ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **9** (2020), no.4, 2083–2092 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.67 Spec. Issue on NCFCTA-2020

A STUDY ON SOFT (α_{γ} , β)-CONTINUOUS MAPPINGS IN SOFT TOPOLOGICAL SPACES

N. KALAIVANI

ABSTRACT. In this paper the concept of soft (α_{γ},β) -continuous mappings is introduced and some of their basic properties are studied. Further soft $(\gamma,\alpha-\beta)$ open(closed) mappings are introduced and studied.

1. INTRODUCTION

The following notations are used throughout this paper: S-soft SS-soft set, STS-soft topological space, STSs-soft topological spaces, OS-open set, CS-closed set, TS-topological space, TSs-topological spaces, CMa-continuous mapping, Co Ma-continuous mapping, Ma-mapping, Op Ma-open mapping, Cl Ma-closed mapping, Bi Ma-bijective mapping.

Uncertain data are inherent in various fields such as economics, engineering and business mangement. Due to the importance of those applications and the increasing amount of uncertain data collected, accumulated, research on effective and efficient techniques that are dedicated to modeling uncertain data and handling uncertainties has attracted much interest in recent times.

Molodtsov [11] introduced SS theory as a general mathematical tool for dealing with uncertain fuzzy, not clearly defined objects. Maji et. al. [9,10], Chen et.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A10, 54C08.

Key words and phrases. Soft γ -open set, soft β -open set, soft α_{γ} -open set, soft(α_{γ},β)-continuous mappings,(γ,α_{β})-open(closed) mappings.

al. [2, 3], Kong et. al. [8], Xiao et. al. [15] and Pei and Miao [12] contributed many concepts to the soft set theory and applications.

Recently, Shabir and Naz [13, 14] introduced the concept of STSs which are defined over an initial universe with a fixed set of parameters. They also described some of the important basic concepts of STSs. Aygunoglu et. al. [1], Zorlutuna et. al. [16]. Kalaivani and Sai Sundara Krishnan [4] introduced α - γ -OSs in TSs and studied their properties.

In this work in section 3 the concept of S (α_{γ} , β)- Co Mas have been introduced and investigated their properties. In section 4, we introduce S (γ,α_{β})-Op Mas, (γ,α_{β})-Cl Mas and studied many basic results.

2. PRELIMINARIES

The soft set, null soft set, union, intersection, complement of soft sets, soft open sets, soft closed sets, soft interior, soft closure and soft topology are discussed in [3, 5–7].

3. Soft (α_{γ}, β) -Continuous Mappings

Definition 3.1. A Ma $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ is said to be a $S(\alpha_\gamma, \beta)$ -Co Ma if the inv image of every $S \beta$ -OS in (Y_s, σ_s, K_s) is a $S \alpha_\gamma$ -OS in (X_s, τ_s, E_s) .

Definition 3.2. A Ma $f : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ is said to be a $S(\gamma, \beta)$ -Co Ma if the inv image of every $S \beta$ -OS in (Y_s, σ_s, K_s) is a $S \gamma$ -OS in (X_s, τ_s, E_s) .

Example 1. Let $X_s = \{x_1, x_2, x_3\}$, $Y_s = \{y_1, y_2, y_3\}$, $\tau_s = \{\phi, X_s, (F_1, E_s), (F_2, E_s), (F_3, E_s), (F_4, E_s)\}$ and $\sigma_s = \{\phi, Y_s, (G_1, E_s), (G_2, E_s), (G_3, E_s), (G_4, E_s)\}$, where (F, E_s) and (G, K_s) are defined as $F_1(E_s) = (e_1, \{x_1\})$, $F_2(E_s) = (e_2, \{x_2\})$, $F_3(E_s) = (e_3, \{x_1, x_2\})$, $F_4(E_s) = (e_3, \{x_1, x_3\})$, $G_1(E_s) = (k_1, \{y_1\})$, $G_2(E_s) = (k_2, \{y_2\})$, $G_3(E_s) = (k_3, \{y_1, y_2\})$, $G_4(E_s) = (k_3, \{y_1, y_3\})$ and (X_s, τ_s, E_s) and (Y_s, σ_s, K_s) are STSs.

Define Operations $\gamma_s : \tau_s \to P(X_s)$ and $\beta_s : \sigma_s \to P(Y_s)$ by

$$(H, E_S)^{\gamma_s} = \begin{cases} (H, E_S) & if x_2 \notin (H, E_S) \\ cl((H, E_S)) & if x_2 \in (H, E_S) \end{cases}$$
$$(G, E_S)^{\beta_s} = \begin{cases} cl((G, E_S)) & if x_2 \notin (G, E_S) \\ (G, E_S) \cup \{c\} & if x_2 \in (G, E_S) \end{cases}$$

Then

$$\tau_{s(\alpha_{\gamma})} = \{ (F_1, E_s), (F_2, E_s), (F_3, E_s), (F_4, E_s) \}$$

and

$$\sigma_{s(\beta_s)} = \{ (G_1, K_s), (G_2, K_s), (G_3, K_s), (G_4, K_s) \}.$$

Define $u_M : X_s \to Y_s$ and $p_M : E_s \to K_s$ as $u(x_1) = y_1, u(x_2) = y_2$ and $u(x_3) = y_3$; $p(e_1) = k_1, p(e_2) = k_2$ and $p(e_3) = k_3$. Let $f_{up} : (X_s, \tau_s, E_s) \to (y_s, \sigma_s, K_s)$ be a So Ma. Then (G, K_s) is a S β -OS in Y_s and $f_{pu}^{-1}(G, K) = (F, E_s)$ is a S α_{γ} -OS in X_s . Hence f_{pu} is a S (α_{γ}, β) -Co Ma.

Theorem 3.1. For a Ma $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$, the following statements are equivalent:

- (i) f_M is a $S(\alpha_{\gamma},\beta)$ -Co Ma;
- (ii) For each point x in X_s and each S β -OS V in Y_s such that $f(x) \in V$, there exists a S α_{γ} -OS W in X_s such that $x \in W, f_M(W) \subseteq V$;
- (iii) The inverse image of each S β -CS in Y_s is a S α_{γ} -CS in X_s .

Proof.

 $(i) \Rightarrow (ii)$ Let $x \in Y_s$ and V be any S β -OS of Y_s containing $f_M(x)$. Set W = $f_M^{-1}(V)$ then by Definition 3.1, W is a S α_{γ} -OS containing x and $f_M(W) = f_M(f_M^{-1}(V)) \subseteq V$.

 $(ii) \Rightarrow (iii)$ Let F be a S β -CS in (Y_s, σ) . Set $V = Y_s - F$, then V is a S β -OS in Y_s . Let $x \in f_M^{-1}(V)$, by(ii) there exists a S α_γ -OS W of X_s containing x such that $f_M(W) \subseteq V$.

Thus we obtain $x \in W \subseteq \tau_{s\gamma_s}$ -int $(s\tau_{s\gamma_s}$ -cl $(\tau_{s\gamma_s}$ -int $(W)) \subseteq \tau_{s\gamma_s}$ -int $(\tau_{s\gamma_s}$ -cl $(\tau_{s\gamma_s}$ -cl $(\tau_{s\gamma_s}$ -int $(f_M^{-1}(V))))$ and hence $f_M^{-1}(V) \subseteq \tau_{s\gamma}$ -int $(\tau_{s\gamma}$ -cl $(\tau_{s\gamma}$ -int $(f_M^{-1}(V))))$. Then $f_M^{-1}(V)$ is a S α_{γ} -OS in X_s . Hence $f_M^{-1}(F) = X_s - f_M^{-1}(Y_s - F) = X_s - f_M^{-1}(V)$ is a S α_{γ} -CS in X_s .

 $(iii) \Rightarrow (i)$ Let B be a S β -OS in Y_s . Then $F = Y_s - B$ is a S β -CS in Y_s . By (iii), we have $f_M^{-1}(F)$ is a S α_γ -CS in X_s .

Hence
$$f_M^{-1}(B) = X_s - f_M^{-1}(Y_s - B) = X_s - f_M^{-1}(F)$$
 is a S α_{γ} -OS in X_s .

Theorem 3.2. Let $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ be a Ma and $\beta : \sigma_s \to P(Y_s)$ be an open operation on σ . Then the following statements are equivalent:

- (i) f_M is a $S(\alpha_{\gamma},\beta)$ Co Ma;
- (ii) $\tau_{s\gamma}$ -cl($\tau_{s\gamma}$ -int($\tau_{s\gamma}$ -cl($f_M^{-1}(B)$))) $\subseteq f_M^{-1}(\sigma_{s\beta}$ cl(B)) for each $B \subseteq Y_S$;
- (iii) $f_M(\tau_{s\gamma}\text{-}cl(\tau_{s\gamma}\text{-}int(\tau_{s\gamma}\text{-}cl(A)))) \subseteq \sigma_{s\beta}\text{-}cl(f_M(A))$ for each $A \subseteq X_s$.

Proof.

 $(i) \Rightarrow (ii)$ Let B be any subset of Y_s . Since $\sigma_{s\beta}$ -cl(B) is a soft β -CS in Y_s , By Theorem 3.1 (iii) $f_M^{-1}(\sigma_{s\beta}$ - cl(B)) is a S α_{γ} -CS and $X_s - f_M^{-1}(\sigma_{s\beta}$ - cl(B)) is a S α_{γ} -oS. Thus $X_s - f_M^{-1}(\sigma_{s\beta}$ - cl(B)) $\subseteq \tau_{s\gamma}$ -int $(\tau_{s\gamma}$ -cl $(\tau_{s\gamma}$ -int $(X_s - f_M^{-1}(s\sigma_{\beta}$ - cl(B))))) $\subseteq X_s - \tau_{s\gamma}$ -cl $(\tau_{s\gamma}$ -int $(\tau_{s\gamma}$ -cl $(f^{-1}(\sigma_{s\beta}$ - cl(B))))).

Hence $\tau_{s\gamma}$ -cl $(\tau_{s\gamma}$ -int $(\tau_{s\gamma}$ -cl $(f_M^{-1}(B)))) \subseteq f_M^{-1}(s\sigma_{s\beta}$ -cl(B)) for each $B \subseteq Y_s$.

(*ii*) \Rightarrow (*iii*) Let A be any S subset of X_s . By (*ii*), $\tau_{s\gamma}$ -cl($\tau_{s\gamma}$ -int($\tau_{s\gamma}$ -cl(A))) $\subseteq \tau_{s\gamma}$ -cl($\tau_{s\gamma}$ -cl($f_M^{-1}(f(A))))) \subseteq f_M^{-1}(\sigma_{s\beta}$ -cl($f_M(A)))$ and hence $f_M(\tau_{s\gamma}$ -cl($\tau_{s\gamma}$ -int($\tau_{s\gamma}$ -cl(A)))) $\subseteq \sigma_{s\beta}$ - cl($f_M(A)$).

 $\begin{array}{ll} (iii) \Rightarrow (i) \quad \text{Let V be any S } \beta\text{-OS of } Y_s. \quad \text{Then by (iii)} \\ f_M(\tau_{s\gamma}\text{-}\operatorname{cl}(\tau_{s\gamma}\text{-}\operatorname{int}(\tau_{s\gamma}\text{-}\operatorname{cl}(f_M^{-1}(Y_s-V))))) \subseteq \sigma_{s\beta}\text{-}\operatorname{cl}(f_M(f_M^{-1}(Y_s-V))) \subseteq \sigma_{s\beta}\text{-}\operatorname{cl}(Y_s-V) = Y_s-V. \text{ Therefore } \tau_{s\gamma}\text{-}\operatorname{cl}(\tau_{s\gamma}\text{-}\operatorname{int}(\tau_{s\gamma}\text{-}\operatorname{cl}(f_M^{-1}(Y_s-V)))) \subseteq f_M^{-1}(Y_s-V) \subseteq X_s - f_M^{-1}(V). \text{ Consequently we obtain that } f_M^{-1}(V) \subseteq \tau_{s\gamma}\text{-}\operatorname{int}(\tau_{s\gamma}\text{-}\operatorname{cl}(\tau_{s\gamma}\text{-}\operatorname{int}(f_M^{-1}(V)))). \\ \text{This shows that } f_M^{-1}(V) \text{ is a S } \alpha_{\gamma}\text{-}\text{OS. Thus } f_M \text{ is a S } (\alpha_{\gamma}, \beta)\text{- Co Ma.} \end{array}$

Theorem 3.3. For a Ma $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ the following statements are equivalent:

- (i) f is a $S(\alpha_{\gamma},\beta)$ -Co Ma;
- (ii) For each subset A of X_S , $f_M(\tau_{s(\alpha_\gamma)}\text{-cl}(A))) \subseteq \sigma_{s\beta}\text{-cl}(f_M(A))$;
- (iii) For each subset B of Y_s , $\tau_{s((\alpha_{\gamma})}$ -cl($f_M^{-1}(B)$) $\subseteq f_M^{-1}(\sigma_{s\beta}$ -cl(B));
- (iv) For each subset C of Y_s , $f_M^{-1}(\sigma_{s\beta}\text{-int}(C)) \subseteq \tau_{s(\alpha_{\gamma})}\text{-int}(f_M^{-1}(C)))$.

Proof.

 $(i) \Rightarrow (ii)$ Let $y \in f_M(\tau_{s(\alpha_\gamma)}\text{-cl}(A))$ and V be any S β -OS containing y. Using Theorem 3.2, there exists a point $x \in U$ with $f_M(x) = y$ and $f_M(U) \subseteq V$. Since $x \in \tau_{s(\alpha_\gamma)}\text{-cl}(A)$, $U \cap V \neq \phi$ and hence $\phi \neq f_M(U \cap A) \subseteq f_M(U) \cap f_M(A) \subseteq V \cap f_M(A)$. This implies that $y \in \sigma_{s\beta}\text{-cl}(f_M(A))$.

Therefore $f(\tau_{s(\alpha_{\gamma})}$ -cl(A)) $\subseteq \sigma_{s\beta}$ -cl(f_M (A)).

 $(ii) \Rightarrow (iii)$ Let B be a S β -CS in Y_s . Then $\sigma_{s\beta}$ -cl(B)=B. By (ii), $f_M(\tau_{s(\alpha_{\gamma})}$ -cl $(f_M^{-1}(B)) \subseteq \sigma_{s\beta}$ -cl $(f_M(f_M^{-1}(B))) \subseteq \sigma_{s\beta}$ -cl(B)=B holds.

 $(iii) \Rightarrow (iv)$ Let C be any subset of Y_s . Clearly $\tau_{s(\alpha_{\gamma})}$ -int $(f_M^{-1}(C))$ is a S α_{γ} -OS in X_s . Also, $f_M \tau_{s(\alpha_{\gamma})}$ -int $(f_M^{-1}(C)) \subseteq f_M(f_M^{-1}(C)) \subseteq C$.

Hence $f_M^{-1}(\sigma_{s\beta}\text{-int}(\mathsf{C})) \subseteq \tau_{s(\alpha_{\gamma})}\text{-int}(f_M^{-1}(\mathsf{C})).$

 $(iv) \Rightarrow (i)$ Let B be any S β -OS in Y_s . Consider V = Y_s - B. Then V is a S β -CS in Y_s . By (iv) f_M^{-1} (V) is a S α_γ -CS in X_s . Hence f_M^{-1} (B) = $X_s - f_M^{-1}(Y_s - B) = X_s - f_M^{-1}$ (V) is a S α_γ -OS in X_s . Hence f_M is a S (α_γ, β) -Co Ma.

Remark 3.1. Every $S(\gamma,\beta)$ -Co Ma is a $S(\alpha_{\gamma},\beta)$ -Co Ma. But the converse need not be true.

Proof. Proof follows from the Definitions 3.1, 3.2. In the Example 1, $f_M^{-1}\{(G_2, E)\} = \{(F_3, E)\}$ is not a S γ -OS. Hence f_M is not a S(γ, β)-Co Ma. \Box

Theorem 3.4. Let $f_M : (X_S, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ be a $S(\alpha_{\gamma}, \beta)$ -Co Ma. Then for each subset V of Y_s , $f_M^{-1}(\tau_{s\gamma}\text{-int}(V)) \subseteq \tau_{s\gamma}\text{-cl}(f_M^{-1}(V))$.

Proof. The result $\tau_{s(\gamma}$ -int(V) \subseteq V, implies that $f_M^{-1}(\tau_{s\gamma}$ -int(V)) $\subseteq f_M^{-1}(V)$. Since f_M is a S ($\alpha\gamma$, β)-Co Ma $f_M^{-1}(V) \subseteq \tau_{s\gamma}$ -int($\tau_{s\gamma}$ -cl($\tau_{s\gamma}$ -int($f_M^{-1}(V)$))), implies that $f_M^{-1}(\tau_{s\gamma}$ -int(V)) $\subseteq \tau_{s\gamma}$ -int($\tau_{s\gamma}$ -cl($\tau_{s\gamma}$ -int($f_M^{-1}(V)$))) and $f_M^{-1}(\tau_{s\gamma}$ -int(V)) $\subseteq \tau_{s\gamma}$ -int($\tau_{s\gamma}$ -cl($f_M^{-1}(V)$)). Therefore $f_M^{-1}(\tau_{s\gamma}$ -int(V)) $\subseteq \tau_{s\gamma}$ -cl($f_M^{-1}(V)$).

Theorem 3.5. Let $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ be a Bi Ma.Then f_M is a $S(\alpha_{\gamma}, \beta)$ -Co Ma if and only if $\sigma_{s\beta}$ -int $(f_M(U)) \subseteq f_M(\tau_{s(\alpha_{\gamma})}$ -int(U)) for each subset U of X_s .

Proof. Suppose f_M is a $S(\alpha_{\gamma},\beta)$ -Co Ma, using Theorem 3.3(iv), $\sigma_{s\beta}$ -int($f_M(\tau_{s(\alpha_{\gamma})})$ -int(U))) for each subset U of X_s .

Conversely, suppose $\sigma_{s\beta}$ -int $(f_M(U)) \subseteq f_M(\tau_{s(\alpha_{\gamma})})$ -int(U) for each subset U of X_S , by Theorem 3.3(iv),(i), f_M is a S (α_{γ}, β) -Co Ma.

Definition 3.3. Let A be a subset of X_S and p be any point in X_S . Then p is called a S α_{γ} -limit point of A if $U \cap (A - \{p\}) \neq \phi$, for any α_{γ} -OS U containing p. The set of all S α_{γ} -limit points of A is called S α_{γ} -derived set of A and is denoted by $d_{s(\alpha_{\gamma})}$.

Theorem 3.6. Let $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ be a Ma and γ be an open operation then the following are equivalent:

- (i) f_M is a $S(\alpha_{\gamma},\beta)$ -Co Ma.
- (ii) $f_M(d_{s(\alpha_{\gamma})}(A)) \subseteq \sigma_{s\beta}$ -cl($f_M(A)$) for any subset A of X_S .

Proof.

 $(i) \Rightarrow (ii)$ Suppose f_M is a $S(\alpha_{\gamma},\beta)$ -Co Ma. Let A be any subset in X_S . Since $\sigma_{s\beta}$ -cl $f_M(A)$) is a $\sigma_{s\beta}$ -CS in Y_S , $f_M^{-1}(\sigma_{s\beta}$ -cl(A)) is a S α - γ -CS in X_S . Then $A \subseteq f_M^{-1}(f_M(A)) \subseteq f_M^{-1}(\sigma_{s\beta}$ -cl $(f_M(A))$) gives

 $\tau_{s(\alpha_{\gamma}}\text{-cl}(\mathbf{A})\subseteq\tau_{s(\alpha_{\gamma})}\text{-cl}(f_{M}^{-1}(\sigma_{s\beta}\text{-cl}(f_{M}(A)))=f_{M}^{-1}(\sigma_{s\beta}\text{-cl}(f_{M}(A))).$ Therefore,

$$f_M(d_{s(\alpha_{\gamma})}(A)) \subseteq f(\tau_{s(\alpha-\gamma)}\text{-cl}(A) \subseteq f_M(f_M^{-1}(\sigma_{s\beta}\text{-cl}(f_M(A)))) \subseteq \sigma_{s\beta}\text{-cl}(f_M(A)).$$

(*ii*) \Rightarrow (*i*) Suppose $f(d_{s(\alpha_{\gamma})}(A)) \subseteq \sigma_{s\beta}\text{-cl}(f_M(A))$ for $A \subseteq B$. Let B be any $\sigma_{s\beta}\text{-CS}$

of Y_S . To prove that $f_M^{-1}(B)$ is a S α_γ -CS in X_S . Then $f_M(d_{s(\alpha_\gamma)}f_M^{-1}(B)) \subseteq \sigma_{s\beta}$ -cl $(f_M(f_M^{-1}(B))) \subseteq \sigma_{s\beta}$ -cl(B) = B or $f_M(d_{s(\alpha_\gamma)}(f_M^{-1}(B))) \subseteq B$ gives $d_{s(\alpha_\gamma)}(f_M^{-1}(B)) \subseteq f_M^{-1}(B)$ which implies that $f_M^{-1}(B)$ is a S α_γ -CS in X_S . Hence f_M is a S (α_γ, β) -Co Ma.

Theorem 3.7. If $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ is a $S(\alpha_{\gamma}, \beta)$ -Co Ma and X_0 is a $S \gamma$ -OS of X_S , then the restriction $f_M/X_0 : X_0 \to Y_s$ is a $S(\alpha_{\gamma}, \beta)$ - Co Ma, where $\gamma : \tau_s \to P(X_s)$ be a regular operation on τ_s .

Proof. Let V be any S β -OS of Y_S . Since f_M is a S (α_γ , β)- Co Ma $f_M^{-1}(V)$ is a S α_γ -OS in X_S and using Theorem 3.21 [7] $f_M^{-1}(V) \cap X_0 = (f_M/X_0)^{-1}(V) \in \tau_{s(\alpha_\gamma)}$. Since $X_0 \subseteq X$, $(f_M/X_0)^{-1}(V)$ is a S α_γ -OS in X_0 . This shows that f_M/X_0 is a S (α_γ , β)-Co Ma.

Theorem 3.8. Let (X_S, τ_S, E_s) be a STS, $\gamma : \tau_S \to P(X_S)$ be a regular operation on τ_s and $\{V_k : k \in J\}$ be a cover of X_S by $S \gamma$ -OSs of X_S . A Ma $f_M : (X, \tau) \to (Y, \sigma)$ is a $S(\alpha_{\gamma}, \beta)$ -Co Ma if and only if the restriction $f_M/V_k : V_k \to Y$ is a $S(\alpha_{\gamma}, \beta)$ - Co Ma for each $k \in J$.

Proof. Let f_M be a $S(\alpha_{\gamma}, \beta)$ -Co Ma. By Theorem 3.4, f_M/V_k is a $S(\alpha_{\gamma}, \beta)$ -Co Ma for each $k \in J$. Let f_M/V_k is a $S(\alpha_{\gamma}, \beta)$ -Co Ma for each $k \in J$. For any S β -OS V of Y_S , $(f_M/V_k)^{-1}(V)$ is a S α_{γ} -OS in V_k for each $k \in J$ and hence $f_M^{-1}(V) = \bigcup \{(f_M/V_k)^{-1}(V) : k \in J\}$ is a S α_{γ} -OS in X_S by Theorem 3.4 [7]. This shows that f_M is a S (α_{γ}, β) -Co Ma.

4. Soft(γ, α_{β})-Open Mappings and Soft(γ, α_{β})-Closed Mappings

In this section, we introduce the concept of $S(\gamma, \alpha_{\beta})$ -Op Mas and $S(\gamma, \alpha_{\beta})$ -Cl Mas and study some of their properties.

Definition 4.1. A Ma $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ is said to be a S (γ, α_β) -Op(Cl)Ma if the image of each S γ -Op(Cl) set in X_s is a S α_β -OS(CL)set in Y_s .

Example 2. Let $X_s = \{x_1, x_2, x_3\}$, $Y_s = \{y_1, y_2, y_3\}$, $\tau_s = \{\varphi, X_s, (F_1, E_s)\}$, (F_2, E_s) , (F_3, E_s) , (F_4, E_s) and $\sigma_s = \{\varphi, Y_s, (G_1, E_s)), (G_2, E_s)\}$, (G_3, E_s) , (G_4, E_s) , where (F, E_s) and (G, K_s) are defined as $F_1(E_s) = (e_1, \{x_1\})$, $F_2(E_s) = (e_1, \{x_1\})$, $F_3(E_s) = (e_1, \{x_1\})$, $F_$

 $\begin{array}{l} (e_2, \{x_3\}), \ F_3(E_s) = (e_3, \{x_1, x_2\}), \ F_4(E_s) = (e_3, \{x_1, x_3\}). \\ G_1(E_s) \ = \ (k_1, \{y_1\}), \ G_2(E_s) \ = \ (k_2, \{y_2\}), \ G_3(E_s) \ = \ (k_3, \{y_1, y_2\}), \ G_4(E_s) \ = \ (k_3, \{y_1, y_3\}) \ \text{and} \ (X_s, \tau_s, E_s) \ \text{and} \ (Y_s, \sigma_s, K_s) \ \text{be STSs.} \end{array}$

Define operations $\gamma_s : \tau_s \to P(X_s)$ and $\beta_s : Y_s \to P(Y_s)$ by $A^{\gamma_s} = cl(A)$ and $B^{\beta_s} = int(cl(B))$. Then $\tau_{s(\alpha_{\gamma})} = \{(F_1, E_s), (F_2, E_s), (F_3, E_s), (F_4, E_s)\}$ and $\sigma_{s(\beta)} = \{(G_1, K_s), (G_2, K_s), (G_3, K_s), (G_4, K_s)\}.$

Define $U_M : X_s \to Y_s$ and $P_M : E_s \to K_s$ as $u(x_1) = y_1, u(x_2) = y_3$ and $u(x_3) = y_2$; $p(e_1) = k_1, p(e_2) = k_3$ and $p(e_3) = k_2$. Let $f_{up} : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ be a S Ma. Then the image of each S γ_s -OS(respectively γ -CS) is a S α_γ -OS(respectively α_γ -CS) under f_M . Hence f_M is a S(γ, α_β)-OS(respectively (γ, α_β)-CS).

Theorem 4.1. A Ma $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ is a $S(\gamma, \alpha_\beta)$ -Op Ma if and only if for each $x \in X$ and each $S \gamma_S$ -neighbourhood U of x, there exists a $S \alpha_\beta$ -OS V of Y_s containing $f_M(x)$ such that $V \subseteq f_M(U)$.

Proof. Suppose that f_M is a S(γ , α_β)-Op Ma . For each $\mathbf{x} \in X_s$ and each neighbourhood U of \mathbf{x} , there exists a S γ_s -OS U_0 such that $\mathbf{x} \in U_0 \subseteq \mathbf{U}$. Since f_M is a S (γ, α_β)-Op Ma, $\mathbf{V} = f(U_0)$ is a S α_β -OS and $f_M(x) \in V \subseteq f_M(U)$.

Conversely, let U be a S γ_s -OS of X_s . For each $\mathbf{x} \in \mathbf{U}$, there exists a S α_β -OS $V_{f_M(x)}$ such that $f_M(x) \in V_{f_M(x)} \subseteq f_M(U)$. Therefore, we obtain $f_M(U) = \bigcup \{V_{f_M(x)} \ x \in U\}$ and by Theorem 3.4, [8], $f_M(U)$ is a S α_β -OS. This shows that f_M is a S(γ, α_β)-Op Ma.

Theorem 4.2. A Ma $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$ is a S (γ, α_β) -Op Ma if and only if for each subset $W \subseteq Y_S$ and each S γ_s -CS F of X_s containing $f_M^{-1}(W)$, there exists a S α_β -CS H of Y_S containing W such that $f_M^{-1}(H) \subseteq F$.

Proof. Let $H = Y_s - f_M(X_s - F)$. Since $f_M^{-1}(W) \subseteq F$, we have $f_M(X_S - F) \subseteq Y_S - W$. W. Since f_M is a S (γ, α_β) -Op Ma, H is a S α_β -CS and $f_M^{-1}(H) = X_s - f_M^{-1}(f_M(X_s - F)) \subseteq X_s - (X_s - F) = F$.

Conversely, let U be any S γ_s -OS of X_s and $W = Y_s - f_M(U)$. Then $f_M^{-1}(W) = X - f_M^{-1}(f_M(U)) \subseteq X_s - U$ and $X_s - U$ is a S γ_s -CS. By the hypothesis, there exists a S α_β -CS H of Y_s containing W such that $f_M^{-1}(H) \subseteq X_s - U$. Then, we have $f_M^{-1}(H) \cap U = \phi$ and $H \cap f_M(U) = \phi$. Therefore, we obtain $Y_s - f_M(U) \supseteq H \supseteq W = Y_s - f_M(U)$ and $f_M(U)$ is a S (γ, α_β) -OS in Y_s . This shows that f_M is a S (γ, α_β) -Op Ma.

Theorem 4.3. If a Ma $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, F_s)$ is a $S(\gamma, \alpha_\beta)$ -Op Ma and $\gamma_s : \tau_s \to P(X_s)$ is an open operation on τ_s . Then the following properties hold:

(i) $f_M^{-1}(s\sigma_{s\beta}\text{-cl}(\sigma_{s\beta}\text{-cl}(B))) \subseteq \tau_{s\gamma}\text{-cl}(f_M^{-1}(B))$ for each set $B \subseteq Y_s$; (ii) $f_M^{-1}(\sigma_{s\beta}\text{-cl}(V) \subseteq \tau_{s\gamma}\text{-cl}(f_M^{-1}(V))$ for each $S \beta_{\sigma}\text{-OS } V$ of Y_s .

Proof.

(*i*) Let B be any subset of Y_s . Then $\tau_{s\gamma}$ -cl $(f_M^{-1}(B))$ is a S γ_s -CS in X_s . By Theorem 4.2 there exists a S α_{β} -CS H of Y_s containing B such that $f_M^{-1}(H) \subseteq \tau_{s\gamma}$ cl $(f_M^{-1}(B))$. Since Y_s - H is a S α_{β} -OS, $f_M^{-1}(Y_s - H) \subseteq f_M^{-1}(\sigma_{s\beta}\text{-int}(\sigma_{s\beta}\text{-cl}(\sigma_{s\beta}\text{-int}(\sigma_{s\beta}\text{-cl}(\sigma_{s\beta}\text{-int}(\sigma_{s\beta}\text{-cl}(H)))) = X_S - f_M^{-1}(\sigma_{s\beta}\text{-cl}(\sigma_{s\beta}\text{-int}(\sigma_{s\beta}\text{-cl}(H)))) = T_M^{-1}(\sigma_{s\beta}\text{-cl}(\sigma_{s\beta}\text{-int}(\sigma_{s\beta}\text{-cl}(B)))) \subseteq f_M^{-1}(s\sigma_{\beta}\text{-cl}(\sigma_{s\beta}\text{-cl}(\sigma_{s\beta}\text{-cl}(G_{s\beta}\text{-cl}(\sigma_{s\beta}))))) \subseteq \tau_{s\gamma}\text{-cl}(f_M^{-1}(B)).$

(*ii*) Let V be any S β_{σ} -OS of Y_s . Then $\sigma_{s\beta}$ -int(V) = V and using (*i*), we obtain $f_M^{-1}(\sigma_{s\beta}$ -cl(V)) = $f_M^{-1}(\sigma_{s\beta}$ -cl($\sigma_{s\beta}$ -cl(V))) $\subseteq \tau_{s\gamma}$ -cl($f_M^{-1}(V)$).

Theorem 4.4. Suppose $f_M : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, F_s)$ is a $S(\gamma, \alpha_\beta)$ -Op Ma and $\gamma_s : \tau_s \to P(X_s)$ is an open operation on τ_s . Then the following conditions are equivalent:

- (i) f_M is a S (γ, α_β)-Op Ma.
- (ii) $f_M(\tau_{s\gamma}\text{-int}(A)) \subseteq \sigma_{s(\alpha_B)}\text{-int}(f_M(A))$ for $A \subseteq X_s$;
- (iii) $\tau_{s\gamma}$ -int($f_M^{-1}(B)$) $\subseteq f_M^{-1}(\sigma_{s(\alpha_\beta)})$ -int(B)) for $B \subseteq Y_s$.

Proof.

 $(i) \rightarrow (ii)$. Let A be a subset of X_s . Then $\tau_{s\gamma}$ -int(A) is a S γ -OS in X_s . Since f is a S(γ , α_{β})-Op Ma ,we have $f_M(\tau_{s\gamma}$ -int(A)) is a S α_{β} -OS in Y_s . Therefore $f_M(\tau_{s\gamma}$ -int(A)) = $\sigma_{s(\alpha_{\beta})}$ -int($f_M(\tau_{s\gamma}$ -int(A))) $\subseteq \sigma_{s(\alpha_{\beta})}$ -int($f_M(A)$).

 $(ii) \rightarrow (iii)$. Let B be a subset of Y_s . Then $f_M^{-1}(B) \subseteq X_s$. By (ii), we have $f_M(\tau_{s\gamma}\text{-int} (f_M^{-1}(B))) = \sigma_{s(\alpha_\beta)}\text{-int} (f_M(f_M^{-1}(B))) \subseteq \sigma_{s(\alpha_\beta)}\text{-int}(B)$. Thus $\tau_{s\gamma}\text{-int} (f_M^{-1}(B)) \subseteq f_M^{-1}(\sigma_{s\alpha_\beta}\text{-int}(B))$.

 $(iii) \rightarrow (i)$ Let U be a S γ_S -OS in X_s . Then U = $\tau_{s\gamma}$ -int(U) $\subseteq \tau_{s\gamma}$ -int($f^{-1_M}(f_M(U))$) $\subseteq f_M^{-1}(\sigma_{s\alpha_\beta} - int(f_M(U)))$ by(iii). This implies that $f_M(U) \subseteq \sigma_{s\alpha_\beta}$ -int($f_M(U)$). Therefore $f_M(U)$ is a S α_β -OS in Y_s .

Theorem 4.5. For any Bi Ma $f : (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, K_s)$, the following conditions are equivalent:

(i) $f_M^{-1}: (X_s, \tau_s, E_s) \to (Y_s, \sigma_s, F_s)$ is a S (α_γ, β)-Co Ma;

(ii)
$$f_M$$
 is a S (γ, α_β) -Op Ma;

(iii) f_M is a S (γ, α_β) -Cl Ma.

Proof. Follows from the Definitions 3.1 and 4.1.

5. ACKNOWLEDGEMENT

The author wishes to thank Vel Tech Rangarajan Dr. Sagunthala R and D Institute of Science and Technology- VEL TECH SEED FUND for their support in the development of this article.

REFERENCES

- [1] A. AYGUNOGLU, H. AYGUN: Some notes on soft topological spaces, Neural Computing and Applications, **21**(1) (2009), 113–119.
- [2] D. CHEN, E. C. C. TSANG, D. S. YENUG: Some notes on the parametrization reduction of soft sets, Int. Conference on Machine Learning and Cybernatics, **3** (2003), 1442–1445.
- [3] D. CHEN, E. C. C. TSANG, D. S. YEUNG, X. WANG: The parametrization reduction of soft sets and its applications, Computers and Mathematics with Applications, 49 (2005), 757–763.
- [4] N. KALAIVANI, D. SARAVANAKUMAR, G. SAI SUNDARA KRISHNAN: On (α-γ, β)continuous mappings and α-(γ, β)-continuous mappings in topological Sapces, International Journal of Mathematical Sciences and Applications, 1 (2012), 341–347.
- [5] N. KALAIVANI, G. SAI SUNDARA KRISHNAN: Operation approaches on α - γ -open sets in topological Sapces, Intenational Journal of Mathematical Analysis, 7(10) (2013), 491–498.
- [6] S. KASAHARA: Operation- compact spaces, Math. Japonica, 24 (1979), 97–105.
- [7] S. LUGOJAN: Generalized topology, Stu. Cercet. Mat., 34 (1982), 348–360.
- [8] Z. KONG, L. GAO, L. WANG, S. LI: The normal parameter reduction soft sets and its algorithms, Computers and Mathematics with Applications, 56 (2008), 3029–3037.
- [9] P. K. MAJI, R. BISWAS, A. R. ROY: *Soft set theorys*, Computers and Mathematics with Applications, **45** (2003), 555–562.
- [10] P. K. MAJI, A. R. ROY: An application of soft sets in a decision making problem, Computers and Mathematics with Applications, 44 (2002), 1077–1083.
- [11] D. MOLODTSOV: Soft set theory-first results, Computers and Mathematics with Applications, 37 (1999), 19–31.
- [12] D. PEI, D. MIAO: From soft sets to information systems, Proceedings of Granular Computing, IEEE 2 (2005), 617–621.
- [13] M. SABIR, M. NAZ: On soft topological spaces, Computers and Mathematics with Applications, 61 (2011), 1786–1799.

- [14] M. SABIR, M. NAZ:Some properties of soft topological spaces, Computers and Mathematics with Applications, 62 (2011), 4058–4067.
- [15] Z. XIAO, L. CHEN, B. ZHONG, S. YE: Recognition for soft information based on the theory of soft sets, Proceedings of ICSSSM-05, IEEE 2 (2005), 1104–1106.
- [16] ZORLUTUNA, M. AKDAG, W. K. MIN, S. ATMACA: *Remarks on soft topological spaces*, Annals of Fuzyy Mathematics and Informatics, **3**(2) (2012), 171–185.

DEPARTMENT OF MATHEMATICS VEL TECH RANGARAJAN DR. SAGUNTHALA R AND D INSTITUTE OF SCIENCE AND TECHNOLOGY CHENNAI-600062, TAMIL NADU, INDIA *E-mail address*: kalaivani.rajam@gmail.com;drkalaivani@veltech.edu.in