

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 1965–1971 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.55 Spec. Issue on NCFCTA-2020

INTUITIONISTIC INTERVAL VALUED MULTI FUZZY SUBFIELDS OF A FIELD

M. VASU

ABSTRACT. In this paper, some theorems of intuitionistic interval valued multi fuzzy subfield of a field are defined and noted and also some definitions, results and properties are given.

1. INTRODUCTION

The fuzzy set was introduced by L.A.Zadeh [13], A lot of researchers explained on the generalization of the notation of fuzzy set ([3–10]). Some results of intuitionistic multi fuzzy subset was introduced by K.T. Atanassov [1] as a generalization of the notion of fuzzy set. Azriel Rosenfeld [2] was introduced a fuzzy group.

2. PRELIMINARIES

Definition 2.1. Let X be a non-empty set. A fuzzy subset E of X is a function $E: X \to [0, 1]$.

Definition 2.2. A multi fuzzy subset E of a set X is defined as an object of the form $E = \{\langle x, E_1(x), E_2(x), E_3(x), ..., E_n(x) \rangle | x \in X\}$, where $E_i : X \to [0, 1]$ for every *i*. E is called multi fuzzy subset of X with dimension n. It is denoted as $E = \{E_1, E_2, E_3, ..., E_n\}$

²⁰¹⁰ Mathematics Subject Classification. 03E72.

Key words and phrases. Fuzzy set, multi fuzzy subset, intuitionistic multi fuzzy subset, Interval valued multi fuzzy subfield, and intuitionistic Interval valued multi fuzzy subfield.

M. VASU

Definition 2.3. A intuitionistic fuzzy set (IFS) E in X is defined as an object having the form $E = \{(x, \mu_E(x), \nu_E(x))/x \in X\}$, where $\mu_E : X \to [0, 1]$ and $\nu_E : X \to [0, 1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and all x in X satisfying $0 \le \mu_E(x) + \nu_E(x) \le 1$.

Definition 2.4. An intuitionistic multi fuzzy subset of A of a set X is defined as an object of the form $A = \{(x, \mu_{E_1}(x), \mu_{E_2}(x), ..., \mu_{E_n}(x), \nu_{E_1}(x), \nu_{E_2}(x), ..., \nu_{E_n}(x) / x \in X\}$ where $\mu_{E_i}(x) : X \to [0, 1]$ and $\nu_{E_i}(x) : X \to [0, 1]$ for every *i*, define the degrees of membership and the degrees of non-membership of the element $x \in X$ respectively and for all $x \in X$ satisfying $0 \le \mu_E(x) + \nu_E(x) \le 1$, for every *i*. It is noted as $E = (\mu_E, \nu_E)$ where $\mu_E = \{(\mu_{E_1}(x), \mu_{E_2}(x), ..., \mu_{E_n}(x))\}$ and $\nu_E = \{(\nu_{E_1}(x), \nu_{E_2}(x), ..., \nu_{E_n}(x))\}$.

Definition 2.5. Let X be a non-empty set, An interval valued fuzzy subset E of X is a function $E : X \to D[0, 1]$, where D[0, 1] is a collection of all subinterval of [0, 1].

Definition 2.6. An interval valued multi fuzzy subset of E of a set X is defined as an object of the form $E = \{\langle x, E_1(x), E_2(x), E_3(x), ..., E_n(x) \rangle | x \in X\}$ where $E_i(x) : X \to D[0, 1]$ for every i, Here E is called an interval valued multi fuzzy subset of X with dimension n. This noted as $E = \langle E_1 E_2 ... E_n \rangle$.

Definition 2.7. An intuitionistic interval valued fuzzy set E in X is an object having the form $E = \{(x, \mu_E(x), \nu_E(x)) | x \in X\}$, where $\mu_E : X \to D[0, 1], \nu_E :$ $X \to D[0, 1]$ defined the degrees of membership, the degree of non-membership of the elements x in X respectively and for all x in X satisfying $0 \le \mu_{E(x)} + \nu_{E(x)} \le 1$.

Definition 2.8. Let *E* and *F* be any two intuitionistic interval valued multi fuzzy subset of *X*, we define the following relations and operations

- (i) $E \leq F$ iff $\mu_{E_i}(x) \leq \mu_{F_i}(x)$ and $\nu_{E_i}(x) \geq \nu_{F_i}(x)$ for every x in X and for every i.
- (ii) E = F iff $\mu_{E_i}(x) = \mu_{F_i}(x)$ and $\nu_{E_i}(x) = \nu_{F_i}(x)$ for every x in X and for every i.
- (iii) $E \cap F$ iff $E \cap F(x) = \{r \min\{\mu_{E_i}(x), \mu_{F_i}(x)\}, r \max\{\nu_{E_i}(x), \nu_{F_i}(x)\}\}$ for every x in X and for every i.
- (iv) $E \cup F$ iff $E \cup F(x) = \{\{r \max \mu_{E_i}(x), \mu_{F_i}(x)\}, r \min\{\nu_{E_i}(x), \nu_{F_i}(x)\}\}$ for every x in X yand for every i.

1966

Definition 2.9. Let $(F, +, \cdot)$ be a field an interval valued multi fuzzy subset E of F is said to be a interval valued multi fuzzy subfield of F if the following conditions are satisfied.

- (i) $E_i(x-y) \ge r \min\{E_i(x), E_i(y)\}$, for every x, y in F, for every i.
- (ii) $E_i(xy^{-1}) \ge r \min\{E_i(x), E_i(y)\}$ for every $x, y \ne 0$ in F for every i, where 0 is the additive identity element of F.

Definition 2.10. Let $(F, +, \cdot)$ be a field. An intuitionistic interval valued multi fuzzy subset E of F is said to be an intuitionistic interval valued multi fuzzy subfield of F, if it satisfies the following axioms

- (i) $\mu_{E_i}(x-y) \ge r \min\{\mu_{E_i}(x), \mu_{E_i}(y)\}$ for every x, y in F for every i.
- (ii) $\mu_{E_i}(xy^{-1}) \ge r \min\{\mu_{E_i}(x), \mu_{E_i}(x)\}$ for every $x, y \ne 0$ in F for every i.
- (iii) $\nu_{E_i}(x-y) \leq r \min\{\nu_{E_i}(x), \nu_{E_i}(y)\}$ for every x, y in F for every i.
- (iv) $\nu_{E_i}(xy^{-1}) \leq r \min\{\nu_{E_i}(x), \nu_{E_i}(y)\}$ for every $x, y \neq 0$ in F for every *i*, where 0 is the additive identify element in F.

3. Some Properties

Note 1. 0 = [0, 0], 1 = [1, 1].

Theorem 3.1. If *E* is an intuitionistic interval valued multi fuzzy subfield $(F, +, \cdot)$, then $\mu_{E_i}(-x) = \mu_{E_i}(x)$ for all *x* in *F* and $\mu_{E_i}(x^{-1}) = \mu_{E_i}(x)$ for all $x \neq 0$ in *F* and $\nu_{E_i}(-x) = \nu_{E_i}(x)$ for every *x* in *F* and $\nu_{E_i}(x^{-1}) = \nu_{E_i}(x)$ for all $x \neq 0$ in *F*, $\mu_{E_i}(x) \leq \mu_{E_i}(0)$ for every *x* in *F* and $\mu_{E_i}(x) \leq \mu_{E_i}(1)$ for every $x \neq 0$ in *F* and $\nu_{E_i}(x) \geq \nu_{E_i}(0)$ for every *x* in *F* and $\nu_{E_i}(x) \geq \nu_{E_i}(1)$ for all $x \neq 0$ in *F*, for all *i*, where 0 and 1 are identify element in *F*.

Proof. For x in F and 0, 1 there are identify elements in F. Now $\mu_{E_i}(x) = \mu_{E_i}(-(x)) \ge \mu_{E_i}(-x) \ge \mu_{E_i}(x)$. Therefore,

$$\mu_{E_i}(-x) = \mu_{E_i}(x)$$

for every x in F and for every i;

$$\mu_{E_i}(x) = \mu_{E_i}((x^{-1})^{-1}) \ge \mu_{E_i}(x^{-1}) \ge \mu_{E_i}(x) \cdot \mu_{E_i}(x^{-1}) = \mu_{E_i}(x)$$

for every $x \neq 0$ in F and for every i. So,

$$\nu_{E_i}(x) = \nu_{E_i}(-(-x)) \le \nu_{E_i}(-x) \le \nu_{E_i}(x).$$

M. VASU

Therefore,

$$\nu_{E_i}(-x) = \nu_{E_i}(x)$$

for every x in F and for every i, and further,

$$\nu_{E_i}(x) = \nu_{E_i}(x^{-1})^{-1} \le \nu_{E_i}(x^{-1}) \le \nu_{E_i}(x)$$

for every x in F and for every i,

$$\mu_{E_i}(0) = \mu_{E_i}(x - x) \ge r \min\{\mu_{E_i}(x), \mu_{E_i}(-x)\} = \mu_{E_i}(x).$$

Therefore,

$$\mu_{E_i}(0) \ge \mu_{E_i}(x)$$

for all x in F and for every i.

Now

$$\mu_{E_i}(1) = \mu_{E_i}(xx^{-1}) \ge r \min\{\mu_{E_i}(x), \mu_{E_i}(x^{-1})\} = \mu_{E_i}(x)$$

Therefore,

$$\mu_{E_i}(1) \ge \mu_{E_i}(x)$$

for every $x \neq 0$ in *F* and for every *i*, and

$$\nu_{E_i}(0) = \nu_{E_i}(x - x) \le r \max\{\nu_{E_i}(x), \nu_{E_i}(-x)\} = \nu_{E_i}(x)$$

Therefore,

$$\nu_{E_i}(0) \le \nu_{E_i}(x)$$

for every x in F and for every i,

$$\nu_{E_i}(1) = \nu_{E_i}(xx^{-1}) \le r \max\{\nu_{E_i}(x), \nu_{E_i}(x^{-1})\} = \nu_{E_i}(x).$$

Therefore,

$$\nu_{E_i}(1) \le \nu_{E_i}(x)$$

for every $x \neq 0$ in *F* and for every *i*.

Theorem 3.2. If A is an intuitionistic yinterval valued multi fuzzy subfield of a field $(F, +, \cdot)$, then for each *i*,

(i)
$$\mu_{E_i}(x-y) = \mu_{E_i}(0)$$
 gives $\mu_{E_i}(x) = \mu_{E_i}(y)$ for each x and y in F.

(ii) $\mu_{E_i}(xy^{-1}) = \mu_{E_i}(1)$ gives $\mu_{E_i}(x) = \mu_{E_i}(y)$ for every x and y = 0 in F.

(iii)
$$\nu_{E_i}(x-y) = \nu_{E_i}(0)$$
 gives $\nu_{E_i}(x) = \nu_{E_i}(y)$ for every x and y in F.

(iv) $\nu_{E_i}(xy^{-1}) = \nu_{E_i}(1)$ gives $\nu_{E_i}(x) = \nu_{E_i}(y)$ for all x and $y \neq 0$ in F where 0 and 1 are identity elements in F.

1968

Theorem 3.3. Let *E* be an intuitionistic interval valued multi fuzzy subset of a field $(F, +, \cdot)$. If for every i, $\mu_{E_i}(e) = \mu_{E_i}(e_1) = 1$ and $\nu_{E_i}(e) = \nu_{E_i}(e_1) = 0$ and $\mu_{E_i}(x - y) \ge r \min\{\mu_{E_i}(x), \mu_{E_i}(y)\}$ for every x and y in F, $\mu_{E_i}(xy^{-1}) \ge r \min\{\mu_{E_i}(x), \mu_{E_i}(y)\}$ for every x and $y \ne e$ in F and $\nu_{E_i}(x - y) \le r \max\{\nu_{E_i}(x), \nu_{E_i}(y)\}$ for every x and y in F, $\nu_{E_i}(xy^{-1}) \le r \max\{\nu_{E_i}(x), \nu_{E_i}(y)\}$ for every x and $y \ne e$ in F, then E is an intuitionistic multi fuzzy subfield of F, where e and e_1 are identity elements of F.

Proof. It is well defined.

Theorem 3.4. Let *E* be an intuitionistic multi fuzzy subfield of a field $(F, +, \cdot)$, then $H = \{x/x \in F : \mu_{E_i}(x) = 1, \nu_{E_i}(x) = 0 \text{ for every } i\}$ is either empty or a subfield of *F*.

Proof. If no element satisfies this conditions, then H is empty. If x and y in H, then

$$\mu_{E_i}(x - y) \ge r \min\{\mu_{E_i}(x), \mu_{E_i}(-y)\} \\ \ge r \min\{\mu_{E_i}(x), \mu_{E_i}(y)\} \\ = r \min(1, 1) \\ = 1.$$

Therefore, $\mu_{E_i}(x-y) = 1$ for every x, y in H and for every i.

$$\mu_{E_i}(xy^{-1}) \ge r \min\{\mu_{E_i}(x), \mu_{E_i}(y^{-1})\}$$

$$\ge r \min\{\mu_{E_i}(x), \mu_{E_i}(y)\}$$

$$= r \min(1, 1)$$

$$= 1$$

Therefore, $\mu_{E_i}(xy^{-1}) = 1$ for every x and $y \neq 0$ in H and for every i.

$$\nu_{E_i}(x-y) \le r \max\{\nu_{E_i}(x), \nu_{E_i}(-y)\}$$
$$\le r \max\{\nu_{E_i}(x), \nu_{E_i}(y)\}$$
$$= r \max(0, 0)$$
$$= 0$$

Therefore, $\nu_{E_i}(x-y) = 0$ for every x and y in H and for every i. $x-y, xy^{-1} \in H$.

Therefore, *H* is a subfield of *F*. Hence *H* is either empty or a subfield of *F*. \Box

Theorem 3.5. Let *E* be an intuitionistic inteval valued multi fuzzy subfield of a field $(F, +, \cdot)$, then for every *i*,

- (i) If $\mu_{E_i}(x-y) = 1$ then $\mu_{E_i}(x) = \mu_{E_i}(y)$ for every x and $y \neq e$ in F.
- (ii) If $\nu_{E_i}(x-y) = 0$ then $\nu_{E_i}(x) = \nu_{E_i}(y)$ for every x and y in F and if $\nu_{E_i}(xy^{-1}) = 0$, then $\nu_{E_i}(x) = \nu_{E_i}(y)$ for every x and $y \neq e_1$ in F.

Here e and e_1 are identity elements of F.

Theorem 3.6. If *E* be a Intuitionistic Interval valued multi fuzzy subfield of a field $(F, +, \cdot)$, then for every *i*:

- (i) If μ_{E_i}(x − y) = 0 then either μ_{E_i}(x) = 0 or μ_{E_i}(y) = 0 for every x, y in F and if μ_{E_i}(xy⁻¹) = 0 then either μ_{E_i}(x) = 0 or μ_{E_i}(y) = 0 for every x and y ≠ e in F.
- (ii) If ν_{E_i}(x − y) = 1 then either ν_{E_i}(x) = 1 or ν_{E_i}(y) = 1 for every x, y in F and if ν_{E_i}(xy⁻¹) = 1 then either ν_{E_i}(x) = 1 or ν_{E_i}(y) = 1 for every x and y ≠ e₁ in F, where e and e₁ are identity elements of F.

REFERENCES

- [1] K. T. ATANASSOV: Intuitionistic fuzzy sets theory and applications, Physica-Verlag, A Springer-Verlag company, Bulgaria, 1999.
- [2] A. ROSENFELD: Fuzzy Groups, Journal of mathematical analysis and applications, 35 (1971), 512–517.
- [3] R. BISWAS: Fuzzy fields and fuzzy linear spaces redefined, Fuzzy sets and systems, North Holland, 1989.
- [4] M. MUTHUSAMY, N. PALANIAPPAN, K. ARJUNAN: *Notes on intuitionistic fuzzy subfields*, International J. of Math.Sci. Engg. Appls., **4**(5) (2010), 345–354.
- [5] P. BHATTACHARYA: *Fuzzy Subgroups: Some Characterizations*, Journal of Mathematical Analysis and Applications, **128** (1987), 241–252.
- [6] R. KUMAR: Fuzzy Algebra, University of Delhi Publication Division, 1 (1993), 33–44.
- [7] R. KUMAR: Fuzzy irreducible ideals in rings, Fuzzy Sets and Systems, 42(1991), 369–379.
- [8] S. ABOU-ZAID: On generalized characteristic fuzzy subgroups of a finite group, Fuzzy sets and systems, **43** (1991), 235–241.
- [9] F. I. SIDKY, M. A. MISHREF: Fuzzy cosets and cyclic and Abelian fuzzy subgroups, Fuzzy sets and systems, 43 (1991), 243–250.

1970

- [10] P. SIVARAMAKRISHNA DAS: *Fuzzy groups and level subgroups*, Journal of Mathematical Analysis and Applications, **84** (1981), 264–269.
- [11] W. B. VASANTHA KANDASAMY: *Smarandache fuzzy algebra*, American research press, Rehoboth, 2003.
- [12] M. VASU, D. SIVAKUMAR, K. ARJUNAN: A study on anti-Multi fuzzy subfield of a field, Indian journal of research, 1(1) (2012), 78–79.
- [13] L. A. ZADEH: Fuzzy sets, Information and control, 8 (1965), 338–353.

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE FOR WOMEN SIVAGANGAI-630562, TAMIL NADU, INDIA