

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 2155–2160 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.75 Spec. Issue on NCFCTA-2020

SEVERAL MAPPINGS VIA (L, K)- \mathcal{Z} -GENERALIZED OPEN SETS IN DOUBLE FUZZY TOPOLOGICAL SPACES

A. VADIVEL¹, SHIVENTHIRA DEVI SATHAANANTHAN, S. TAMILSELVAN, AND G. SARAVANAKUMAR

ABSTRACT. We introduce some new class of generalized sets namely (l, k)-fuzzy \mathcal{Z} - generalized closed sets in double fuzzy topological spaces. Using them we investigate the class of mappings called double fuzzy \mathcal{Z} -generalized continuous and irresolute maps. Furthermore we study double fuzzy \mathcal{Z} -generalized homeomorphisms and pre double fuzzy \mathcal{Z} -generalized homeomorphisms. Also, some of their fundamental properties are studied.

1. INTRODUCTION AND PRELIMINARIES

In 1986, Atanassov [1] started 'Intuitionistic fuzzy sets' and Coker [2] in 1997, initiated Intuitionistic fuzzy topological space. The term 'double' instead of 'intuitionistic' coined by Garcia and Rodabaugh [4] in 2005. In the previous two decades many analysts accomplishing more applications on double fuzzy topological spaces. From 2011, \mathcal{Z} -open sets and maps were introduced in topological spaces by El-Maghrabi and Mubarki [3].

X denotes a non-empty set, $I_1 = [0,1)$, $I_0 = (0,1]$, I = [0,1], $0 = \underline{0}(X)$, $1 = \underline{1}(X)$, $r \in I_0 \& \kappa \in I_1$ and always $1 \ge r + \kappa$. I^X is a family of all fuzzy sets on X. In 2002, Double fuzzy topological spaces (briefly, dfts), (X, η, η^*) , (r, κ) -fuzzy

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A40, 45D05, 03E72.

Key words and phrases. double fuzzy Z-generalized continuous map, double fuzzy Z-generalized open, closed, irresolute maps and double fuzzy Z-generalized homeomorphisms.

2156 A. VADIVEL, S. DEVI SATHAANANTHAN, S. TAMILSELVAN, AND G. SARAVANAKUMAR

open (resp. (r, κ) -fuzzy closed) (briefly (r, κ) -fo (resp. (r, κ) -fc)) set were given by Samanta and Mondal [5].

All other undefined notions are from [5–7] and cited therein.

2. (l, k)-fuzzy \mathcal{Z} -generalized closed sets

Definition 2.1. A fuzzy subset γ in a dfts (X, α, α^*) is called an (l, k)-fuzzy \mathcal{Z} -generalized

- (i) closed (briefly, (l,k)-fZgc) set if ZC_{α,α*}(γ, l, k) ≤ σ, whenever γ ≤ σ & σ is (l,k)-fZo set.
- (ii) open (briefly, (l,k)-fZgo) set if $\sigma \leq ZI_{\alpha,\alpha^*}(\gamma, l, k)$) whenever $\sigma \leq \gamma \& \sigma$ is (l,k)-fZc set.

Also the complement of an (l, k)-fZgc set is called as (l, k)-fZgo set.

Definition 2.2. Let (X, α, α^*) be a dfts. For γ , $\sigma \in I^X$, the (l, k)-fuzzy \mathcal{Z} generalized closure (interior) of γ and is $\mathcal{Z}gC_{\alpha,\alpha^*}(\gamma, l, k) = \bigwedge \{\sigma \in I^X : \sigma \geq \gamma, \sigma \text{ is a } (l, k) - f\mathcal{Z}gc \text{ set } \}$ $(\mathcal{Z}gI_{\alpha,\alpha^*}(\gamma, l, k) = \bigvee \{\sigma \in I^X : \sigma \leq \gamma, \sigma \text{ is a} (l, k) - f\mathcal{Z}go \text{ set } \}).$

Theorem 2.1. Every (l,k)-fc set in (X, α, α^*) is (l,k)-fZgc set. But not conversely.

Theorem 2.2. Every (l, k)-f Z c in (X, α, α^*) is (l, k)-f Z g c, But not conversely.

Theorem 2.3. Let γ be any fuzzy subset of X. Then

(i) γ is (l, k)-fZgc if γ = ZgC_{α,α*}(γ, l, k).
(ii) ZgC_{α,α*}(γ, l, k) is (l, k)-fZgc in X.

Theorem 2.4. A finite union of (l, k)-f Z go sets is an (l, k)-f Z go set.

Remark 2.1. Union of two (l, k)-fZgc sets need not be an (l, k)-fZgc set.

Theorem 2.5. A finite intersection of (l, k)-fZgc is an (l, k)-fZgc set.

Remark 2.2. Intersection of two (l, k)-fZgo sets need not be an (l, k)-fZgo set.

Theorem 2.6. If γ is (l,k)-f Z gc set and (l,k)-f Z o set in (X, α, α^*) , then γ is (l,k)-f Z c in (X, α, α^*) .

Theorem 2.7. If γ is (l,k)- $f \mathbb{Z}gc$ set in (X, α, α^*) & $\gamma \leq \sigma \leq \mathbb{Z}C_{\alpha,\alpha^*}(\gamma, l, k)$, then σ is (l,k)- $f \mathbb{Z}gc$ set in (X, α, α^*) .

Theorem 2.8. If γ is (l,k)-fZgo set in (X, α, α^*) & $ZI_{\alpha,\alpha^*}(\gamma, l, k) \leq \sigma \leq \gamma$, then σ is (l,k)-fZgo set in (X, α, α^*) .

Theorem 2.9. Let (X, α, α^*) be the $dfts \& \gamma$ be a fs of X. Then γ is (l, k)-f Zgc set iff $\gamma \overline{q} \sigma$ implies $ZC_{\alpha,\alpha^*}(\gamma, l, k) \overline{q} \sigma, \forall (l, k)$ -f Zc set σ of X.

Theorem 2.10. Let γ be (l, k)-f Zgc set in (X, α, α^*) & x_p be a fuzzy point (briefly, *fp*) of $(X, \alpha, \alpha^*) \ni x_p q ZC_{\alpha,\alpha^*}(\gamma, l, k)$ then $ZC_{\alpha,\alpha^*}(x_p, l, k) q \gamma$.

Theorem 2.11. Let $(Y, \alpha_Y, \alpha_Y^*)$ be a subspace of (X, α, α^*) & γ be a fs of Y. If γ is (l, k)-f $\mathcal{Z}gc$ set in X, then γ is (l, k)-f $\mathcal{Z}gc$ set in Y.

Definition 2.3. Let γ be a fs in dfts $X \& x_p$ be a fp of X, then γ is called (l, k)-fuzzy \mathcal{Z} -generalized neighbourhood (resp. q-neighbourhood) (briefly, (l, k)-f $\mathcal{Z}g$ -nbhd (resp. (l, k)-f $\mathcal{Z}gq$ -nbhd)) of x_p if \exists a (l, k)-f $\mathcal{Z}go$ set σ of $X \ni x_p \in \sigma \leq \gamma$ (resp. $x_p q \sigma \leq \gamma$.)

Theorem 2.12. γ is (l,k)-f Z go set in X iff $\forall fp \ x_p \in \gamma, \gamma$ is a (l,k)-f Z g-nbhd of x_p .

Theorem 2.13. If $\gamma \& \sigma$ are (l, k)-f Z g-nbhd of x_p , then $\gamma \land \sigma$ is also a (l, k)-f Z g-nbhd of x_p .

Theorem 2.14. Let γ be a fs of a dfts X. Then a fp $x_p \in \mathcal{Z}C_{\alpha,\alpha^*}(\gamma, l, k)$ iff every (l, k)-f \mathcal{Z} gq-nbhd of x_p is quasi-coincident with γ .

Definition 2.4. A dfts X is df \mathcal{Z} -generalized $T_{\frac{1}{2}}$ -space (briefly, $DF\mathcal{Z}gT_{\frac{1}{2}}$ -space) if every (l,k)-f $\mathcal{Z}gc$ set in X is (l,k)-fc set in X.

Theorem 2.15. A dfts (X, α, α^*) is $DFZT_{\frac{1}{2}}$ -space iff every fs in (X, α, α^*) is both (l, k)-fZo & (l, k)-fZgo.

3. DFZg-continuous and DFZg-irresolute mappings

Definition 3.1. Let $f : (X, \alpha_1, \alpha_1^*) \to (Y, \alpha_2, \alpha_2^*)$ be a mapping from an dfts $(X, \alpha_1, \alpha_1^*)$ to another dfts $(Y, \alpha_2, \alpha_2^*)$. Then f is called double fuzzy \mathcal{Z} -generalized continuous (resp. irresolute) (briefly, $DF\mathcal{Z}gCts$ (resp. $DF\mathcal{Z}gIrr$)) mapping if $f^{-1}(\gamma)$ is (l, k)-f $\mathcal{Z}go$ set in $X \forall (l, k)$ -fo (resp. (l, k)-f $\mathcal{Z}go$) set γ in Y.

Theorem 3.1. (i) Every DFCts map is DFZgCts.

2158 A. VADIVEL, S. DEVI SATHAANANTHAN, S. TAMILSELVAN, AND G. SARAVANAKUMAR

(ii) Every DFZgIrr map is DFZgCts. But not conversely.

Theorem 3.2. If $f : (X, \alpha_1, \alpha_1^*) \to (Y, \alpha_2, \alpha_2^*)$ is DFZgCts iff the inverse image of (l, k)-fo set of Y is (l, k)-fZgo set of X.

Theorem 3.3. If $f : (X, \alpha, \alpha^*) \to (Y, \beta, \beta^*)$ is DFZgCts, then (i) $\forall fp \ x_p \text{ of } X \& each \ \gamma \in Y \ni f(x_p) \in \gamma, \exists a \ (l, k) - fZgo \text{ set } \sigma \text{ of } X \ni x_p \in \sigma \& f(\sigma) \leq \gamma.$ (ii) $\forall fp \ x_p \text{ of } X \& each \ \gamma \in Y \ni f(x_p) \ q \ \gamma, \exists a \ (l, k) - fZgo \text{ set } \sigma \text{ of } X \ni x_p \ q \ \sigma \& f(\sigma) \leq \gamma.$

Theorem 3.4. Let $f : (X, \alpha_1, \alpha_1^*) \to (Y, \alpha_2, \alpha_2^*)$ be DFZgCts mapping and if X is $DFZT_{\frac{1}{2}}$ -space, then f is DFZCts.

Definition 3.2. Let $(X, \alpha_1, \alpha_1^*)$ & $(Y, \alpha_2, \alpha_2^*)$ be two dfts's. The function $f : (X, \alpha_1, \alpha_1^*) \to (Y, \alpha_2, \alpha_2^*)$ is said to be:

- (i) double fuzzy Z-open (resp. closed) [6] (briefly, DFZO (resp. DFZC)) map if the image of every (l, k)-fo (resp. (l, k)-fc) set in X is (l, k)-fZo (resp. (l, k)-fZc) set in Y.
- (ii) pre double fuzzy Z-open (resp. closed) (briefly, pDFZO (resp. pDFZC)) map if the image of every (l, k)-fZo (resp. (l, k)-fZc) set in X is (l, k)-fZo (resp. (l, k)-fZc) set in Y.
- (iii) double fuzzy Zg-open (resp. closed) (briefly, DFZgO (resp. DFZgC)) map if the image of every (l, k)-fo (resp. (l, k)-fc) set in X is (l, k)-fZgo (resp. (l, k)-fZgc) in Y. (iv) pre double fuzzy Zg-open (resp. closed) (briefly, pDFZgO (resp. pDFZgC)) map if the image of every (l, k)-fZgo (resp. (l, k)-fZgc) set in X is (l, k)-fZgo (resp. (l, k)-fZgc) in Y.

Theorem 3.5. Let $f : (X, \alpha_1, \alpha_1^*) \to (Y, \alpha_2, \alpha_2^*)$ be onto, DFZIrr and pDFZC mapping. If X is $DFZgT_{\frac{1}{2}}$ -space, then $(Y, \alpha_2, \alpha_2^*)$ is $DFZgT_{\frac{1}{2}}$ -space.

Theorem 3.6. If the bijective map $f : (X, \alpha_1, \alpha_1^*) \to (Y, \alpha_2, \alpha_2^*)$ is DFZIrr & pDFZO mapping then f is DFZgIrr.

Theorem 3.7. Let $u: (X, \alpha_1, \alpha_1^*) \to (Y, \alpha_2, \alpha_2^*)$. Then the statements

- (i) f is DFZgIrr.
- (ii) $\forall f \mathcal{Z}gc \text{ set } \gamma \in Y, u^{-1}(\gamma) \text{ is } f \mathcal{Z}gc \text{ in } X.$
- (iii) $\forall fp \ x_p \text{ of } X \ \& \text{ every } f \mathbb{Z}go \ \text{set } \gamma \text{ of } Y \ni f(x_p) \in \gamma, \exists a \ f \mathbb{Z}go \ \text{set } \ni x_p \in \sigma \text{ and } f(\sigma) \leq \gamma.$

are equivalent.

Theorem 3.8. Let $u : (X, \alpha, \alpha^*) \to (Y, \beta, \beta^*), v : (Y, \beta, \beta^*) \to (Z, \rho, \rho^*)$ be two maps $\exists v \circ u : (X, \alpha, \alpha^*) \to (Z, \rho, \rho^*)$ is DFZgC map. (i) If u is DFCts & surjective, then v is DFZgC map. (ii) If v is DFZgIrr and injective, then u is DFZgC map.

Theorem 3.9. Let $u : (X, \alpha, \alpha^*) \to (Y, \beta, \beta^*), v : (Y, \beta, \beta^*) \to (Z, \rho, \rho^*)$ be two maps $\exists v \circ u : (X, \alpha, \alpha^*) \to (Z, \rho, \rho^*)$ is $DF\mathcal{Z}^*gC$ map.

- (i) If u is DFCts & surjective, then v is pDFZgC map.
- (ii) If v is DFZgIrr & injective, then u is pDFZgC map

Theorem 3.10. For the functions $u : X \to Y \& v : Y \to Z$ the following relations hold:

- (i) If $u: X \to Y$ is $DFZgCts \& v: Y \to Z$ is DFCts then $v \circ u: X \to Z$ is DFZqCts.
- (ii) If $u : X \to Y \& v : Y \to Z$ are DFZgIrr. then $v \circ u : X \to Z$ is DFZgIrr.
- (iii) If $u: X \to Y$ is $DFZgIrr \& v: Y \to Z$ is DFZCts then $v \circ u: X \to Z$ is DFZgCts.

Theorem 3.11. If $u : (X, \alpha, \alpha^*) \to (Y, \beta, \beta^*)$ is $DFZgCts \& v : (Y, \beta, \beta^*) \to (Z, \rho, \rho^*)$ is $DFZCts \ni Y$ is $DFZgT_{\frac{1}{2}}$ -space then $v \circ u : (X, \alpha, \alpha^*) \to (Z, \rho, \rho^*)$ is DFZgCts.

REFERENCES

- [1] K. ATANASSOV: Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1) (1986), 84–96.
- [2] D. COKER: An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1997), 81–89.
- [3] A. I. EL-MAGHARABI, A. M. MUBARKI: *Z*-open sets and *Z*-continuity in topological spaces, International Journal of Mathematical Archive, **2**(10) (2011), 1819–1827.
- [4] J. G. GARCIA, S. E. RODABAUGH: Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued-intuitionistic sets, intuitionistic fuzzy sets and topologies, Fuzzy Sets and Systems, 156 (2005), 445–484.
- [5] S. K. Samanta, T. K. Mondal: On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131 (2002), 323–336.

2160 A. VADIVEL, S. DEVI SATHAANANTHAN, S. TAMILSELVAN, AND G. SARAVANAKUMAR

- [6] S. DEVI SATHAANANTHAN, A. VADIVEL, S. TAMILSELVAN, G. SARAVANAKUMAR : Fuzzy Z-open mappings in double fuzzy topological spaces, submitted.
- [7] A. M. ZAHRAN, M. A. ABD-ALLAH, A. GHAREEB: Several types of double fuzzy irresolute functions, International Journal of Computational Cognition, 8(2) (2010), 19–23.

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE (AUTONOMOUS) KARUR-639005, TAMIL NADU, INDIA. DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY, ANNAMALAINAGAR-608002, TAMIL NADU, INDIA.

DEPARTMENT OF MATHEMATICS EASTERN UNIVERSITY VANTHARUMOOLAI, CHENKALADY, SRI LANKA

MATHEMATICS SECTION (FEAT) Annamalai University Annamalainagar-608002, Tamil Nadu, India.

DEPARTMENT OF MATHEMATICS M.KUMARASAMY COLLEGE OF ENGINEERING(AUTONOMOUS) KARUR-639113, INDIA