

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 2031–2037 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.61 Spec. Issue on NCFCTA-2020

IDEALS AND CONGRUENCE WITH RESPECT TO A FRAME HOMOMORPHISM

K. S. SABNA¹ AND N. R. MANGALAMBAL

ABSTRACT. In the background of point free topology, given a frame L and a frame homomorphism $f : L \to L$, for each $b \in L$, ideals of the form $\langle f \rangle_b = \{a \in L : \Sigma_{f(a)} \subseteq \Sigma_b\}$ is constructed and its properties are studied. These ideals are utilized to form a frame congruence on L and hence a sublocale of L. By assigning the proper order, the set $J_f = \{\langle f \rangle_b : b \in L\}$ has been shaped as a locale of ideals of L. An equivalent condition for the locale J_f to be compact is also derived.

1. INTRODUCTION

Topology in a topological space can be viewed as a lattice. In the same way, from a complete lattice having additional property, a topological space can be constructed. Marshall Stone [8] related the concept of lattice theory with that of topology. Banaschewski [1], [2], John Isabell [5], Picado, Pult [7], Johnstone [6] etc continued the work and most of the topological concepts get extended into the background pointfree topology.

In this study, we have constructed ideals $\langle f \rangle_b = \{a \in L : \Sigma_{f(a)} \subseteq \Sigma_b\}$ from a fiven frame homomorphism $f : L \to L$. The necessary condition for these ideals to be prime is also investigated. The ideals of the form $\langle f \rangle_b$ have been utilized to define a congruence relation on the frame L and hence a sublocale of L. Using

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 06D22, 54D30.

Key words and phrases. locale, Ideal, Boolean locale, compact locale, congruence.

the ideals $\langle f \rangle_b$, a locale of the form $J_f = \{\langle f \rangle_b : b \in L\}$ has build up and some of its properties are investigated.

Throughout this paper $\Omega(X)$ denotes the topology on the topological space $(X, \Omega(X))$ and L is a locale.

2. Preliminaries

Definition 2.1. [7] A frame (or a locale) is a complete lattice F satisfying the infinite distributivity law $x \land \bigvee Y = \bigvee \{x \land y; y \in Y\}$ for all $x \in F$ and $Y \subseteq F$.

Definition 2.2. [7] If L, M, are frames, a map $h : L \to M$ is said to be frame homomorphism if it preserves all finite meets (including the top 1) and all joins (including the bottom 0).

Example 1. [7]

- (i) If (X, τ) is a topological space, τ is a frame.
- (ii) Every finite lattice having distributive property is a frame.

Definition 2.3. [6] A non empty subjoin semilattice I of a locale L is an ideal, if it is a lower set.

Definition 2.4. [6] A proper ideal I is prime if $x \land y \in I$ implies that either $x \in I$ or $y \in I$.

Recall that a flter F is an upper set closed under finite meets and that it is prime resp. completely prime if $a_1 \vee a_2 \in F$ resp. $\bigvee_i a_i \in F$ implies that $a_i \in F$ for some i. Completely prime filters are denoted by c.p filters [7].

Example 2. [7] Neighbourhood filters are completely prime in the frame $\Omega(X)$.

For $a \in L$, set $\Sigma_a = \{F \subseteq L; F \neq \phi, F \text{ is } c.p \text{ filters } ; a \in F\}$. Then we have $\Sigma_0 = \phi, \Sigma_{\bigvee a_i} = \bigcup \Sigma_{a_i}, \Sigma_{a \wedge b} = \Sigma_a \cap \Sigma_b \text{ and } \Sigma_1 = \{all \ c.p \ filters\}.$

From Definition of c.p filters, if $a \leq b$, then $\Sigma_a \subseteq \Sigma_b$. But $\Sigma_a \subseteq \Sigma_b$ need not imply $a \leq b$.

Definition 2.5. [7] The spectrum of a frame is defined as follows:

 $Sp(L) = (\{all \text{ completely prime filters in } L\}, \{\Sigma_a : a \in L\}).$

Then Sp(L) is a topological space with the topology $\Omega(Sp(L)) = \{\Sigma_a : a \in L\}$. Topological space associated with the frame L is Sp(L).

Definition 2.6. [7] A subset $A \subseteq L$ is said to be a cover of L if $\bigvee A = 1$. $B \subseteq A$ is a sub cover if $\bigvee B = 1$. A compact frame L is a frame having the property that every cover of L has a finite sub cover.

Definition 2.7. [7] Let *L* be a frame. A relation θ on *L* is a congruence relation on *L* if

- (i) θ is an equivalence relation
- (ii) $(a,b) \in \theta \Rightarrow (a \land c, b \land c) \in \theta$ and $(a \lor \bigvee S, b \lor \bigvee S) \in \theta$

Definition 2.8. [7] Let *L* be a lattice $p \neq 1 \in L$ is meet irreducible if $x \land y \leq p$ implies that either $x \leq p$ or $y \leq p$ for all $x, y \in L$.

3. Ideals from frame homomorphism

Consider the morphism $f : L \to L$ in the category **Frm**. For any $b \in L$, set $\langle f \rangle_b = \{a \in L : \Sigma_{f(a)} \subseteq \Sigma_b\}$. Since f(0) = 0, we have $\Sigma_{f(0)} = \phi$. Thus $0 \in \langle f \rangle_b$ and hence $\langle f \rangle_b$ is non empty.

Lemma 3.1. For any $b \in L$, $\langle f \rangle_b$ is an ideal on L. If Σ_b is a meet irreducible element in $\Omega(Sp(L))$, then the ideal $\langle f \rangle_b$ is a prime.

Proof. Choose $a, c \in \langle f \rangle_b$. Then we have $\Sigma_{f(a)} \subseteq \Sigma_b$ and $\Sigma_{f(c)} \subseteq \Sigma_b$. Hence $\Sigma_{f(a \lor c)} = \Sigma_{f(a) \lor f(c)} = \Sigma_{f(a)} \cup \Sigma_{f(c)} \subseteq \Sigma_b$ which implies $a \lor c \in \langle f \rangle_b$. Thus $\langle f \rangle_b$ is closed under join.

Now let $a \in \langle f \rangle_b$ and let $x \leq a$ in L. By order preserving property of frame homomorphism, we have $f(x) \leq f(a)$ and hence $\Sigma_{f(x)} \subseteq \Sigma_{f(a)} \subseteq \Sigma_b$. Thus $x \in \langle f \rangle_b$. So $\langle f \rangle_b$ is lower closed and hence $\langle f \rangle_b$ is an ideal on L.

Suppose Σ_b is a meet irreducible element in $\Omega(Sp(L))$ and $a \wedge c \in \langle f \rangle_b$. Then $\Sigma_{f(a)} \cap \Sigma_{f(c)} = \Sigma_{f(a) \wedge f(c)} = \Sigma_{f(a \wedge c)} \subseteq \Sigma_b$. Since Σ_b is a meet irreducible, either $\Sigma_{f(a)} \subseteq \Sigma_b$ or $\Sigma_{f(c)} \subseteq \Sigma_b$. Hence from the definition $\langle f \rangle_b$ is a prime ideal. \Box

Example 3. Consider the frame L given below.

Here, $f: L \to L$ is defined by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, a \\ c & \text{if } x = b, c \\ 1 & \text{if } x = 1 \end{cases}$$

Then f is a frame homomorphism. We have $\Sigma_0 = \phi, \Sigma_a = \{F_1\}, \Sigma_b = \{F_2\}, \Sigma_c = \{F_1, F_2\}, \Sigma_1 = \{F_1, F_2, F_3\}$, where completely prime filters F_1, F_2 are given by $F_1 = \{a, c, 1\}, F_2 = \{b, c, 1\}, F_3 = \{1\}$. Then $\langle f \rangle_0 = \{0, a\}$.

$$\langle f \rangle_a = \{0, a\}$$

$$\langle f \rangle_b = \{0, a\}$$

$$\langle f \rangle_c = \{0, a, b, c\}$$

$$\langle f \rangle_1 = L.$$

Lemma 3.2.

(i) If
$$b \leq c$$
 in L, then $\langle f \rangle_b \subseteq \langle f \rangle_c$
(ii) $\langle f \rangle_b = \langle f \rangle_c$ if and only if $\langle f \rangle_{b \wedge d} = \langle f \rangle_{c \wedge d}$, $\forall d \in L$.

Proof.

(i) $b \leq c \Rightarrow \Sigma_b \subseteq \Sigma_c$.

$$a \in \langle f \rangle_b \Rightarrow \Sigma_{f(a)} \subseteq \Sigma_b$$
$$\Rightarrow \Sigma_{f(a)} \subseteq \Sigma_c$$
$$\Rightarrow a \in \langle f \rangle_c$$

(ii) Let
$$\langle f \rangle_b = \langle f \rangle_c$$
 Now,
 $x \in \langle f \rangle_{b \wedge d} \Leftrightarrow \Sigma_{f(x)} \subseteq \Sigma_{b \wedge d}$
 $\Leftrightarrow \Sigma_{f(x)} \subseteq \Sigma_b$ and $\Sigma_{f(x)} \subseteq \Sigma_d$
 $\Leftrightarrow x \in \langle f \rangle_b = \langle f \rangle_c$ and $\Sigma_{f(x)} \subseteq \Sigma_d$
 $\Leftrightarrow \Sigma_{f(x)} \subseteq \Sigma_{c \wedge d}$
 $\Leftrightarrow x \in \langle f \rangle_{c \wedge d}$

Thus $\langle f \rangle_{b \wedge d} = \langle f \rangle_{c \wedge d}$. Now let $\langle f \rangle_{b \wedge d} = \langle f \rangle_{c \wedge d}$ $\forall d \in L$. Then $\langle f \rangle_{b \wedge 1} = \langle f \rangle_{c \wedge 1}$. Thus $\langle f \rangle_b = \langle f \rangle_c$.

Lemma 3.3. If f and g are two frame homomorphism on L with the property $f \leq g$, then $(g)_b \subseteq \langle f \rangle_b$

Proof. $x \in (g)_b \Rightarrow \Sigma_{g(x)} \subseteq \Sigma_b \Rightarrow \Sigma_{f(x)} \subseteq \Sigma_{g(x)} \subseteq \Sigma_b \Rightarrow x \in \langle f \rangle_b$ Hence $(g)_b \subseteq \langle f \rangle_b$.

4. Locale from the ideals $\langle f \rangle_b$

Theorem 4.1. The set $J_f = \{\langle f \rangle_b : b \in L\}$ gives a locale.

Proof. Define \leq on J_f by $\langle f \rangle_b \leq \langle f \rangle_c$ if $b \leq c$ in L or $\langle f \rangle_b = \langle f \rangle_d$ for some $d \leq c$. We can easily verify that the relation \leq is a partial order on J_f . Then, $\langle f \rangle_{a \wedge b} \leq \langle f \rangle_a$ and $\langle f \rangle_{a \wedge b} \leq \langle f \rangle_b$ follows from the definition. Thus $\langle f \rangle_{a \wedge b}$ stands as a lower bound to both of $\langle f \rangle_a$ and $\langle f \rangle_b$.

For any other lower bound $\langle f \rangle_d$, we have $\langle f \rangle_a$ and $\langle f \rangle_b$. That is let $\langle f \rangle_d \preceq \langle f \rangle_a$ and $\langle f \rangle_d \preceq \langle f \rangle_b$. If $d \leq a$ and $d \leq b$, then we have $\langle f \rangle_d \preceq \langle f \rangle_{a \wedge b}$.

Now let $d \leq a$ and $\langle f \rangle_d = \langle f \rangle_c$ for some $c \leq b$. Then, $x \in \langle f \rangle_d \Rightarrow x \in \langle f \rangle_c \Rightarrow$ $\Sigma_{f^*(x)} \subseteq \Sigma_c$. Since $d \leq a, x \in \langle f \rangle_d \Rightarrow \Sigma_{f(x)} \subseteq \Sigma_d \subseteq \Sigma_a$. Thus $\langle f \rangle_d \subseteq \langle f \rangle_{c \wedge a}$. Since $c \wedge a \leq c$, $\langle f \rangle_{c \wedge a} \subseteq \langle f \rangle_c = \langle f \rangle_d$.

Thus $\langle f \rangle_{c \wedge a} = \langle f \rangle_d$ where $c \wedge a \leq a \wedge b$. Hence $\langle f \rangle_d \leq \langle f \rangle_{a \wedge b}$. This is true for other two cases. Hence $\langle f \rangle_a \wedge \langle f \rangle_b = \langle f \rangle_{a \wedge b}$.

In a similar manner, $\bigvee \langle f \rangle_{a_i} = \langle f \rangle_{\bigvee a_i}$.

Now, $\langle f \rangle_b \wedge \bigvee \langle f \rangle_{a_i} = \langle f \rangle_{b \wedge \bigvee a_i} = \langle f \rangle_{\bigvee (b \wedge a_i)} = \bigvee \langle f \rangle_{b \wedge a_i} = \bigvee (\langle f \rangle_b \wedge \langle f \rangle_{a_i})$. Thus J_f is a locale with bottom $\langle f \rangle_0$ and top $\langle f \rangle_1$.

Example 4. The locale J_f corresponding to the frame homomorphism f in example 3 is given by $J_f = \{\langle f \rangle_0, \langle f \rangle_c, \langle f \rangle_1\}.$

2035

Proposition 4.1. J_f is compact locale if and only if $\Omega(Sp(L))$ is a compact locale.

Proof. First suppose J_f is compact locale. Let $\Sigma_1 = \Sigma_{f(1)} \subseteq \bigcup \Sigma_{b_i}$. That is $\Sigma_{f(1)} \subseteq \Sigma_{\bigvee b_i}$ which implies $1 \in \langle f \rangle_{\lor b_i}$. Since $\langle f \rangle_{\lor b_i}$ is an ideal, we have $\langle f \rangle_{\lor b_i} = \langle f \rangle_1$. Then by compactness of J_f we have $\langle f \rangle_{b_1 \lor b_2 \lor \dots ... b_n} = \langle f \rangle_1$. Then since $1 \in \langle f \rangle_{b_1 \lor b_2 \lor \dots ... b_n}$, we have $\Sigma_1 = \Sigma_{f(1)} \subseteq \Sigma_{b_1} \bigcup \Sigma_{b_2} \bigcup \dots \bigcup \Sigma_{b_n}$. This shows that $\Omega(Sp(L))$ is a compact element of Sp(L).

Conversely assume $\Omega(Sp(L))$ is a compact locale. Suppose $\bigvee \langle f \rangle_{b_i} = \langle f \rangle_1$. Then clearly $1 \in \langle f \rangle_{\lor b_i}$. Thus $\Sigma_1 = \Sigma_{f(1)} \subseteq \Sigma_{\lor b_i}$. Since $\Omega(Sp(L))$ is a compact locale, we have $\Sigma_1 = \Sigma_{f(1)} \subseteq \Sigma_{b_1 \lor b_2 \lor \dots \lor b_n}$. This gives $1 \in \langle f \rangle_{b_1 \lor b_2 \lor \dots \lor b_n}$. Hence $\langle f \rangle_{b_1 \lor b_2 \lor \dots \lor b_n} = \langle f \rangle_1$. Thus J_f is compact. \Box

Proposition 4.2. If L is a Boolean locale, then J_f is a Boolean locale.

5. Congruence in L with respect to the frame homomorphism f

Definition 5.1. Let $f : L \to L$ be a morphism in the category **Frm**. For $a, b \in L$, define a relation R_f on L as $aR_f b$ if $\langle f \rangle_a = \langle f \rangle_b$.

Proposition 5.1. R_f is a congruence on L.

Proof. Clearly R_f is an equivalence relation. Also, if $(a, b) \in R_f$, then by Lemma 3.2 (ii), $(a \land c, b \land c) \in R_f$.

$$(a,b) \in R_f \Rightarrow \langle f \rangle_a = \langle f \rangle_b$$
$$\Rightarrow \langle f \rangle_a \bigvee \langle f \rangle_s = \langle f \rangle_b \bigvee \langle f \rangle_s$$
$$\Rightarrow \langle f \rangle_a \bigvee S = \langle f \rangle_b \bigvee S.$$

Thus $(a,b) \in R_f \Rightarrow (a \land c, b \land c) \in R_f$ and $(a \lor S, b \lor S) \in R_f$. Hence R_f is a congruence on L.

Remark 5.1. Since R_f is a congruence on L, by [4], L/R_f is a frame under the induced partial order $[x] \leq [y]$ if and only if $x \leq y$ in L.

References

- [1] B. BANASCHEWSKI, C. J. MULVEY: *Stone cech compactification of locales-II*, Journal of Pure and Applied Algebra, **33** (1984), 107–122.
- [2] B. BANASCHEWSKI, C. J. MULVEY: Stone cech Compactification of locales-III, Journal of Pure and Applied Algebra, 185 (2003), 25–33.
- [3] G. BIRKHOFF: Lattice Theory, American Mathematical Society, 1940.
- [4] C. H. DOWKER, D. PAPERT: Quotient frame and subspaces, Proc. London Math. Soc., 3(16) (1966), 275–296.
- [5] J. ISBELL: First steps in descriptive theory of locales, Trans. Amer. Math. Soc., **327** (1991), 353–371.
- [6] P. T. JOHNSTONE: Stone Spaces, Cambridge University Press, 1982.
- [7] J. PICADO, A. PULTR: Frames and Locales: Topology Without Points, Basel, 2012.
- [8] M. H. STONE: Boolean algebras and their applications to topology, Proc. Nat. Acad. Sci., 20 (1934), 197–202.

DEPARTMENT OF MATHEMATICS K.K.T.M GOVERNMENT COLLEGE PULLUT-680663, KERALA, INDIA *E-mail address*: sabnaks7@gmail.com

DEPARTMENT OF MATHEMATICS ST.JOSEPH'S COLLEGE IRINJALAKUDA-680121, KERALA, INDIA *E-mail address*: thottuvai@gmail.com