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INTERVAL VALUED PICTURE FUZZY SOFT SET IN PATTERN
RECOGNITION

S. ANITA SHANTHI' AND M. GAYATHRI

ABSTRACT. This paper deals with interval valued picture fuzzy soft set (IVPFSS)
as a generalization of picture fuzzy soft set. We introduce the concept of nor-
malized Euclidean distance between IVPFSS and establish that it is a metric. An
algorithm based on this distance of IVPFSS is developed and an illustration is
provided.

1. INTRODUCTION

The concept of picture fuzzy set was introduced by Cuong [1,2] as extensions
of fuzzy sets and intuitionistic fuzzy sets (Atanassov). They defined some Op-
erations on picture fuzzy sets established some of their properties. Cuong et al.
[3] constructed main operations for fuzzy inference processes in picture fuzzy
systems. Yang et al. [4] defined picture fuzzy soft set and introduced an algo-
rithm by using level soft set and picture fuzzy soft set to solve decision making
problems. Motivated by these concepts we have developed interval valued pic-
ture fuzzy soft set. This paper deals with interval valued picture fuzzy soft set
(IVPESS) as a generalization of picture fuzzy soft set. We introduce the con-
cept of normalized Euclidean distance between IVPFSS and establish that it is
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a metric. An algorithm based on this distance of IVPFSS is developed and an
illustration is provided.

2. INTERVAL VALUED PICTURE Fuzzy SOFT SET

In this section some operations on IVPFSS are defined and some of their prop-
erties.

Definition 2.1. Let U be an universe and E be a set of parameters. Let [V PFSS(U)
denote the set of all interval valued picture fuzzy soft set over U and A C E. A
pair (Pr, A) is an IVPFSS over U, where Pr is a mapping given by Pr : A —
IVPFSS(U) and

(PF’ A) = {x7 I:HPF(E) (’I)7 ﬂPF(e) (m>:|7 [QPF(e) (x>7 ﬁPF(e) (x)]7

I:ZPF(8> (I), vPF(e) (x)])7 S U7 €€ A}'
For any parameter e € A, Pp(.) is an IVPFSS.

Definition 2.2. The necessity operator on an [ VPFSS(PF, A) denoted by

(P 4) = (2., (). Ty (0] (1= 1y, (21T ()
- Vpp, )( x),1— pr( )(:c)] reUee A}l

Definition 2.3. The possibility operator on an IV PFSS(Pp, A) denoted by
(PF7 A) = {(‘Ta [1 - HPF(E) (l‘), 1- ﬂPF(E) (ZL‘)], [QPF(E) (x)vﬁPF(e) (ZL‘)],
[ZPF(e) ('r)7 EPF(e) (x)L LS UJ €€ A}'

Definition 2.4. The complement of an IV PFSS(Pp, A) denoted by
(Pr A = {(, [y (0), P ) [y, (2), T ()
i, (@) T, (@i € Use € A},

Definition 2.5. Let A, B C E,(Pr, A) is an interval valued picture fuzzy soft subset
of (Pr, B) denoted by (Pr, A) € (Pr, B), if, and only if,
i ACB.
(ii) Ye € A, Pp() is an interval valued picture fuzzy soft subset of Fg(.), Le,
Vi€ UNe € Ay (2) <ty (2). B (&) < B (@), my, (2) 2
g (8): Ty (8) 2 T (), iy (2) 2 W (), Py (2) 2 P (1),
Further (Pg, B) is called an interval valued picture fuzzy superset of (Pg, A) and is
denoted by (Pg, B)  (Pr, A).
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Definition 2.6. The degree of non-determinacy of an element x € U, e € A to the
IVPFSS(Pp, A) is defined as
Tope) = (1= (1) =1, (2) = gy, ()
and
T (1) = 1= (Tipy, (¥) = Tipy () = Doy ().
Definition 2.7. Let o € [0, 1] be a fixed number. Given an IV PFSS(Pg, A), the
operator

Da(Pr, A) = {2, [(1p, (@) +axp, (@), (e, () + aTpp, ()]
(1, @)+ (=) (@p, (@), (T, ,, (1) + (1) (Fr, ()]
(U, (@) (1=0) @y, (2), (Prg (2) (1= ) (T, (2))];

reU, ee A}.

Theorem 2.1. Forevery [VPFSS(Pr,A)and o, 5 € [0,1], ifa < S then D, (Pr, A) €
Dg(Pr, B).

Proof. We have
Da(Pe, A4) = {2, [y, (5) + Ty, (0)), iy, (2) + 0Ty ()
(15, @)+ A=a)(@p,,, (7)), (py,, (2)+ (1 =) (Trp, (@),
(Upp (@)+(1=0) Ty, (@), Ty (@) + (1) Ty (2)];
reU,ee A}
and
Da(Pr, A4) = {2, [ty () + By (2)), (i () + 5y, ()],
(15, @)+ (A=) zp,,, (2)), (77PF () +(1=B)(Tpp, (2))],
[(¥pp, (@) +(1=P) (TP, (), (VPF<)( z)+(1- 5)(7TPF(6>(CU))];
reU,ee A}.
Similarly zip, () +a7p,, (%) < Hp,, (2) + TPy, (2), since o < 3, (1 —a) >
(1= B)and (n,, () + (L~ B)(xpy,, (1)) < (n,, _(2) + (1~ a)(mp,,, (2)).
Similarly (77, (2) + (1 B)7r)(2)) < (7ry, (@) + (1 — @) Fryy, (2) and
0y, (@) + (1= D)(py,, (1)) < (Lpy,, (@) + (1 — a)(xp,y, ()):
SimﬂaﬂYa (VPF( )( ) + (1 B)ﬁPF(e)<x)) < (vPF(e) (‘T> + (1 - a) (ﬁPF(e)<x))'
Hence, it follows that D, (Pr, A) € Ds(Pp, B). O

Definition 2.8. For o, § € [0, 1], a+28 < 1 the operator F,, s foran IV PFSS(Pp, A)
is defined as

Fos(Pr, A) = {2, (1, (2)+ gy, (0)), (y, (@) + 0y ()
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(1 @)+ By (2)), (T () + BT ()

[(ZPF(E) (I) + 6EPF(E) (I)>7 (vPF(e) (1’) + 5ﬁpp(e) (1’))],
reU, ee A}

Theorem 2.2. For IVPFSS(Pr,A) and ¥V «, 3,y € [0, 1] such that o + 25 < 1,
the following hold:

() Fop(Pr, A) is an IVPFSS,

(i) If0<~vy<athenF, s(Pr, A) €F,4(Pr,A),
(iii) If0 <~y < pthenF,4(Pr,A) €F,,(Pr,A),
(iv) (Fops(Pr, A)°)¢ =F, 3(Pr, A).

Proof.
(i) Consider,

Fppg, (@) + Ty, (1) Tpp, (@) + B(Trp, (T)  Tpy, () + B(Tp,,, ()
© - @\7) P - @\") | VPre ) ©

fp,. () Tp..(r) Tp, (x T ppoy (X
ﬁPF(e) ('r) ﬁPF(e) ('r) DPF(e) (I) 1 - Epp(e) (:U) - ﬁPF(e) <x> - EPF(E) (x)
- 2 2 2 2

2
Hence F, 3(Pr, A) is an IVPESS.

) oy (P A) = {2, () 472 (2)), (i, () + 7, ()]
(1, () By (2)), (T (2)+ 67y ()],

[(ZPF(E) (IE) + /BEPF(E) (I)) (ﬁpp(e) (I) + /BﬁPF(e) (J}))],
relU,ee A}

Fos(Pr, A) = {2, (4, (@) +axp, (@), (B, (@) + aTpy, ()],

(1 ) By (), Oy () + BT (2)),
(Wopg, (@) +BEpy (@), Ty, (£)+ By, ()],
relU,ee A}
Now, p, (7) +77p, (2) < (@) +amp, (), sincey < a.
Similarly, we have 7ip, () + V7P, (2) < Tip, (%) + aTp,, (z). Hence it
follows that IF., 5(Pp, A) € F, 3(Pr, A).
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(i) o (Pr, A) = {2, (11, (8) + 0y (0)), (i, (2) + Ty, ()
(1, @)+ B8y (@), (T ()0, ()

)
(o, (@) + B py (@), Py @)+ BTy (@)
reU,ee A}

For(Pr, A) = {5, (1, (2) + gy (2)), (i () + 0Ty ()
(1, ()T () Ty () 4 )
(o (@) 47T py ) (@))s (P (@) 417 p (2))
reU,ee A}
Now, Ep,., (@) + V7 py,,, (@) < HPF@(I) + Bmp,,, (x), sincey < 3. Similarly,
we have 7ip (2) + 77 p, () < Tip, () + BTp, . (x). Hence, it follows that
F.s5(Pp,A) €Fy.(Pr,A).

(19) (Fas(Pr, AY = {2, [(Upy,, (5) + 0z, (2)), Fry () + 0Ty (1))
(0, (@) + By (@), (i () + B, ()]
[(EFp(e)(x) + BT ppe)(2)); (Frpe)(T) + BTrpe) (7)),

reU,ee A}.
Then
(Fap(Pr, A))° = A{z, [(1p, (@) +amp, (@), (Fp,,(2) + aTpp, (),
(1, () + By (0)), (g () + By, ()
(Wrp, (2) + By (@), (Frpe, (2) + Bp, (@),
reU,ee A}.
=F,3(Pr, A). O

Definition 2.9. Let o, 5 € [0, 1]. Given an IV PFSS(Pr, A), the operator G, g is
defined as
Gas(Pr, A) = (.o, (), 0y, @) (B, (2),Blp,, ()

[Brp,.., (@), BVpp, (2)]); 2 € U e € A}
Obviously, Gy ,(Pr, A) = (Pp, A) and Goo(PF, A) =

Theorem 2.3. For every IV PFSS(Pr, A) and «, 3,7~ € [0, 1],
(i) Go3(Pr, A) is an IVPFSS.
(i) If & < 7 then Go5(Pp, A) € G, 4(Pp, A),
(iii) If 8 < y then G, p(Pr, A) 3 Ga,’y(PF> A),
(iv) If 6 € [0,1] then G, 3(G, 5(Pr, A)) = Gayps(Pr, A) = G, 5(Go 5(Pr, A)),
V) (Gap(Pr, A)) = Gpa(Pr, A).
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Proof.
(i) Clearly G, s(Pr, A) is an IVPFSS.

6 Cop(Pr. A) = (2. 01, @), Oy @) B0y, (). B, (@)
80y, (2), B7py ) (@))€ Uy € A},

G5 (P, A) = {2, vy, (@) Hpe, @] (B, (%), BTlpy,, ()],
85y, (2), 67y ())s € Ui € A}.

Since o < v, app (x) < ey, () and ofip,  (¥) < Vfip,, (). Then Gos(Pr, A) €
G, p(Pr, A).

() Gevs(Pr A) = {0 01, ) (0 gy () [, (2), B, (0]
[Bvp,., (@), BVpp, ()]); 2 € U e € A},
G (Pr, A) = {(.fosty, _(2), 0, ()], 1y, (2), 7y ()
(b, (2),77py ., (2)]); 2 € Uye € A
Since § < v, ﬁﬂpF(e) (z) < meF(e) (), 5ﬁPF( )(m) S Mep (z) and ﬂZPF(e)<x) <
VWpp., (), BUPp, () S VWpy, (¥). Then Gop(Pr, A) D Gay(Pr, A).

(V) Gas(Grs(Pr, A)) = Lz, [avp, (%), aVFipy, (),
650, (1), 551y, (2]
882, (2), BTy, ()i € Uye € A}
= {0y, (@), (09, ()
[(BO)np,,, . (2): (BO)py,, (2)];
(5 (), (0)7py, (2)]); 2 € Ui € A)
= Ganp5(Pr, A),
Gy6(Gap(Pr, A) = {(&, oy, (@), 707pre ()],
56m,, (@), 0875, (@),
[5,6’1/PF( )( ), 00Vp,, (2)]);z € Ue € A}
= (. [0y, (@), (00 ()
(0B, (@) (08)Tpy,, (2)];
Wpp., (@), (0B)V Py, (2)]);x € Uye € A}

?

(B)m
= {(@ @)y, (@), (@N)Fipy,, (@)

(00, (&), (BT (@),

(58)p (), (88)Prm (2))i € U € A)

= Gany,p5(Pr, A).
From the above, it follows that
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Gaﬁ(G’Yﬁ(PFa A)) = Ga'y,ﬁd(PF7 A) = G%(S(Ga’ﬁ(PF7 A))

V) (Pp, A)° = {(z, [lpp(e) (@), Yy, (@], [QPM (@), Ty, (2)],
L, (@) Bpa, (2)]);z € Ue € Al
Gop(Pr, A) = {(z, [O‘ZPF(E) (z), Y P (x)], [aﬂPF(e)@)’ &ﬁPF(e)(x)]’

[BHPF(e) (x)’ﬂﬁpﬂe)(x)]);ﬂf eUece A},
(Ga,(Pp, A))¢ = {(=, [ﬁHPF(e)<x>7ﬁ'HPF(e) (x)], [&ﬂPF(e)<x>7aﬁPF(e) ()],

27, (@), TP, (2)]);z € Use € Al

- Gﬁ,a(PF, A).

Then (G, 5(Pr, A)°)¢ = Ggo(Pr, A). .

3. NORMALIZED EUCLIDEAN DISTANCE BETWEEN IVPFSS

In this section we define normalized Euclidean distance between IVPFSS and
establish that it is a metric.

Definition 3.1. Let X = {x1, o, ..., x;}be an universal set,

E ={ej,eq,...,e;} be aset of parameters and (Pp, A), (Pg, B) two IVPFSS on X.

Then the normalized Euclidean distance between (Pr, A) and (Pg, B) is defined as
D{(Pr, A), (Pu, B)) =

{WZQWJMgM@MWW
0 py (@) = 0 @ (e,
Hp, ) (@) — _pc(e (%)\ + !VPM)(%) = VPg(ey (%5))]
+|EPF(CZ_)($J) TPace,) (z5) )
Theorem 3.1. Let [V PFSS(U) be the set of all IVPFSS over U. Then the distance
function D, from IV PFSS(U) to the set of non-negative real numbers is a metric.
Proof. Let (Pr, A), (Pg, B) and (Py, C) be three IV PFSS(U) over U.
(i) D((Pr,A), (P, B)) > 0 follows from Definition 3.1.
(H) D6<<PF7 A)? (PG7 B)> =0
A (HPF(EZ') (;E-j) - HPG(ei) (:EJ> - ﬁPF(ei) (.CE]) o 'UPG(ei) ($]))
gy 3) = () + T (53) — e (23)

3

+(ZPF(ei) (I]) - ZPG(ei) (ZE]) + EPF(%) (ZL']) - EPG(EZ.) (CEJ))
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(T ) (@) = Tpy ) (5) + Tpp ) (85) = Trg ) (25)) = 0
= HPF(ei)(Ij) = ﬂpg(el_)(fﬁj)aﬁpﬂei)(%) = HPG@Z.)(%')’
QPF(EZ,)(%) = QPG(Ei)(Ij)aﬁPF(%)(Ij) = ﬁp%i)(xj),
T3) = Vpg ) (€5) Vppe ) (85) = Vrg ) (€5);

x]) = EPG(ez) (x]) and fPF(el)(xj) = fPG(e,L) ('r])
(Pg, B).

—~

ZPF(EZ‘)

EPF(ei)

—~

(ifi) Clearly, D,{(Pr, A), (Pu, B)) = Do{(Pa, B), (Pr, A)).

(iv) Assume that (P, A), (P, B) and (Pg, C) are IVPFSS over U. Then for all
ie{l,2,--- ;m},j€{1,2,--- n},

(g, ()~ g, () Ty (1) T (1)

0y 0 = D (@) T ) (@5) = T, ) (25)

F(Wpp ) (@) = Vpg ) (85) + Vpe ) (85) = Vpg. ) (7))

iy (05) = B (3) + Ty () — Ty (22))

S g 5]ty 8 F b )~ ()
+(ﬁPF((, y(@5) — :uPH((, y(@5) + MPH(F y(75) — /_iPG(Ei)(xj))
0, @) =, @) g (@) =, (@)
+(77PF(%)(3;J') - 77PH<61.)<5’7J) + UPH(ei)(mﬂ ﬁPG(ei)(xj))
Wiy (05) — Ly 3 (03) + Vi) — v ()
+(5PF<EZ~)($J') - VPH(ei)(x]) + PH<EZ~)($J) - ﬁPc;(ei)(xj))
+(EPF(%)<$J’) - EPH(%)(IJ’) + —PH(ei)(xJ) EPc(el)(xj))
(TP ) (T5) = TPy ) (T5) + Ty ) () — Trg ) (25))
< gy ) =ty () iy 2) = (5]

_'_(EPF(ei)(xj) - ﬁPH(ei)<xj)) + (/_iPH(ei)@j /_ipg(ei)@J))
+(QPF(%)(93J') QPH(%)(%'))+(QPH(%)($J') QPG(%)(%))
+(ﬁPF(ei)($j) ﬁPH<€i)<Ij)) + (ﬁPH(ei)(xj) ﬁPG(ei)@j))
+(2PF(€i)(xj) ZPH@Z.)(%‘)) + (ZPH<6i)(xj> - ch(eZ_)(mj))
+(EPF(ei)(xj) - EPH(GZ.)($J')) + (EPH<ei)($j) - vPG(e,.)($j))
+(EPF(Ei)<xj) EPH(%)(%‘)) + (EPH(Q)(%‘) EPG(%)(IJ‘)
_'_(ﬁPF(ei)(xj) - _PH(eZ)(:’Cj)) + (fPH(ei)(xD ﬁpc(el)(ajj))
DA{(Pr,A), (Py,C)) + DA((Py,C), (Pg, B))

Thus, D.((Pr, A), (Pg,B)) < D(Pr,A),(Py,C)) + DA{(Py,C),(Pg, B)). This
shows that D, satisfies the triangle inequality. So D, is a metric. O
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4. PATTERN RECOGNITION PROBLEM

Step 1: Construct an [V PFSS(Ps, E), over U based on expert evaluation and
this can be considered as the known pattern.

Construct an [V PFSS(Pr, F),Vi=1,2,3,... over U based on the data
available for the unknown pattern.

Calculate the normalized Euclidean distance between (Ps, ) and (P, E).

The pattern with less normalized Euclidean distance between (Ps, E)

Step 2:

Step 3:
Step 4:
and (Pr,, ) the pattern in the best suitable pattern.

Example 1. Let three picture fuzzy soft sets (Pp,, E), (Pr,, E) and (Pg,, E) de-
note microwave oven of three different companies depending on the parameters
E = {ey,e9, €3, ¢4, 65} where e; = range of price ,e;= solo, grill or convection,e3=
ordinary or inverter,e,= electromagnetic radiation and es= dielectric material
which are rated by four customers C, Cs, C3 and C, on the five parameters. De-
pending on the rating of the customers the best microwave oven is to be selected
depending upon the above parameters.

Step 1. The construction of known pattern is as follows (Table 1).

U

Cy

Cs

[0.21,0.33],[0.45,0.52],[0.08,0.13]

[0.09,0.23],[0.29,0.31],[0.18,0.26]

[0.15,0.26],[0.35,0.43],[0.25,0.31]

[0.17,0.30],[0.12,0.29],[0.26,0.35]

[0.30,0.41],[0.23,0.35],[0.17,0.22]

[0.28,0.42],[0.19,0.36],[0.08,0.13]

[0.11,0.28],[0.20,0.37],[0.22,0.34]

[0.06,0.15],[0.25,0.45],[0.22,0.38]

[0.03,0.16],[0.32,0.44],[0.27,0.38]

[0.14,0.21],[0.16,0.50],{0.10,0.27]

Cs

Cy

[0.18,0.25],[0.07,0.36],[0.29,0.39]

[0.12,0.24],[0.09,0.42],[0.25,0.31]

[0.02,0.11],[0.23,0.49],[0.14,0.28]

[0.10,0.32],[0.18,0.22],[0.11,0.45]

[0.20,0.31],[0.13,0.27],[0.35,0.41]

[0.21,0.41],[0.03,0.30],[0.07,0.28]

[0.08,0.25],[0.21,0.30],[0.22,0.45]

[0.06,0.16],[0.29,0.49],[0.14,0.33]

[0.26,0.34],[0.16,0.42],[0.10,0.19]

[0.13,0.20],[0.08,0.52],[0.17,0.23]

Table 1. IV PFSS(Ps, E) over U is the data from the previous
records of the customer for the best microwave oven.




2028

Step 2. The construction of unknown pattern are given in Tables 2,3 and 4.
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U

Cy

Cy

€1

[0.05,0.26],[0.13,0.33],[0.22,0.40]

[0.23,0.35],[0.07,0.28],[0.16,0.31]

€2

[0.18,0.21],[0.08,0.29],[0.31,0.48]

[0.11,0.27],[0.18,0.32],[0.05,0.22]

€3

[0.37,0.43],[0.17,0.25],[0.03,0.32]

[0.09,0.20],[0.38,0.43],{0.10,0.30]

€4

[0.15,0.23],[0.29,0.35],[0.19,0.40]

[0.14,0.33],[0.26,0.53],[0.02,0.13]

€5

[0.07,0.34],[0.14,0.42],[0.06,0.20]

[0.08,0.25],[0.12,0.40],{0.29,0.34]

U

Cs

Cy

€1

[0.08,0.21],[0.13,0.39],[0.23,0.40]

[0.15,0.32],[0.24,0.48],[0.07,0.19]

€2

[0.17,0.30],[0.05,0.27],[0.30,0.43]

[0.20,0.28],[0.11,0.30],{0.38,0.42]

€3

[0.24,0.38],[0.19,0.48],[0.03,0.14]

[0.08,0.14],[0.25,0.51],[0.21,0.34]

€4

[0.06,0.26],[0.31,0.41],[0.28,0.32]

[0.35,0.45],[0.18,0.39],{0.02,0.10]

€5

[0.15,0.46],[0.02,0.12],[0.35,0.42]

[0.12,0.53],[0.05,0.16],[0.23,0.31]

Table 2. IV PFSS(Pr,, E) over U gives the data rated by the
customers for the microwave oven-1.

Cy

Cy

€1

[0.11,0.36],[0.22,0.44],[0.03,0.17]

[0.27,0.38],[0.09,0.27],[0.16,0.33]

€2

[0.25,0.37],[0.08,0.15],[0.20,0.38]

[0.12,0.35],[0.30,0.43],[0.05,0.21]

€3

[0.05,0.40],[0.28,0.34],[0.12,0.25]

[0.08,0.17],[0.25,0.32],[0.47,0.50]

€4

[0.18,0.32],[0.43,0.50],[0.06,0.14]

[0.24,0.40],[0.06,0.20],[0.13,0.36]

€5

[0.09,0.21],[0.13,0.46],[0.26,0.33]

[0.19,0.29],[0.31,0.45],[0.03,0.18]

C3

Cy

€1

[0.22,0.35],[0.15,0.27],[0.08,0.32]

[0.07,0.22],[0.28,0.37],[0.12,0.41]

€2

[0.15,0.29],[0.33,0.42],[0.19,0.26]

[0.15,0.30],[0.09,0.20],[0.27,0.35]

€3

[0.09,0.36],[0.20,0.51],[0.05,0.12]

[0.23,0.36],[0.18,0.45],[0.05,0.16]

€4

[0.11,0.45],[0.02,0.18],[0.25,0.30]

[0.12,0.29],[0.31,0.50],[0.11,0.21]

€5

[0.24,0.31],[0.10,0.28],[0.04,0.41]

[0.08,0.17],[0.43,0.55],[0.03,0.26]

Table 3. IV PFSS(Pr,, E) over U gives the data rated by the
customers for the microwave oven-2.

Ch

Cs

€1

[0.09,0.28],[0.15,0.30],[0.22,0.41]

[0.15,0.21],[0.35,0.44],[0.07,0.25]

€2

[0.11,0.32],[0.05,0.42],[0.12,0.25]

[0.09,0.19],[0.28,0.39],{0.13,0.20]

€3

[0.21,0.34],[0.18,0.27],[0.08,0.36]

[0.26,0.30],[0.14,0.32],[0.03,0.34]

€4

[0.07,0.29],[0.33,0.51],[0.10,0.20]

[0.17,0.33],[0.05,0.42],[0.18,0.22]

€5

[0.14,0.21],[0.03,0.19],[0.37,0.48]

[0.06,0.24],[0.29,0.31],[0.16,0.43]
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U Cs Cy

e1 | [0.19,0.23],[0.32,0.41],[0.09,0.36] | [0.14,0.25],[0.08,0.22],[0.38,0.42]
es | [0.06,0.12],[0.21,0.39],[0.16,0.47] | [0.18,0.29],[0.16,0.30],[0.28,0.40]
ez | [0.28,0.35],[0.03,0.18],[0.29,0.43] | [0.09,0.19],[0.23,0.44],[0.15,0.37]
eq | [0.15,0.38],[0.24,0.31],[0.05,0.20] | [0.13,0.33],[0.05,0.17],[0.26,0.43]
es | [0.04,0.49],[0.17,0.29],[0.13,0.22] | [0.10,0.21],[0.48,0.54],[0.03,0.20]

Table 4. 1V PFSS(Pr,, E) over U gives the data rated by the
customers for the microwave oven-3.

Step 3. The normalized Euclidean distance between D ((Ps, E), (Pr,, E)) iS calcu-
lated using Definition 3.1. The values evaluated are as follows:

DA(Ps, E), (Pg,, E)) = 0.1523,

D.((Ps, E), (Pr,, E)) = 0.1465,

D.((Ps, E), (Pp,, E)) = 0.1375.
Step 4. We observe that D.((Ps, E), (P, E)) is the least distance. Hence mi-
crowave oven-3 is the best.
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