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INTUITIONISTIC INTERVAL VALUED MULTI FUZZY
SUBFIELDS OF A FIELD

M. VASU

ABSTRACT. In this paper, some theorems of intuitionistic interval valued multi
fuzzy subfield of a field are defined and noted and also some definitions, results
and properties are given.

1. INTRODUCTION

The fuzzy set was introduced by L.A.Zadeh [13], A lot of researchers ex-
plained on the generalization of the notation of fuzzy set ( [3–10]). Some re-
sults of intuitionistic multi fuzzy subset was introduced by K.T. Atanassov [1] as
a generalization of the notion of fuzzy set. Azriel Rosenfeld [2] was introduced
a fuzzy group.

2. PRELIMINARIES

Definition 2.1. Let X be a non-empty set. A fuzzy subset E of X is a function
E : X → [0, 1].

Definition 2.2. A multi fuzzy subset E of a set X is defined as an object of the
form E = {〈x,E1(x), E2(x), E3(x), ..., En(x)〉 /x ∈ X}, where Ei : X → [0, 1] for
every i. E is called multi fuzzy subset of X with dimension n. It is denoted as
E = {E1, E2, E3, ..., En}
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Definition 2.3. A intuitionistic fuzzy set (IFS) E in X is defined as an object
having the form E = {(x, µE(x), νE(x))/x ∈ X}, where µE : X → [0, 1] and
νE : X → [0, 1] define the degree of membership and the degree of non-membership
of the element x ∈ X respectively and all x in X satisfying 0 ≤ µE(x) + νE(x) ≤ 1.

Definition 2.4. An intuitionistic multi fuzzy subset of A of a set X is defined as an
object of the form A = {(x, µE1(x), µE2(x), ..., µEn(x), νE1(x), νE2(x), ..., νEn(x)/

x ∈ X} where µEi
(x) : X → [0, 1] and νEi

(x) : X → [0, 1] for every i, define the
degrees of membership and the degrees of non-membership of the element x ∈ X
respectively and for all x ∈ X satisfying 0 ≤ µE(x) + νE(x) ≤ 1, for every i. It
is noted as E = (µE, νE) where µE = {(µE1(x), µE2(x), ..., µEn(x))} and νE =

{(νE1(x), νE2(x), ..., νEn(x))}.

Definition 2.5. Let X be a non-empty set, An interval valued fuzzy subset E of
X is a function E : X → D[0, 1], where D[0, 1] is a collection of all subinterval of
[0, 1].

Definition 2.6. An interval valued multi fuzzy subset of E of a set X is defined
as an object of the form E = {〈x,E1(x), E2(x), E3(x), ..., En(x)〉 /x ∈ X} where
Ei(x) : X → D[0, 1] for every i, Here E is called an interval valued multi fuzzy
subset of X with dimension n. This noted as E = 〈E1E2...En〉.

Definition 2.7. An intuitionistic interval valued fuzzy set E in X is an object
having the form E = {(x, µE(x), νE(x))/x ∈ X}, where µE : X → D[0, 1], νE :

X → D[0, 1] defined the degrees of membership, the degree of non-membership of
the elements x in X respectively and for all x in X satisfying 0 ≤ µE(x)+ νE(x) ≤ 1.

Definition 2.8. Let E and F be any two intuitionistic interval valued multi fuzzy
subset of X, we define the following relations and operations

(i) E ≤ F iff µEi
(x) ≤ µFi

(x) and νEi
(x) ≥ νFi

(x) for every x in X and for
every i.

(ii) E = F iff µEi
(x) = µFi

(x) and νEi
(x) = νFi

(x) for every x in X and for
every i.

(iii) E ∩ F iff E ∩ F (x) = {rmin{µEi
(x), µFi

(x)}, rmax{νEi
(x), νFi

(x)}} for
every x in X and for every i.

(iv) E ∪ F iff E ∪ F (x) = {{rmaxµEi
(x), µFi

(x)}, rmin{νEi
(x), νFi

(x)}} for
every x in X yand for every i.
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Definition 2.9. Let (F,+, ·) be a field an interval valued multi fuzzy subset E of F
is said to be a interval valued multi fuzzy subfield of F if the following conditions
are satisfied.

(i) Ei(x− y) ≥ rmin{Ei(x), Ei(y)}, for every x, y in F , for every i.
(ii) Ei(xy

−1) ≥ rmin{Ei(x), Ei(y)} for every x, y 6= 0 in F for every i, where
0 is the additive identity element of F .

Definition 2.10. Let (F,+, ·) be a field. An intuitionistic interval valued multi
fuzzy subsetE of F is said to be an intuitionistic interval valued multi fuzzy subfield
of F , if it satisfies the following axioms

(i) µEi
(x− y) ≥ rmin{µEi

(x), µEi
(y)} for every x, y in F for every i.

(ii) µEi
(xy−1) ≥ rmin{µEi

(x), µEi
(x)} for every x, y 6= 0 in F for every i.

(iii) νEi
(x− y) ≤ rmin{νEi

(x), νEi
(y)} for every x, y in F for every i.

(iv) νEi
(xy−1) ≤ rmin{νEi

(x), νEi
(y)} for every x, y 6= 0 in F for every i, where

0 is the additive identify element in F .

3. SOME PROPERTIES

Note 1. 0 = [0, 0], 1 = [1, 1].

Theorem 3.1. If E is an intuitionistic interval valued multi fuzzy subfield (F,+, ·),
then µEi

(−x) = µEi
(x) for all x in F and µEi

(x−1) = µEi
(x) for all x 6= 0 in F

and νEi
(−x) = νEi

(x) for every x in F and νEi
(x−1) = νEi

(x) for all x 6= 0 in F ,
µEi

(x) ≤ µEi
(0) for every x in F and µEi

(x) ≤ µEi
(1) for every x 6= 0 in F and

νEi
(x) ≥ νEi

(0) for every x in F and νEi
(x) ≥ νEi

(1) for all x 6= 0 in F , for all i,
where 0 and 1 are identify element in F .

Proof. For x in F and 0, 1 there are identify elements in F . Now µEi
(x) =

µEi
(−(−x) ≥ µEi

(−x) ≥ µEi
(x). Therefore,

µEi
(−x) = µEi

(x)

for every x in F and for every i;

µEi
(x) = µEi

((x−1)−1) ≥ µEi
(x−1) ≥ µEi

(x).µEi
(x−1) = µEi

(x)

for every x 6= 0 in F and for every i. So,

νEi
(x) = νEi

(−(−x)) ≤ νEi
(−x) ≤ νEi

(x).
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Therefore,

νEi
(−x) = νEi

(x)

for every x in F and for every i, and further,

νEi
(x) = νEi

(x−1)−1 ≤ νEi
(x−1) ≤ νEi

(x)

for every x in F and for every i,

µEi
(0) = µEi

(x− x) ≥ rmin{µEi
(x), µEi

(−x)} = µEi
(x).

Therefore,

µEi
(0) ≥ µEi

(x)

for all x in F and for every i.
Now

µEi
(1) = µEi

(xx−1) ≥ rmin{µEi
(x), µEi

(x−1)} = µEi
(x).

Therefore,

µEi
(1) ≥ µEi

(x)

for every x 6= 0 in F and for every i, and

νEi
(0) = νEi

(x− x) ≤ rmax{νEi
(x), νEi

(−x)} = νEi
(x).

Therefore,

νEi
(0) ≤ νEi

(x)

for every x in F and for every i,

νEi
(1) = νEi

(xx−1) ≤ rmax{νEi
(x), νEi

(x−1)} = νEi
(x).

Therefore,

νEi
(1) ≤ νEi

(x)

for every x 6= 0 in F and for every i. �

Theorem 3.2. If A is an intuitionistic yinterval valued multi fuzzy subfield of a
field (F,+, ·), then for each i,

(i) µEi
(x− y) = µEi

(0) gives µEi
(x) = µEi

(y) for each x and y in F .
(ii) µEi

(xy−1) = µEi
(1) gives µEi

(x) = µEi
(y) for every x and y = 0 in F .

(iii) νEi
(x− y) = νEi

(0) gives νEi
(x) = νEi

(y) for every x and y in F .
(iv) νEi

(xy−1) = νEi
(1) gives νEi

(x) = νEi
(y) for all x and y 6= 0 in F where 0

and 1 are identity elements in F .
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Theorem 3.3. Let E be an intuitionistic interval valued multi fuzzy subset of a
field (F,+, ·). If for every i, µEi

(e) = µEi
(e1) = 1 and νEi

(e) = νEi
(e1) = 0 and

µEi
(x− y) ≥ rmin{µEi

(x), µEi
(y)} for every x and y in F ,

µEi
(xy−1) ≥ rmin{µEi

(x), µEi
(y)} for every x and y 6= e in F and

νEi
(x− y) ≤ rmax{νEi

(x), νEi
(y)} for every x and y in F ,

νEi
(xy−1) ≤ rmax{νEi

(x), νEi
(y)} for every x and y 6= e in F ,

then E is an intuitionistic multi fuzzy subfield of F , where e and e1 are identity
elements of F .

Proof. It is well defined. �

Theorem 3.4. Let E be an intuitionistic multi fuzzy subfield of a field (F,+, ·),
then H = {x/x ∈ F : µEi

(x) = 1, νEi
(x) = 0 for every i} is either empty or a

subfield of F .

Proof. If no element satisfies this conditions, then H is empty. If x and y in H,
then

µEi
(x− y) ≥ rmin{µEi

(x), µEi
(−y)}

≥ rmin{µEi
(x), µEi

(y)}

= rmin(1, 1)

= 1.

Therefore, µEi
(x− y) = 1 for every x, y in H and for every i.

µEi
(xy−1) ≥ rmin{µEi

(x), µEi
(y−1)}

≥ rmin{µEi
(x), µEi

(y)}

= rmin(1, 1)

= 1.

Therefore, µEi
(xy−1) = 1 for every x and y 6= 0 in H and for every i.

νEi
(x− y) ≤ rmax{νEi

(x), νEi
(−y)}

≤ rmax{νEi
(x), νEi

(y)}

= rmax(0, 0)

= 0

Therefore, νEi
(x−y) = 0 for every x and y in H and for every i. x−y, xy−1 ∈ H.
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Therefore, H is a subfield of F . Hence H is either empty or a subfield of
F . �

Theorem 3.5. Let E be an intuitionistic inteval valued multi fuzzy subfield of a
field (F,+, ·), then for every i,

(i) If µEi
(x− y) = 1 then µEi

(x) = µEi
(y) for every x and y 6= e in F.

(ii) If νEi
(x − y) = 0 then νEi

(x) = νEi
(y) for every x and y in F and if

νEi
(xy−1) = 0, then νEi

(x) = νEi
(y) for every x and y 6= e1 in F .

Here e and e1 are identity elements of F .

Theorem 3.6. If E be a Intuitionistic Interval valued multi fuzzy subfield of a field
(F,+, ·), then for every i:

(i) If µEi
(x − y) = 0 then either µEi

(x) = 0 or µEi
(y) = 0 for every x, y in F

and if µEi
(xy−1) = 0 then either µEi

(x) = 0 or µEi
(y) = 0 for every x and

y 6= e in F .
(ii) If νEi

(x − y) = 1 then either νEi
(x) = 1 or νEi

(y) = 1 for every x, y in F

and if νEi
(xy−1) = 1 then either νEi

(x) = 1 or νEi
(y) = 1 for every x and

y 6= e1 in F , where e and e1 are identity elements of F .
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