ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 2107–2112 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.70 Spec. Issue on NCFCTA-2020

GENERALIZED FUZZY \mathcal{Z} CLOSED SETS IN DOUBLE FUZZY TOPOLOGICAL SPACES

SHIVENTHIRA DEVI SATHAANANTHAN, A. VADIVEL¹, S. TAMILSELVAN, AND G. SARAVANAKUMAR

ABSTRACT. In this paper we introduce (l, k)-generalized fuzzy \mathcal{Z} -closed respective border, exterior & frontier in double fuzzy topological spaces. Some characterizations of these notions are presented.

1. INTRODUCTION AND PRELIMINARIES

In 1986, Atanassov [1] started 'Intuitionistic fuzzy sets'and Coker [2] in 1997, initiated Intuitionistic fuzzy topological space. The term 'double' instead of 'intuitionistic' coined by Garcia and Rodabaugh [3] in 2005. In the previous two decades many analysts accomplishing more applications on double fuzzy topological spaces. From 2011, \mathcal{Z} -open sets and maps were introduced in topological spaces by El-Maghrabi and Mubarki [4].

In [6] (l, k)-fuzzy \mathcal{Z} -closed sets and study some of their properties were studied in double fuzzy topological spaces.

X denotes a non-empty set, $I_1 = [0,1)$, $I_0 = (0,1]$, I = [0,1], $0 = \underline{0}(X)$, $1 = \underline{1}(X)$, $r \in I_0$ and $\kappa \in I_1$ and always $1 \ge r + \kappa$. I^X is a family of all fuzzy sets on X. In 2002, Double fuzzy topological spaces (briefly, dfts), (X, η, η^*) , (r, κ) fuzzy open (resp. (r, κ) -fuzzy closed) (briefly (r, κ) -fo (resp. (r, κ) -fc)) set were given by Samanta and Mondal [5].

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A40, 45D05, 03E72.

Key words and phrases. (l,k)-gf $\mathcal{Z}c$, $G\mathcal{ZB}_{\gamma,\gamma^*}(\lambda,l,k)$, $G\mathcal{ZF}_{\gamma,\gamma^*}(\lambda,l,k)$ and $G\mathcal{ZE}_{\gamma,\gamma^*}(\lambda,l,k)$.

2108 S. DEVI SATHAANANTHAN, A. VADIVEL, S. TAMILSELVAN, AND G. SARAVANAKUMAR

All other undefined notions are from [4–6] and cited therein.

2. An (l, k)-generalized fuzzy \mathcal{Z} closed sets

Definition 2.1. Let (X, γ, γ^*) be a dfts, $\lambda, \mu \in I^X$, $l \in I_0$ and $k \in I_1 \ni l + k \leq 1$ the fs λ is called an (l, k)-generalized fuzzy

- (i) \mathcal{Z} closed (briefly (l,k)-gf $\mathcal{Z}c$) set if $\mathcal{Z}C_{\gamma,\gamma^*}(\lambda, l, k) \leq \mu$ whenever $\lambda \leq \mu$, $\gamma(\mu) \geq l \ni \gamma^*(\mu) \leq k$.
- (ii) Z open (briefly (l,k)-gfZo) set if $\underline{1} \lambda$ is an (l,k)-gfZc set.

Example 1. Let $X = \{u, v, w\}$ and let the fs's α_1 , α_2 and α_3 are defined as $\alpha_1(u) = 0.3$, $\alpha_2(v) = 0.4$, $\alpha_1(w) = 0.5$, $\alpha_2(u) = 0.6$, $\alpha_2(v) = 0.9$, $\alpha_2(w) = 0.5$ and $\alpha_3(u) = 0.4$, $\alpha_3(v) = 0.0$, $\alpha_3(w) = 0.5$. Consider the dfts's (X, γ, γ^*) with

$$\gamma(\mu) = \begin{cases} 1, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu \in \{\alpha_1, \alpha_2\}, \quad \gamma^*(\mu) = \begin{cases} 0, & \text{if } \mu \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \mu \in \{\alpha_1, \alpha_2\}, \\ 0, & o.w. \end{cases}$$

Then the fs α_3 is an $(\frac{1}{2}, \frac{1}{2})$ -gf $\mathcal{Z}o$ set.

Theorem 2.1. Let (X, γ, γ^*) be a dfts, $l \in I_0$ and $k \in I_1$, $\lambda \in I^X$ is (l, k)-gf \mathcal{Z} o set iff $\xi \leq \mathcal{Z}I_{\gamma,\gamma^*}(\lambda, l, k)$ whenever $\xi \leq \lambda$, $\gamma(\underline{1} - \xi) \geq l$ and $\gamma^*(\underline{1} - \xi) \leq k$.

Definition 2.2. Let (X, γ, γ^*) be a dfts, $\forall \lambda, \xi \in I^X$, $l \in I_0$ and $k \in I_1 \ni l + k \leq 1$ we define an (l, k)-generalized fuzzy \mathcal{Z} closure operator (l, k)- $G\mathcal{Z}C_{\gamma,\gamma^*} : I^X \times I_0 \times I_1 \to I^X$ as $G\mathcal{Z}C_{\gamma,\gamma^*}(\lambda, l, k) = \bigwedge \{\xi \in I^X | \lambda \leq \xi \text{ and } \xi \text{ is } (l, k) \text{-} gf\mathcal{Z}c \}$.

Remark 2.1. Every (l, k)-f Z c set is an (l, k)-g f Z c set. But not conversely.

Example 2. In Example 1, the fs α_3 is an $(\frac{1}{2}, \frac{1}{2})$ -gf $\mathcal{Z}o$ set but not an $(\frac{1}{2}, \frac{1}{2})$ - f $\mathcal{Z}o$.

Theorem 2.2. Let (X, γ, γ^*) be a dfts, $\forall \lambda, \xi \in I^X$, $l \in I_0$ and $k \in I_1 \ni l + k \leq 1$, then the operator (l, k)-GZC $_{\gamma, \gamma^*}$ satisfies the statements

- (i) GZC_{γ,γ*}(<u>0</u>, *l*, *k*) = <u>0</u> and GZC_{γ,γ*}(<u>1</u>, *l*, *k*) = <u>1</u>;
 (ii) λ ≤ GZC_{γ,γ*}(λ, *l*, *k*);
 (iii GZC_{γ,γ*}(λ ∨ ξ, *l*, *k*) ≥ GZC_{γ,γ*}(λ, *l*, *k*) ∨ GZC_{γ,γ*}(ξ, *l*, *k*);
 (iv) GZC_{γ,γ*}(GZC_{γ,γ*}(λ, *l*, *k*), *l*, *k*) = GZC_{γ,γ*}(λ, *l*, *k*);
 (v) If λ is (*l*, *k*)-gfZc set then GZC_{γ,γ*}(λ, *l*, *k*) = λ;
- (vi) $G\mathcal{Z}C_{\gamma,\gamma^*}(\lambda, l, k) \leq \mathcal{Z}C_{\gamma,\gamma^*}(\lambda, l, k) \leq C_{\gamma,\gamma^*}(\lambda, l, k).$

Theorem 2.3. Let (X, γ, γ^*) be a dfts, $\forall \lambda, \xi \in I^X$, $l \in I_0$ and $k \in I_1 \ni l + k \leq 1$ we define an (l, k)- generalized fuzzy \mathcal{Z} interior operator (l, k)- $G\mathcal{Z}I_{\gamma,\gamma^*}$: $I^X \times I_0 \times I_1 \to I^X$ as $G\mathcal{Z}I_{\gamma,\gamma^*}(\lambda, l, k) = \bigvee \{\xi \in I^X | \lambda \geq \xi \text{ and } \xi \text{ is } (l, k) \text{-} gf\mathcal{Z}o\},$ then $G\mathcal{Z}I_{\gamma,\gamma^*}(\underline{1} - \lambda, l, k) = \underline{1} - G\mathcal{Z}C_{\gamma,\gamma^*}(\lambda, l, k).$

Proposition 2.1. Let (X, γ, γ^*) be a dfts, $\lambda \in I^X$, $l \in I_0$ and $k \in I_1$.

- (i) If λ is (l,k)-gfZc set and an (l,k)-fZo set then λ is an (l,k)-fZc set.
- (ii) If λ is (l,k)-gfZc set and an (l,k)-fo set then $\lambda \wedge \xi$ is an (l,k)-fZc set whenever $\xi \leq ZC_{\gamma,\gamma^*}(\lambda, l, k)$.

Definition 2.3. Let (X, γ, γ^*) be a dfts, $\forall \lambda \in I^X$, $l \in I_0$ and $k \in I_1$. A fs λ is called as (l, k)-generalized^{*} fuzzy

- (i) Z closed (briefly (l,k)-g*fZc) set if ZC_{γ,γ*}(λ, l, k) ≤ ξ whenever λ ≤ ξ and ξ is an (l, k)-gfo set in I^X.
- (ii) \mathcal{Z} open (briefly (l,k)- $g^*f\mathcal{Z}o$) set if $\underline{1} \lambda$ is (l,k)- $g^*f\mathcal{Z}c$ set.

Example 3. In Example 1, the fs α_3 is an $(\frac{1}{2}, \frac{1}{2})$ -g * f Zo set.

Theorem 2.4. Let (X, γ, γ^*) be a dfts, $\lambda \in I^X$, $l \in I_0$ and $k \in I_1$, then λ is (l,k)-g^{*} fZo set iff $\xi \leq ZI_{\gamma,\gamma^*}(\lambda, l, k)$ whenever ξ is an (l,k)-gfc set.

Proposition 2.2. Let (X, γ, γ^*) be a dfts. For each λ and $\xi \in I^X$, $l \in I_0$ and $k \in I_1$,

- (i) If λ and ξ are (l,k)- $g^* f Z c$ sets then $\lambda \wedge \xi$ is an (l,k)- $g^* f Z c$ set,
- (ii) If λ is (l,k)- $g^* f Z c$ set and $\gamma(\xi) \ge l, \gamma^*(\xi) \le k$ then $\lambda \land \xi$ is an (l,k)- $g^* f Z c$ set.

Proposition 2.3. Let (X, γ, γ^*) be a dfts. $\forall \lambda and \xi \in I^X$, $l \in I_0$ and $k \in I_1$.

- (i) If λ is both (l, k)-gfo and (l, k)-g*fZc set then λ is an (l, k)-fZc set.
- (ii) If λ is (l,k)- $g^* f Zc$ set and $\lambda \leq \xi \leq ZC_{\gamma,\gamma^*}(\lambda, l, k)$ then ξ is an (l,k)- $g^* f Zc$ set.

Theorem 2.5. Let $(X, \gamma_1, \gamma_1^*)$ and $(Y, \gamma_2, \gamma_2^*)$ be dfts's. If $\lambda \leq \underline{1}_Y \leq \underline{1}_X$, $\ni \lambda$ is (l, k)-g*fZc set in I^X , $l \in I_0$ and $k \in I_1$, then λ is an (l, k)-g*fZc set relative to Y.

Theorem 2.6. Let (X, γ, γ^*) be a dfts, $\forall \lambda, \xi \in I^X$, $l \in I_0$ and $k \in I_1$, with $\xi \leq \lambda$. If ξ is (l, k)- $g^* f \mathcal{Z}c$ set relative to $\lambda \ni \lambda$ is both (l, k)-g f o and (l, k)- $g^* f \mathcal{Z}c$ set of I^X then ξ is an (l, k)- $g^* f \mathcal{Z}c$ set relative to X. 2110 S. DEVI SATHAANANTHAN, A. VADIVEL, S. TAMILSELVAN, AND G. SARAVANAKUMAR

3. Properties of (l, k)-generalized fuzzy \mathcal{Z} open sets

Proposition 3.1. For any λ, ξ in a dfts (X, γ, γ^*) ,

(i) $GZI_{\gamma,\gamma^*}(\lambda, l, k)$ is the largest (l, k)-gfZo set $\ni GZI_{\gamma,\gamma^*}(\lambda, l, k) \leq \lambda$. (ii) $\lambda = GZI_{\gamma,\gamma^*}(\lambda, l, k)$ iff λ is an (l, k)-gfZo set. (iii) $GZI_{\gamma,\gamma^*}(GZI_{\gamma,\gamma^*}(\lambda, l, k), l, k) = GZI_{\gamma,\gamma^*}(\lambda, l, k)$.

 $(iv) \ \underline{1} - G\mathcal{Z}I_{\gamma,\gamma^*}(\lambda, l, k) = G\mathcal{Z}C_{\gamma,\gamma^*}(\underline{1} - \lambda, l, k).$

(v) $\underline{1} - G\mathcal{Z}C_{\gamma,\gamma^*}(\lambda, l, k) = G\mathcal{Z}I_{\gamma,\gamma^*}(\underline{1} - \lambda, l, k).$

(vi) If $\lambda \leq \xi$, then $GZI_{\gamma,\gamma*}(\lambda, l, k) \leq GZI_{\gamma,\gamma*}(\xi, l, k)$.

(vii) If $\lambda \leq \xi$, then $GZC_{\gamma,\gamma*}(\lambda, l, k) \leq GZC_{\gamma,\gamma*}(\xi, l, k)$.

(viii) $G\mathcal{Z}I_{\gamma,\gamma^*}(\lambda, l, k) \wedge G\mathcal{Z}I_{\gamma,\gamma^*}(\xi, l, k) = G\mathcal{Z}I_{\gamma,\gamma^*}(\lambda \wedge \xi, l, k).$

 $(ix) \ G\mathcal{Z}I_{\gamma,\gamma^*}(\lambda,l,k) \lor G\mathcal{Z}I_{\gamma,\gamma^*}(\xi,l,k) = G\mathcal{Z}I_{\gamma,\gamma^*}(\lambda \lor \xi,l,k).$

Definition 3.1. In any dfts (X, γ, γ^*) , the (l, k)-fuzzy \mathcal{Z} border (resp. frontier and exterior) of a fs $\lambda \in I^X$ (briefly $\mathcal{ZB}_{\gamma,\gamma^*}(\lambda, l, k)$ (resp. $\mathcal{ZF}_{\gamma,\gamma^*}(\lambda, l, k)$ and $\mathcal{ZE}_{\gamma,\gamma^*}(\lambda, l, k)$)) is given by $\mathcal{ZB}_{\gamma,\gamma^*}(\lambda, l, k) = \lambda - \mathcal{ZI}_{\gamma,\gamma^*}(\lambda, l, k)$ (resp. $\mathcal{ZF}_{\gamma,\gamma^*}(\lambda, l, k)$) $= \mathcal{ZC}_{\gamma,\gamma^*}(\lambda, l, k) - \mathcal{ZI}_{\gamma,\gamma^*}(\lambda, l, k)$ and $\mathcal{ZE}_{\gamma,\gamma^*}(\lambda, l, k) = \mathcal{ZI}_{\gamma,\gamma^*}(\underline{1} - \lambda, l, k)$).

Definition 3.2. In any dfts (X, γ, γ^*) , the (l, k)-generalized fuzzy \mathcal{Z} border (resp. frontier and exterior) of a fs $\lambda \in I^X$ (briefly $G\mathcal{ZB}_{\gamma,\gamma^*}(\lambda, l, k)$ (resp. $G\mathcal{ZF}_{\gamma,\gamma^*}(\lambda, l, k)$) and $G\mathcal{ZE}_{\gamma,\gamma^*}(\lambda, l, k)$)) is given by $G\mathcal{ZB}_{\gamma,\gamma^*}(\lambda, l, k) = \lambda - G\mathcal{ZI}_{\gamma,\gamma^*}(\lambda, l, k)$ (resp. $G\mathcal{ZF}_{\gamma,\gamma^*}(\lambda, l, k) = G\mathcal{ZC}_{\gamma,\gamma^*}(\lambda, l, k) - G\mathcal{ZI}_{\gamma,\gamma^*}(\lambda, l, k)$ and $G\mathcal{ZE}_{\gamma,\gamma^*}(\lambda, l, k) = G\mathcal{ZI}_{\gamma,\gamma^*}(\lambda, l, k)$.

Proposition 3.2. For any λ, ξ in a dfts (X, γ, γ^*) ,

(i) $G\mathcal{ZB}_{\gamma,\gamma^*}(\lambda, l, k) \leq \mathcal{ZB}_{\gamma,\gamma^*}(\lambda, l, k).$

- (*ii*) If λ is an (l, k) gf Zo, then $GZB_{\gamma,\gamma^*}(\lambda, l, k) = \underline{0}$.
- (*iii*) $G\mathcal{ZB}_{\gamma,\gamma^*}(\lambda, l, k) \leq G\mathcal{Z}C_{\gamma,\gamma^*}(\underline{1} \lambda, l, k).$
- (*iv*) $G\mathcal{Z}I_{\gamma,\gamma^*}(G\mathcal{Z}\mathcal{B}_{\gamma,\gamma^*}(\lambda,l,k),l,k) \leq \lambda.$

 $(v) \ G\mathcal{ZB}_{\gamma,\gamma^*}(\lambda \lor \xi) \le G\mathcal{ZB}_{\gamma,\gamma^*}(\lambda, l, k) \lor G\mathcal{ZB}_{\gamma,\gamma^*}(\xi, l, k).$

 $(vi) \ G\mathcal{ZB}_{\gamma,\gamma^*}(\lambda \wedge \xi) \ge G\mathcal{ZB}_{\gamma,\gamma^*}(\lambda, l, k) \wedge G\mathcal{ZB}_{\gamma,\gamma^*}(\xi, l, k).$

Proposition 3.3. For any λ, ξ in a dfts (X, γ, γ^*) ,

(i) $G\mathcal{ZF}_{\gamma,\gamma^*}(\lambda, l, k) \leq \mathcal{ZF}_{\gamma,\gamma^*}(\lambda, l, k).$ (ii) $G\mathcal{ZB}_{\gamma,\gamma^*}(\lambda, l, k) \leq G\mathcal{ZF}_{\gamma,\gamma^*}(\lambda, l, k).$ (iii) $G\mathcal{ZF}_{\gamma,\gamma^*}(\underline{1}-\lambda, l, k) = G\mathcal{ZF}_{\gamma,\gamma^*}(\lambda, l, k).$

(iv) $G\mathcal{ZF}_{\gamma,\gamma^*}(G\mathcal{ZI}_{\gamma,\gamma^*}(\lambda,l,k),l,k) \leq G\mathcal{ZF}_{\gamma,\gamma^*}(\lambda,l,k).$

GENERALIZED FUZZY $\mathcal Z$ CLOSED SETS \ldots

 $\begin{array}{l} (v) \ G\mathcal{Z}\mathcal{F}_{\gamma,\gamma^*}(G\mathcal{Z} \ C_{\gamma,\gamma^*}(\lambda,l,k),l,k) \leq G\mathcal{Z}\mathcal{F}_{\gamma,\gamma^*}(\lambda,l,k). \\ (vi) \ \lambda - G\mathcal{Z}\mathcal{F}_{\gamma,\gamma^*}(\lambda,l,k) \leq G\mathcal{Z}I_{\gamma,\gamma^*}(\lambda,l,k). \\ (vii) \ G\mathcal{Z}\mathcal{F}_{\gamma,\gamma^*}(\lambda \lor \xi,l,k) \leq G\mathcal{Z}\mathcal{F}_{\gamma,\gamma^*}(\lambda,l,k) \lor G\mathcal{Z}\mathcal{F}_{\gamma,\gamma^*}(\xi,l,k). \\ (viii) \ G\mathcal{Z}\mathcal{F}_{\gamma,\gamma^*}(\lambda \land \xi,l,k) \geq G\mathcal{Z}\mathcal{F}_{\gamma,\gamma^*}(\lambda,l,k) \land G\mathcal{Z}\mathcal{F}_{\gamma,\gamma^*}(\xi,l,k). \end{array}$

Proposition 3.4. For any dfts (X, γ, γ^*) , $\forall \lambda \in I^X$, $l \in I_0$ and $k \in I_1$, we have:

 $\begin{aligned} (i) \ \mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\lambda,l,k) &\leq G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\lambda,l,k).\\ (ii) \ G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\lambda,l,k) &= \underline{1} - G\mathcal{Z}C_{\gamma,\gamma^*}(\lambda,l,k).\\ (iii) \ G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\lambda,l,k),l,k) &= G\mathcal{Z}I_{\gamma,\gamma^*}(G\mathcal{Z}C_{\gamma,\gamma^*}(\lambda,l,k),l,k).\\ (iv) \ If \ \lambda &\leq \xi, \ then \ G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\lambda,l,k) \geq G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\xi,l,k).\\ (v) \ G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\underline{1},l,k) &= \underline{0}.\\ (vi) \ G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(0,l,k) &= \underline{1}.\\ (vii) \ G\mathcal{Z}I_{\gamma,\gamma^*}(\lambda,l,k) \leq G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\lambda,l,k),l,k).\\ (viii) \ G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\lambda,\lambda,k) &= G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\lambda,l,k),d\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\xi,l,k).\\ (ix) \ G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\lambda,\lambda,\xi,l,k) &= G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\lambda,l,k) \lor G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\xi,l,k). \end{aligned}$

Proposition 3.5. If λ is an (l,k)-gf $\mathcal{Z}c$ set in a dfts (X, γ, γ^*) then

- (i) $G\mathcal{ZB}_{\gamma,\gamma^*}(\lambda, l, k) = G\mathcal{ZF}_{\gamma,\gamma^*}(\lambda, l, k).$
- (*ii*) $G\mathcal{Z}\mathcal{E}_{\gamma,\gamma^*}(\lambda, l, k) = \underline{1} \lambda.$

Definition 3.3. A dfts (X, γ, γ^*) is said to be a generalized^{*} double fuzzy \mathcal{Z} - $(\gamma, \gamma^*)_{1/2}$ space (briefly, $g^* df \mathcal{Z}$ - $(\gamma, \gamma^*)_{1/2}$), if each (l, k)- $gf \mathcal{Z}c$ set in X is an (l, k)-gfc set.

Proposition 3.6. Let (X, γ, γ^*) be a $g^* df \mathbb{Z}$ - $(\gamma, \gamma^*)_{1/2}$ space and λ be an (l, k)- $gf \mathbb{Z}c$ set in X. Then the statements

- (i) $G\mathcal{B}_{\gamma,\gamma^*}(\lambda, l, k) = G\mathcal{F}_{\gamma,\gamma^*}(\lambda, l, k)$,
- (ii) $G\mathcal{E}_{\gamma,\gamma^*}(\lambda, l, k) = \underline{1} \lambda$. are hold.

REFERENCES

- [1] K. ATANASSOV: Intuitionistic fuzzy sets, Fuzzy sets and system, 20(1) (1986), 84–96.
- [2] D. COKER: An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1997), 81–89.
- [3] J. G. GARCIA, S. E. RODABAUGH: Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued intuitionistic sets, intuitionistic fuzzy sets and topologies, Fuzzy Sets and Systems, 156 (2005), 445-484.

2112 S. DEVI SATHAANANTHAN, A. VADIVEL, S. TAMILSELVAN, AND G. SARAVANAKUMAR

- [4] A. I. EL-MAGHARABI, A. M. MUBARKI: *Z*-open sets and *Z*-continuity in topological spaces, International Journal of Mathematical Archive, **2**(10) (2011), 1819–1827.
- [5] S. K. SAMANTA, T. K. MONDAL: On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131 (2002), 323–336.
- [6] S. DEVI SATHAANANTHAN, S. TAMILSELVAN, A. VADIVEL, G. SARAVANAKUMAR: Fuzzy \mathcal{Z} closed sets in double fuzzy topological spaces, submitted.

DEPARTMENT OF MATHEMATICS EASTERN UNIVERSITY, VANTHARUMOOLAI CHENKALADY, SRI LANKA

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE (AUTONOMOUS) KARUR-639005, TAMIL NADU, INDIA DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY, ANNAMALAINAGAR-608002, TAMIL NADU, INDIA Email address: avmaths@gmail.com

MATHEMATICS SECTION (FEAT) Annamalai University Annamalainagar-608002, Tamil Nadu, India

DEPARTMENT OF MATHEMATICS M.KUMARASAMY COLLEGE OF ENGINEERING(AUTONOMOUS) KARUR-639113, INDIA *Email address*: saravananguru2612@gmail.com