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IDEALS AND CONGRUENCE WITH RESPECT TO A FRAME
HOMOMORPHISM

K. S. SABNA1 AND N. R. MANGALAMBAL

ABSTRACT. In the background of point free topology, given a frame L and
a frame homomorphism f : L → L, for each b ∈ L, ideals of the form
〈f〉b = {a ∈ L : Σf(a) ⊆ Σb} is constructed and its properties are studied.
These ideals are utilized to form a frame congruence on L and hence a sublo-
cale of L. By assigning the proper order, the set Jf = {〈f〉b : b ∈ L} has been
shaped as a locale of ideals of L. An equivalent condition for the locale Jf to
be compact is also derived.

1. INTRODUCTION

Topology in a topological space can be viewed as a lattice. In the same way,
from a complete lattice having additional property, a topological space can be
constructed. Marshall Stone [8] related the concept of lattice theory with that
of topology. Banaschewski [1], [2], John Isabell [5], Picado, Pult [7], Johnstone
[6] etc continued the work and most of the topological concepts get extended
into the background pointfree topology.

In this study, we have constructed ideals 〈f〉b = {a ∈ L : Σf(a) ⊆ Σb} from a
fiven frame homomorphism f : L → L. The necessry condition for these ideals
to be prime is also investigated. The ideals of the form 〈f〉b have been utilized to
define a congruence relation on the frame L and hence a sublocale of L. Using
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the ideals 〈f〉b, a locale of the form Jf = {〈f〉b : b ∈ L} has build up and some
of its properties are investigated.

Throughout this paper Ω(X) denotes the topology on the topological space
(X,Ω(X)) and L is a locale.

2. PRELIMINARIES

Definition 2.1. [7] A frame (or a locale) is a complete lattice F satisfying the
infinite distributivity law x ∧

∨
Y =

∨
{x ∧ y; y ∈ Y } for all x ∈ F and Y ⊆ F .

Definition 2.2. [7] If L,M, are frames,a map h : L → M is said to be frame
homomorphism if it preserves all finite meets (including the top 1) and all joins
(including the bottom 0).

Example 1. [7]

(i) If (X, τ) is a topological space, τ is a frame.
(ii) Every finite lattice having distributive property is a frame.

Definition 2.3. [6] A non empty subjoin semilattice I of a locale L is an ideal, if
it is a lower set.

Definition 2.4. [6] A proper ideal I is prime if x ∧ y ∈ I implies that either x ∈ I
or y ∈ I .

Recall that a flter F is an upper set closed under finite meets and that it is
prime resp. completely prime if a1 ∨ a2 ∈ F resp.

∨
i ai ∈ F implies that ai ∈ F

for some i. Completely prime filters are denoted by c.p filters [7].

Example 2. [7] Neighbourhood filters are completely prime in the frame Ω(X).

For a ∈ L, set Σa = {F ⊆ L;F 6= φ, F is c.p filters ; a ∈ F}. Then we have
Σ0 = φ, Σ∨

ai=
⋃

Σai, Σa∧b = Σa ∩ Σb and Σ1 = {all c.p filters}.
From Definition of c.p filters, if a ≤ b, then Σa ⊆ Σb. But Σa ⊆ Σb need not
imply a ≤ b.

Definition 2.5. [7] The spectrum of a frame is defined as follows:

Sp(L) = ({all completely prime filters in L}, {Σa : a ∈ L}).

Then Sp(L)is a topological space with the topology Ω(Sp(L)) = {Σa : a ∈ L}.
Topological space associated with the frame L is Sp(L) .
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Definition 2.6. [7] A subset A ⊆ L is said to be a cover of L if
∨
A = 1. B ⊆ A

is a sub cover if
∨
B = 1. A compact frame L is a frame having the property that

every cover of L has a finite sub cover.

Definition 2.7. [7] Let L be a frame. A relation θ on L is a congruence relation on
L if

(i) θ is an equivalence relation
(ii) (a, b) ∈ θ ⇒ (a ∧ c, b ∧ c) ∈ θ and (a ∨

∨
S, b ∨

∨
S) ∈ θ

Definition 2.8. [7] Let L be a lattice.p 6= 1 ∈ L is meet irreducible if x ∧ y ≤ p

implies that either x ≤ p or y ≤ p for all x, y ∈ L.

3. IDEALS FROM FRAME HOMOMORPHISM

Consider the morphism f : L → L in the category Frm. For any b ∈ L, set
〈f〉b = {a ∈ L : Σf(a) ⊆ Σb}. Since f(0) = 0, we have Σf(0) = φ. Thus 0 ∈ 〈f〉b
and hence 〈f〉b is non empty.

Lemma 3.1. For any b ∈ L,〈f〉b is an ideal on L. If Σb is a meet irreducible element
in Ω(Sp(L)), then the ideal 〈f〉b is a prime.

Proof. Choose a, c ∈ 〈f〉b. Then we have Σf(a) ⊆ Σb and Σf(c) ⊆ Σb. Hence
Σf(a∨c) = Σf(a)∨f(c) = Σf(a) ∪ Σf(c) ⊆ Σb which implies a ∨ c ∈ 〈f〉b.Thus 〈f〉b is
closed under join.

Now let a ∈ 〈f〉b and let x ≤ a in L. By order preserving property of frame
homomorphism, we have f(x) ≤ f(a) and hence Σf(x) ⊆ Σf(a) ⊆ Σb. Thus
x ∈ 〈f〉b. So 〈f〉b is lower closed and hence 〈f〉b is an ideal on L.

Suppose Σb is a meet irreducible element in Ω(Sp(L)) and a ∧ c ∈ 〈f〉b. Then
Σf(a) ∩ Σf(c) = Σf(a)∧f(c) = Σf(a∧c) ⊆ Σb. Since Σb is a meet irreducible, either
Σf(a) ⊆ Σb or Σf(c) ⊆ Σb. Hence from the definition 〈f〉b is a prime ideal. �

Example 3. Consider the frame L given below.
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Here, f : L→ L is defined by

f(x) =


0 if x=0,a

c if x=b,c

1 if x=1

Then f is a frame homomorphism. We have Σ0 = φ,Σa = {F1},Σb = {F2},
Σc = {F1, F2},Σ1 = {F1, F2, F3}, where completely prime filters F1, F2 are given
by F1 = {a, c, 1}, F2 = {b, c, 1}, F3 = {1}. Then 〈f〉0 = {0, a}.

〈f〉a = {0, a}

〈f〉b = {0, a}

〈f〉c = {0, a, b, c}

〈f〉1 = L.

Lemma 3.2.

(i) If b ≤ c in L, then 〈f〉b ⊆ 〈f〉c
( ii) 〈f〉b = 〈f〉c if and only if 〈f〉b∧d = 〈f〉c∧d, ∀d ∈ L.

Proof.
(i) b ≤ c⇒ Σb ⊆ Σc.

a ∈ 〈f〉b ⇒ Σf(a) ⊆ Σb

⇒ Σf(a) ⊆ Σc

⇒ a ∈ 〈f〉c
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(ii) Let 〈f〉b = 〈f〉c Now,

x ∈ 〈f〉b∧d ⇔ Σf(x) ⊆ Σb∧d

⇔ Σf(x) ⊆ Σb and Σf(x) ⊆ Σd

⇔ x ∈ 〈f〉b = 〈f〉c and Σf(x) ⊆ Σd

⇔ Σf(x) ⊆ Σc∧d

⇔ x ∈ 〈f〉c∧d

Thus 〈f〉b∧d = 〈f〉c∧d. Now let 〈f〉b∧d = 〈f〉c∧d ∀d ∈ L. Then 〈f〉b∧1 = 〈f〉c∧1.
Thus 〈f〉b = 〈f〉c. �

Lemma 3.3. If f and g are two frame homomorphism on L with the property f ≤ g,
then (g)b ⊆ 〈f〉b

Proof. x ∈ (g)b ⇒ Σg(x) ⊆ Σb ⇒ Σf(x) ⊆ Σg(x) ⊆ Σb ⇒ x ∈ 〈f〉b
Hence (g)b ⊆ 〈f〉b. �

4. LOCALE FROM THE IDEALS 〈f〉b

Theorem 4.1. The set Jf = {〈f〉b : b ∈ L} gives a locale.

Proof. Define � on Jf by 〈f〉b � 〈f〉c if b ≤ c in L or 〈f〉b = 〈f〉d for some
d ≤ c. We can easily verify that the relation � is a partial order on Jf . Then,
〈f〉a∧b � 〈f〉a and 〈f〉a∧b � 〈f〉b follows from the definition.Thus 〈f〉a∧b stands
as a lower bound to both of 〈f〉a and 〈f〉b.

For any other lower bound〈f〉d, we have 〈f〉a and 〈f〉b. That is let 〈f〉d � 〈f〉a
and 〈f〉d � 〈f〉b. If d ≤ a and d ≤ b, then we have 〈f〉d � 〈f〉a∧b.

Now let d ≤ a and 〈f〉d = 〈f〉c for some c ≤ b. Then, x ∈ 〈f〉d ⇒ x ∈ 〈f〉c ⇒
Σf∗(x) ⊆ Σc. Since d ≤ a, x ∈ 〈f〉d ⇒ Σf(x) ⊆ Σd ⊆ Σa. Thus 〈f〉d ⊆ 〈f〉c∧a.

Since c ∧ a ≤ c, 〈f〉c∧a ⊆ 〈f〉c = 〈f〉d.
Thus 〈f〉c∧a = 〈f〉d where c ∧ a ≤ a ∧ b. Hence 〈f〉d � 〈f〉a∧b. This is true for

other two cases. Hence 〈f〉a ∧ 〈f〉b = 〈f〉a∧b.
In a similar manner,

∨
〈f〉ai = 〈f〉∨ ai .

Now, 〈f〉b ∧
∨
〈f〉ai = 〈f〉b∧∨ ai = 〈f〉∨(b∧ai) =

∨
〈f〉b∧ai =

∨
(〈f〉b ∧ 〈f〉ai). Thus

Jf is a locale with bottom 〈f〉0 and top 〈f〉1. �

Example 4. The locale Jf corresponding to the frame homomorphism f in example
3 is given by Jf = {〈f〉0, 〈f〉c, 〈f〉1}.
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Proposition 4.1. Jf is compact locale if and only if Ω(Sp(L)) is a compact locale.

Proof. First suppose Jf is compact locale. Let Σ1 = Σf(1) ⊆
⋃

Σbi. That is
Σf(1) ⊆ Σ∨

bi which implies 1 ∈ 〈f〉∨bi. Since 〈f〉∨bi is an ideal, we have
〈f〉∨bi = 〈f〉1. Then by compactness of Jf we have 〈f〉b1∨b2∨....bn = 〈f〉1. Then
since 1 ∈ 〈f〉b1∨b2∨....bn, we have Σ1 = Σf(1) ⊆ Σb1

⋃
Σb2

⋃
.....

⋃
Σbn. This shows

that Ω(Sp(L)) is a compact element of Sp(L).
Conversely assume Ω(Sp(L)) is a compact locale. Suppose

∨
〈f〉bi = 〈f〉1.

Then clearly 1 ∈ 〈f〉∨bi. Thus Σ1 = Σf(1) ⊆ Σ∨bi. Since Ω(Sp(L)) is a compact
locale, we have Σ1 = Σf(1) ⊆ Σb1∨b2∨.....∨bn. This gives 1 ∈ 〈f〉b1∨b2∨.....∨bn. Hence
〈f〉b1∨b2∨.....∨bn = 〈f〉1. Thus Jf is compact. �

Proposition 4.2. If L is a Boolean locale, then Jf is a Boolean locale.

5. CONGRUENCE IN L WITH RESPECT TO THE FRAME HOMOMORPHISM f

Definition 5.1. Let f : L→ L be a a morphism in the category Frm. For a, b ∈ L,
define a relation Rf on L as aRfb if 〈f〉a = 〈f〉b .

Proposition 5.1. Rf is a congruence on L.

Proof. Clearly Rf is an equivalence relation. Also, if (a, b) ∈ Rf , then by Lemma
3.2 (ii), (a ∧ c, b ∧ c) ∈ Rf .

(a, b) ∈ Rf ⇒ 〈f〉a = 〈f〉b

⇒ 〈f〉a
∨
〈f〉s = 〈f〉b

∨
〈f〉s

⇒ 〈f〉a∨S = 〈f〉b∨S .

Thus (a, b) ∈ Rf ⇒ (a ∧ c, b ∧ c) ∈ Rf and (a
∨
S, b

∨
S) ∈ Rf . Hence Rf is a

congruence on L. �

Remark 5.1. Since Rf is a congruence on L, by [4], L/Rf is a frame under the
induced partial order [x] ≤ [y] if and only if x ≤ y in L.
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