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HASH FUNCTION USING FREE GENERATORS THEOREM OVER THE
PROJECTIVE GENERAL LINEAR GROUP

V. VIBITHA KOCHAMANI 1 AND P. L. LILLY

ABSTRACT. We define the projection mapping from an algebraic structure to
quotient structure which gives the images in GL3(Fq).By using Free Generators
Theorem,we obtain the set of pair of matrices with entries in Fp[x] which is
defined in set D.We work with the elements in D to construct a Cayley Hash
function to protect the local modifications property and the security properties
of the corresponding hash functions.We can create an infinite number of Hash
functions using the Free Generators Theorem by different values of p and n.

1. INTRODUCTION

Hash functions are simple and easy-to compute,that takes a variable length
input and converts it to a fixed-length output [10]. If such a function satisfies
additional requirements it can be used for cryptographic applications such as,
to protect the authenticity of messages sent over an insecure channel. The basic
idea is that the hash result provides a unique imprint of a message, and that
the protection of a short imprint is easier than the protection of message itself.
A cryptographic hash function can provide assurance of data integrity. Hash
functions are widely used in numerous cryptographic protocols and a lot of work
has already been put into devising adequate hashing schemes.Hash functions are
used as compact representations or digital finger prints of data and to provide
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message integrity. Some hash functions in current use have been shown to be
vulnerable. Early suggestions (particularly SHA family) did not really use any
mathematical ideas apart from Merkle-Damgard [3] construction for producing
collision resistant hash functions from collision resistant compression functions,
the main idea was just to create a mess by using complex iterations. We have to
admit that a mess might be good for hiding purposes, but only to some extent.
In the period of time 1990s, Zemor [4] introduced the idea of constructing hash
functions from Cayley graphs. Zemor’s technique came from a desire to satisfy
the following small modification property that introduced in [5].

Proposition 1.1 (Small Modifications Property). There exists a d ∈ N0 such
that if m′ is any modification of m affecting fewer than d consecutive bits then
h(m) 6= h(m

′
).

The relation between the small modifications property and hash functions
from Cayley graphs is now apparent.Namely, let G be a group with generating
set S = {A,B} and H be the associated hash function.If the directed girth of
C(G,S) is δ, then two messages of length less than δ cannot form a collision
in H.From this motivation, Zemor present the idea of using hash functions over

the group SL2(Fp) with two generators A =

(
1 1

0 1

)
and B =

(
1 0

1 1

)
for a

large prime p which was broken by many attacks by their weakness in the fac-
torization. [2] In 1994, Tillich and Zemor’s [7] paper proposed a family of hash
functions that uses the group of SL2 over a finite field of 2n elements as platform
for their design.
Let n be a positive integer and let p(x) be an irreducible polynomial of de-

gree n over F2. Let A0 and A1 be defined as follows: A0 =

(
x 1

1 0

)
and

A1 =

(
x x+ 1

1 1

)
.

BothA0 andA1 have determinant 1 over F2. These matrices are the generators
of the Tillich-Zemor hash function. Let m = m1m2......mk ∈ {0, 1}∗ be a binary
string representation of a message and K = F2[x]/ < pn(x) >' F2n.
The construction of the Tillich-Zemor hash functions also preserves the small
modifications property using degree argument in ( [7], lemma 3.5).
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Lemma 1.1. Suppose that m,m
′ are bit strings in {0, 1}∗ such that

H(m) = H(m
′
). Then at least one of m,m′ must have length greater than n.

In the paper [13, 14] we have taken up the following study relevant to the
above context.We devised the Hash function as follows: to an arbitrary text of
{0, 1}∗, associate the string of {A,B} obtained by substituting 0 for A and 1
for B, then assign to A and B values of adequately chosen matrices of Heis(Z),
those could be

A =

1 1 0

0 1 0

0 0 1

 and B =

1 0 0

0 1 1

0 0 1

 ,

then evaluate the product associated with the string of A and B in the group
Heis(Fp), where Fp is the field on p elements, p being chosen large prime num-
ber and we executed a running time of the hash function using matrix multi-
plication and also check that the output distributed by hash functions,(that is)
hashed values are uniform using the goodness-of-fit test.

2. PRELIMINARIES

Definition 2.1. [10] A One-Way Hash Function is a function h that satisfies the
following conditions:

1. The input x can be of arbitrary length and the result h(x) has a fixed length
of n bits.

2. Given h and an input x, the computation of h(x) must be easy.
3. The function must be one-way in the sense that given a y in the image of h,

it is hard to find a message x such that h(x)= y (pre image-resistance), and
given x and h(x) it is hard to find a message x′ 6= x such that h(x′) = h(x)

(second pre-image resistance).

Definition 2.2. [10] A Collision-Resistant Hash Function is a function h that
satisfies the following conditions:

1. The input x can be of arbitrary length and the result h(x) has a fixed length
of n bits.

2. Given h and an input x, the computation of h(x) must be easy.
3. The function must be collision-resistant: this means that it is hard to find

two distinct messages that hash to the same result (i.e., find x and x’ with
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x 6= x′ such that h(x) = h(x′)). such that h(x′) = h(x) (second pre-image
resistance).

Now, we defined the Projective General linear group over R

Definition 2.3. [6] Let R be a commutative ring.We define the Projective General
Linear group of degree k over R is PGLk(R) = GLk(R)/Z, where Z is the centre
of GLk(R) and consists of all scalar matrices. Elements of PGLk(R) are thus cosets
gZ with g ∈ GLk(R).

Definition 2.4. [6] Let p be a prime and Fp be the field with p-elements and
Fp((x)) be the field of formal Laurent series over Fp.The elements of Fp((x)) are
series of the form f(x) = Σ∞k=mfkx

k, for fi ∈ Fp and m ∈ Z.

In [15], we find out the general form of A,B ∈ PGL3(Fp((x))) in terms of
eigenvalues and eigenvectors of Ã, B̃ ∈ GL3(Fp((x))).

Lemma 2.1. Let Ã, B̃ are the elements in GL3(Fp((x))).Suppose that Ã has dis-
tinct eigenvectors [a : b : c], [1 : g : h], [d : 1 : e] with corresponding eigenvalues
x, y, z ∈ Fp((x)) and that B̃ has distinct eigenvectors [1 : b̃ : c̃], [1 : g̃ : h̃], [d̃ : 1 : ẽ]

with corresponding eigenvalues x′
, y

′
, z

′ ∈ Fp((x)) then the respective images in
PGL3(Fp((x))) are

A=

 a(eg−h)+b(dhf
′
−ef)+c(f−dgf

′
) ae(f−1)+adh(1−f

′
)+cd(f

′
−f) adg(f

′
−1)+a(1−f)+bd(f−f

′
)

beg(1−f)+bh(f
′
−1)+cg(f−f

′
) a(egf−hf

′
)+b(dh−e)+c(f

′
−dgf) ag(f

′
−f)+bdg(f−1)+b(1−f

′
)

beh(f
′
−f)+ceg(1−f

′
)+ch(f−1) aeh(f−f

′
)+cdh(1−f)+ce(f

′
−1) a(egf

′
−hf)+b(dhf−ef

′
)+c(1−dg)


and

B=

 (ẽg̃−h̃)+b̃(d̃h̃f̃ ′−ẽf̃)+c̃(f̃−d̃g̃f̃ ′ ) ẽ(f̃−1)+d̃h̃(1−f̃ ′ )+c̃d̃(f̃ ′−f̃) d̃g̃(f̃ ′−1)+(1−f̃)+b̃d̃(f̃−f̃ ′ )

b̃ẽg̃(1−f̃)+b̃h̃(f̃ ′−1)+c̃g̃(f̃−f̃ ′ ) (ẽg̃f̃−h̃f̃ ′ )+b̃(d̃h̃−ẽ)+c̃(f̃ ′−d̃g̃f̃) g̃(f̃ ′−f̃)+b̃d̃g̃(f̃−1)+b̃(1−f̃ ′ )

b̃ẽh̃(f̃ ′−f̃)+c̃ẽg̃(1−f̃ ′ )+c̃h̃(f̃−1) ẽh̃(f̃−f̃ ′ )+c̃d̃h̃(1−f̃)+c̃ẽ(f̃ ′−1) (ẽg̃f̃ ′−h̃f̃)+b̃(d̃h̃f̃−ẽf̃ ′ )+c̃(1−d̃g̃)


where f =

y

x
,f ′

=
z

x
,f̃ =

y
′

x′ and f̃ ′ =
z
′

x′ .

In [15] the statement of the Free Generators Theorem are stated as follows:

Theorem 2.1. If there exist a, b, c, g, h, d, e, b̃, c̃, d̃, ẽ, g̃, h̃ ∈ Fp((x)), and
f, f ′, f̃ , f̃ ′ ∈ Fp((x))∗ such that,

(i) d([u], [v]) >
1

pd+1
, for each pair of [u], [v] in {[a : b : c], [1 : g : h], [d : 1 : e] ,

[1 : b̃ : c̃], [1 : g̃ : h̃], [d̃ : 1 : ẽ]};
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(ii) min{|f |, |f−1|} 6
1

p2d+1
,min{|f ′ |, |(f ′

)−1|} 6
1

p2d+1
and

min{|f̃ |, |f̃−1|} 6 1

p2d+1
,min{|f̃ ′ |, |(f̃ ′

)−1|} 6 1

p2d+1
;

(iii) there exist [k] ∈ P2 such that d([k], [u]) >
1

pd+1
for each [u] in

{[a : b : c], [1 : g : h], [d : 1 : e], [1 : b̃ : c̃], [1 : g̃ : h̃], [d̃ : 1 : ẽ]}, then
the matrices,

A=

(
a(eg−h)+b(dhf

′
−ef)+c(f−dgf

′
) ae(f−1)+adh(1−f

′
)+cd(f

′
−f) adg(f

′
−1)+a(1−f)+bd(f−f

′
)

beg(1−f)+bh(f
′
−1)+cg(f−f

′
) a(egf−hf

′
)+b(dh−e)+c(f

′
−dgf) ag(f

′
−f)+bdg(f−1)+b(1−f

′
)

beh(f
′
−f)+ceg(1−f

′
)+ch(f−1) aeh(f−f

′
)+cdh(1−f)+ce(f

′
−1) a(egf

′
−hf)+b(dhf−ef

′
)+c(1−dg)

)

and

B=

(
(ẽg̃−h̃)+b̃(d̃h̃f̃ ′−ẽf̃)+c̃(f̃−d̃g̃f̃ ′ ) ẽ(f̃−1)+d̃h̃(1−f̃ ′ )+c̃d̃(f̃ ′−f̃) d̃g̃(f̃ ′−1)+(1−f̃)+b̃d̃(f̃−f̃ ′ )

b̃ẽg̃(1−f̃)+b̃h̃(f̃ ′−1)+c̃g̃(f̃−f̃ ′ ) (ẽg̃f̃−h̃f̃ ′ )+b̃(d̃h̃−ẽ)+c̃(f̃ ′−d̃g̃f̃) g̃(f̃ ′−f̃)+b̃d̃g̃(f̃−1)+b̃(1−f̃ ′ )

b̃ẽh̃(f̃ ′−f̃)+c̃ẽg̃(1−f̃ ′ )+c̃h̃(f̃−1) ẽh̃(f̃−f̃ ′ )+c̃d̃h̃(1−f̃)+c̃ẽ(f̃ ′−1) (ẽg̃f̃ ′−h̃f̃)+b̃(d̃h̃f̃−ẽf̃ ′ )+c̃(1−d̃g̃)

)

generate a free subgroup in PGL3(Fp((x))), where p is a prime and d ∈ N0.

Definition 2.5. [1] For a fixed point a ∈ X. Let S = {f ∈ F (X) 3 f(a) 6= 0} be

the set of all polynomial functions that do not vanish at a.Then the fraction
f

g
for

f ∈ F (X) and g ∈ S can be thought of as rational functions that are well defined
at a is called the Localization where, F (X) is the ring of polynomial functions on
X.

Definition 2.6. [12] A primitive root of a field Fpk is an element whose powers
constitute all of F ∗

pk
. That is, the roots is a generator of the cyclic group F ∗

pk
.

Remark 2.1. In [12]

(i) An element g ∈ Fpk is a primitive root if and only if g(pk−1)/q 6= 1, for every
prime q dividing pk − 1.

(ii) If g is a primitive root modulo p then gr is a primitive root if and only if
gcd(r, p− 1) = 1.

3. HASH FUNCTIONS USING FREE GENERATORS THEOREM

We recollecting the facts that the pre-images of any pair of matrices gen-
erating a free subgroup of PGL3(Fp((x))) also generated a free subgroup of
GL3(Fp((x))).We desire to obtain such a pair of matrices over M3×3(Fp[x]) that
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were free generators of the subgroups of GL3(Fp((x))) and define the projec-
tion mapping from an algebraic structure to quotient structure which gives the
images in GL3(Fq).

By using Free Generators Theorem,we obtain the set of pair of matrices with
entries in Fp[x] which is defined in set D.We work with the elements in D to
construct a Cayley Hash function to protect the local modifications property and
the security properties of the corresponding hash functions are analysed.We can
create an infinite number of Hash functions using the Free Generators Theorem
by different values of p and n and here we clearly says that for which choices of
parameters these hash functions are the best.

3.1. Construction of the Hash Function. We require the following definitions
to construct the Hash Function.

Definition 3.1. Let p be a prime and we define the set as D = {(Ã, B̃) : Ã, B̃ ∈
M3×3(Fp((x))) are pre-images of A and B in PGL3(Fp((x)))}. That is, we define
the set of all pair of matrices (Ã, B̃) such that Ã, B̃ ∈ GL3(Fp[x]) are pre-images
of A and B in PGL3(Fp((x)))} given by the Theorem 5.2.1

Definition 3.2. Given a prime p and an irreducible polynomial rn(x) in Fp[x] of
degree n and Fq ∼= Fp[x]/ < rn(x) >.Let us define the projection function πrn :

S −→ GL3(Fq) be the mapping from the set S = {M ∈ M3×3(Fp[x]) : rn(x) -
det(M)} to the group GL3(Fq). That is,the map yields the matrix entries to their
projection in Fq.For ease of notation, we will write πrn as π , when rn(x) is not
mentioned.

Remark 3.1. If det(Ã) and det(B̃) are not divisible by rn(x) then the construction
of the hash function using the projection map from a choice of generators (Ã, B̃) in
D to elements of GL3(Fq).

Formal definition of the hash function is defined as follows,

Definition 3.3. Let p be a prime and an irreducible polynomial rn(x) in Fp[x]

of degree n.Let us choose the matrices (Ã, B̃) ∈ G such that det(Ã) - rn(x) and
det(B̃) - rn(x), then the associated hash function H4 : {0, 1}∗ −→ GL3(Fq) , are
as follows,if m = m1m2.......mn be a binary strings. Then H4(m) = h(m1)h(m2)

. . . , h(mn), where, h(mi) =

h(πrn(Ã)) ifmi = 0

h(πrn(B̃)) ifmi = 1.
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We denote the set of all associated hash function of (Ã, B̃) ∈ D and rn(x) as H.
The hash function H4, which defined here is resistant to the previous attacks on the
Tillch-Zemor hash function and possesses some strong properties.

3.2. Properties of the Hash Function. Now first we scrutinize the properties
of the elements in H.To obtain the local modifications property,we need the
degrees of the entries of Ã and B̃ are small compared to n.

3.2.1. Small Modification Property: The main goal of our hash function H4 is
to protect the small modifications property by using degree argument. Suppose
that Ã and B̃ generates a free monoid in M3×3(Fp[x]), for any polynomial gen-
erators in D.We need to prove the following results,

(i) part(a), which is related to the degree argument in the Tillich-Zemor’s
X construction.

(ii) part(b) and part(c) gives that our matrices in D satisfy a strong property.

Proposition 3.1. Let (Ã, B̃) ∈ M3×3(Fp[x]) such that Ã, B̃ generates the free
monoid M3×3(Fp[x]) and let rn(x) be an irreducible polynomial in Fp[x].Suppose
H4 be the associated hash function defined in 6.1.3 for (Ã, B̃) and rn(x).Assume
that τ = max{deg(Ã), deg(B̃)} and that m ∈ {0, 1}l and m′ ∈ {0, 1}k are different
bit strings for some 0 6 l, k 6 n | τ . Then,

• H4(m) 6= H4(m
′
)

• If (Ã, B̃) ∈ D then H4(m) 6= a.H4(m
′
) for any a ∈ Fq such that inspecting

’a’ as an element of Fp[x], (deg(a) + kτ) < n

• H4(m) 6= a.I for any a ∈ Fq.

Proof. Let M and M ′ be the product of Ã’s and B̃’s respectively produce H4(m)

and H4(m
′
) in M3×3(Fp[x]),before projecting M and M

′ into GL3(Fq),so that
π(M) = H4(m) and π(M

′
) = H4(m

′
). Since l, k < n | τ then M has degree

atmost lτ and M
′ has degree at most kτ . We know that, each of the entries of

M and M ′ has a degree less than n then π(M) = π(M
′
) ∈ Gl3(Fq) if and only if

M = M
′ ∈M3×3(Fp[x]).

(i) Now, since m and m
′ are distinct messages then the products of Ã’s and

B̃’s are also distinct. Clearly , M,M
′ ∈ (Ã, B̃) and by our hypothesis Ã and B̃

generates a free monoid. So, follows M = x1x2.........xl 6= y1y2.........yk = M
′,

where xi, yj ∈ {Ã, B̃}, for all i = 1 to l, j = 1 to k. Since,m and m′ are distinct,
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we have

M 6= M
′
in M3×3(Fp[x]) ⇒ π(M) 6= π(M

′
) in GL3(Fq) ⇒ H4(m) 6= H4(m

′
).

(ii) Since, Ã, B̃ in D then their pre-images are in PGL3(Fp((x))) generates a free
subgroup of PGL3(Fp((x))) which implies that [M ] 6= [M

′
], and further, that

M 6= aM
′ for any a ∈ Fp[x].

Suppose,π(M) = aπ(M
′
) for some a ∈ Fq in GL3(Fq), inspecting ’a’ as an

element in Fp[x], then M = aM
′

+ rn(x)M
′′ for some M ′′ ∈ M3×3(Fp[x]). By

hypothesis, deg(a) + deg(M
′
) < n =⇒ deg(aM

′
) < n and M has all the entries,

each of degree less than n, which says that M” = 0. Therefore, M = aM
′, which

is a contradiction. Hence, π(M) 6= aπ(M
′
). Thus, H4(m) 6= aH4(m

′
) for any

a ∈ Fq.

(iii) It is not possible for the products in π(M) and π(M
′
) of length less than

n | τ to get the identity. Therefore, H4(m) 6= aI for any a ∈ Fq Hence, π(M) and
π(M

′
) must have order atleast n | τ �

4. RESISTANCE AGAINST DIFFERENT ATTACKS

(i) To avert the collisions of the form
π(Ã)ord(π(Ã)) = I and π(B̃)ord(π(B̃)) = I,we consider that π(Ã) and π(B̃)

must be of large order.
(ii) If det(π(Ã)) is primitive root then order(π(Ã)) > q − 1.

(iii) However, avoiding short relations attack is of the form
W (π(Ã), π(B̃)) = kI, where k ∈ F ∗q and
W (π(Ã), π(B̃)) ∈ {π(Ã), π(Ã−1), π(B̃), π(B̃−1)} be a non-trivial word.To
avoid such relations we proved the proposition.

Proposition 4.1. Let (Ã, B̃) ∈ D and let W (Ã, B̃) ∈ {Ã, Ã−1, B̃B̃−1} be a non-
trivial word then there exist a choice of rn(x) such that if Fq = Fp[x] |< rn(x) >,then
W (πrn(Ã), πrn(B̃)) 6= kI ∈ GL3(Fq) for any k ∈ F ∗q .

Proof. Let φ = det(ÃB̃) = det(Ã)det(B̃) ∈ Fp[x]. We define, the localization of

Fp[x] at φ as Fp[x]1/φ = {t/φm : t ∈ Fp[x],m > 0}. Since,
1

φ
=

1

det(ÃB̃)
we have,
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1

det(Ã)
∈ Fp[x]1/φ and

1

det(B̃)
∈ Fp[x]1/φ. We know that,Fp[x]1/φ is contained in

the fraction field of Fp(x) and also in Fp((x)).
Therefore, Ã, B̃ ∈ GL3(Fp[x])1/φ ⊂ GL3(Fp((x))). We define the ideal

< r >= {rt : t ∈ Fp[x]} for any irreducible polynomial r ∈ Fp[x]. Assume,r - φ
and let r1/φ be the localization of r at φ, i.e, r1/φ = { rt

φm
: t ∈ Fp[x],m > 0}.

Now, let us consider a surjective homomorphism from Fp[x]1/φ to Fq under the
irreducible polynomial, i.e., ηr : Fp[x]1/φ −→ Fq induced by x −→ a, where a is
a root of r and has a kernel r1/φ. Thus,by the first isomorphism theorem gives

as,
Fp[x]1/φ
r1/φ

∼= Fq.

Under this homomorphism, the natural images of Ã and B̃ in GL3(Fq) is πr(Ã)

and πr(B̃) respectively. Since Ã, B̃ ∈ D, then their images Ã, B̃ ∈ PGL3(Fp((x)))

also generate a free group,this says that no freely reduced (non-trivial) word in
{Ã, Ã−1, B̃, B̃−1} can be I or any scalar multiple kI of I for any k ∈ F ∗q .

But we observe that images of Ã, B̃ in GL3(Fq) under homomorphism may
have W (πr(Ã), πr(B̃)) = kI for some k ∈ F ∗q if and only if inspecting k ∈ Fp[x] ⊂
Fp[x]1/φ, i.e., if

W =

k + α β γ

δ k + µ λ

θ ω k + ν

 ,

where α, β, δ, γ, µ, λ, θ, ω, ν ∈ Fp[x]1/φ and ηr(α) = ηr(β) = ηr(δ) = ηr(γ) =

ηr(µ) = ηr(λ) = ηr(θ) = ηr(ω) = ηr(ν) = 0. Hence,we choose rn(x) ∈ Fp[x] such
that any one of the ηrn(i), i ∈ {α, β, δ, γ, µ, λ, θ, ω, ν} must be non-zero. We need
to choose rn(x) very carefully to avert from a small set of relations. �

5. CONCLUSION

Applying the Free Generators theorem, the hash functions are constructed
and it retains its Modifications property using degree argument.Also verify the
security properties of the hash functions using different attacks. Finally, Cryp-
tographic hash functions like SHA-256 and SHA-512 have a maximum input
message size of 264 − 1 bits and 2128 − 1 bits ,respectively [11]. All the attacks
we discussed are runs in expotential time, choosing parameters comparable to
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those in cryptographic standards is expected to be sufficient to provide a secure
hash function [6].

Now the NIST approved hash algorithms are SHA3-224, SHA3-256, SHA3-
384, SHA3-512 [8] and these algorithms have their security strength in bits re-
lated to the numbers. For example, SHA3-512 gives 512 bits of security against
a preimage or second preimage finding algorithm and 256 security bits against a
collision finding algorithm. But, Mullans attack in [9] had a running time O(

√
q)

and produce collisions of length O((logq)2/log(logq)), which is the fastest known
attack. If we choose pn ∼ 2512 will provide equivalent security as a SHA3 family.

Thus, by choosing some suitable and satisfiable conditions to our proposed
hash functions. They are secure against all the previous attacks on the Zemor-
Tillich hash function.
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