,
µB(x− y) ≥ µB(x) ∨ µB(y),

for all x and y in F . And νA(xy− 1) ≤ νA(x)∧ νA(y), for all x and y in F , which
implies that

1− µB(xy − 1) ≤ (1− µB(x)) ∧ (1− µB(y)),

which implies that

µB(xy − 1) ≥ 1− (1− µB(x)) ∧ (1− µB(y)) = µB(x) ∨ µB(y).

Therefore,
µB(xy − 1)µB(x) ∨ µB(y),
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for all x and y in F . Hence B = A is an intuitionistic Multi fuzzy subfield of a
field F . �

Remark 3.2. The converse of the above theorem is not true. It is shown by the
following example.

Example 2. Consider the field Z5 = 0, 1, 2, 3, 4 with addition modulo 5 and multi-
plication modulo 5 operations. Then

A = 〈0, (0.5, 0.4, 0.3), (0.1, 0.2, 0.3)〉 , 〈1, 0.6, 0.4〉 , 〈2, 0.5, 0.4〉 ,

〈3, 0.6, 0.4〉 , 〈4, 0.5, 0.4〉

is not an intuitionistic Multi fuzzy subfield of Z5, but

A = 〈0, 0.9, 0.1〉 , 〈1, 0.6, 0.4〉 , 〈2, 0.6, 0.4〉 , 〈3, 0.6, 0.4〉 , 〈4, 0.6, 0.4〉

is an intuitionistic Multi fuzzy subfield of Z5.
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