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SEVERAL MAPPINGS VIA (L,K)-Z-GENERALIZED OPEN SETS
IN DOUBLE FUZZY TOPOLOGICAL SPACES

A. VADIVEL1, SHIVENTHIRA DEVI SATHAANANTHAN, S. TAMILSELVAN,
AND G. SARAVANAKUMAR

ABSTRACT. We introduce some new class of generalized sets namely (l, k)-fuzzy
Z- generalized closed sets in double fuzzy topological spaces. Using them we
investigate the class of mappings called double fuzzy Z-generalized continuous
and irresolute maps. Furthermore we study double fuzzy Z-generalized home-
omorphisms and pre double fuzzy Z-generalized homeomorphisms. Also, some
of their fundamental properties are studied.

1. INTRODUCTION AND PRELIMINARIES

In 1986, Atanassov [1] started ’Intuitionistic fuzzy sets’ and Coker [2] in 1997,
initiated Intuitionistic fuzzy topological space. The term ’double’ instead of ’in-
tuitionistic’ coined by Garcia and Rodabaugh [4] in 2005. In the previous two
decades many analysts accomplishing more applications on double fuzzy topo-
logical spaces. From 2011, Z-open sets and maps were introduced in topological
spaces by El-Maghrabi and Mubarki [3].
X denotes a non-empty set, I1 = [0, 1), I0 = (0, 1], I = [0, 1], 0 = 0(X),

1 = 1(X), r ∈ I0 & κ ∈ I1 and always 1 ≥ r+κ. IX is a family of all fuzzy sets on
X. In 2002, Double fuzzy topological spaces (briefly, dfts), (X, η, η∗), (r, κ)-fuzzy

1corresponding author
2010 Mathematics Subject Classification. 54A40, 45D05, 03E72.
Key words and phrases. double fuzzy Z-generalized continuous map, double fuzzy Z-

generalized open, closed, irresolute maps and double fuzzy Z-generalized homeomorphisms.
2155



2156 A. VADIVEL, S. DEVI SATHAANANTHAN, S. TAMILSELVAN, AND G. SARAVANAKUMAR

open (resp. (r, κ)-fuzzy closed) (briefly (r, κ)-fo (resp. (r, κ)-fc)) set were given
by Samanta and Mondal [5].

All other undefined notions are from [5–7] and cited therein.

2. (l, k)-FUZZY Z -GENERALIZED CLOSED SETS

Definition 2.1. A fuzzy subset γ in a dfts (X,α, α∗) is called an (l, k)-fuzzy Z-
generalized

(i) closed (briefly, (l, k)-fZgc) set if ZCα,α∗(γ, l, k) ≤ σ, whenever γ ≤ σ & σ

is (l, k)-fZo set.
(ii) open (briefly, (l, k)-fZgo) set if σ ≤ ZIα,α∗(γ, l, k)) whenever σ ≤ γ & σ

is (l, k)-fZc set.

Also the complement of an (l, k)-fZgc set is called as (l, k)-fZgo set.

Definition 2.2. Let (X,α, α∗) be a dfts. For γ, σ ∈ IX , the (l, k)-fuzzy Z-
generalized closure (interior) of γ and is ZgCα,α∗(γ, l, k) =

∧
{σ ∈ IX : σ ≥

γ, σ is a (l, k)-fZgc set } (ZgIα,α∗(γ, l, k) =
∨
{σ ∈ IX : σ ≤ γ, σ is a

(l, k)-fZgo set }).

Theorem 2.1. Every (l, k)-fc set in (X,α, α∗) is (l, k)-fZgc set. But not conversely.

Theorem 2.2. Every (l, k)-fZc in (X,α, α∗) is (l, k)-fZgc, But not conversely.

Theorem 2.3. Let γ be any fuzzy subset of X. Then

(i) γ is (l, k)-fZgc if γ = ZgCα,α∗(γ, l, k).

(ii) ZgCα,α∗(γ, l, k) is (l, k)-fZgc in X.

Theorem 2.4. A finite union of (l, k)-fZgo sets is an (l, k)-fZgo set.

Remark 2.1. Union of two (l, k)-fZgc sets need not be an (l, k)-fZgc set.

Theorem 2.5. A finite intersection of (l, k)-fZgc is an (l, k)-fZgc set.

Remark 2.2. Intersection of two (l, k)-fZgo sets need not be an (l, k)-fZgo set.

Theorem 2.6. If γ is (l, k)-fZgc set and (l, k)-fZo set in (X,α, α∗), then γ is
(l, k)-fZc in (X,α, α∗).

Theorem 2.7. If γ is (l, k)-fZgc set in (X,α, α∗) & γ ≤ σ ≤ ZCα,α∗(γ, l, k), then
σ is (l, k)-fZgc set in (X,α, α∗).
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Theorem 2.8. If γ is (l, k)-fZgo set in (X,α, α∗) & ZIα,α∗(γ, l, k) ≤ σ ≤ γ, then
σ is (l, k)-fZgo set in (X,α, α∗).

Theorem 2.9. Let (X,α, α∗) be the dfts & γ be a fs of X. Then γ is (l, k)-fZgc set
iff γ q σ implies ZCα,α∗(γ, l, k) q σ, ∀ (l, k)-fZc set σ of X.

Theorem 2.10. Let γ be (l, k)-fZgc set in (X,α, α∗) & xp be a fuzzy point (briefly,
fp) of (X,α, α∗) 3 xp q ZCα,α∗(γ, l, k) then ZCα,α∗(xp, l, k) q γ.

Theorem 2.11. Let (Y, αY , α∗
Y ) be a subspace of (X,α, α∗) & γ be a fs of Y. If γ is

(l, k)-fZgc set in X, then γ is (l, k)-fZgc set in Y.

Definition 2.3. Let γ be a fs in dfts X & xp be a fp of X, then γ is called (l, k)-
fuzzy Z-generalized neighbourhood (resp. q-neighbourhood) (briefly, (l, k)-fZg-
nbhd (resp. (l, k)-fZgq-nbhd)) of xp if ∃ a (l, k)-fZgo set σ of X 3 xp ∈ σ ≤ γ

(resp. xp q σ ≤ γ.)

Theorem 2.12. γ is (l, k)-fZgo set in X iff ∀ fp xp ∈ γ, γ is a (l, k)-fZg-nbhd of
xp.

Theorem 2.13. If γ & σ are (l, k)-fZg-nbhd of xp, then γ ∧ σ is also a (l, k)-fZg-
nbhd of xp.

Theorem 2.14. Let γ be a fs of a dfts X. Then a fp xp ∈ ZCα,α∗(γ, l, k) iff every
(l, k)-fZgq-nbhd of xp is quasi-coincident with γ.

Definition 2.4. A dfts X is dfZ-generalized T 1
2
-space (briefly, DFZgT 1

2
-space) if

every (l, k)-fZgc set in X is (l, k)-fc set in X.

Theorem 2.15. A dfts (X,α, α∗) is DFZT 1
2
-space iff every fs in (X,α, α∗) is both

(l, k)-fZo & (l, k)-fZgo.

3. DFZg-CONTINUOUS AND DFZg-IRRESOLUTE MAPPINGS

Definition 3.1. Let f : (X,α1, α
∗
1) → (Y, α2, α

∗
2) be a mapping from an dfts

(X, α1, α
∗
1) to another dfts (Y, α2, α

∗
2). Then f is called double fuzzy Z-generalized

continuous (resp. irresolute) (briefly, DFZgCts (resp. DFZgIrr)) mapping if
f−1(γ) is (l, k)-fZgo set in X ∀ (l, k)-fo (resp. (l, k)-fZgo) set γ in Y.

Theorem 3.1. (i) Every DFCts map is DFZgCts.
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(ii) Every DFZgIrr map is DFZgCts. But not conversely.

Theorem 3.2. If f : (X,α1, α
∗
1)→ (Y, α2, α

∗
2) is DFZgCts iff the inverse image of

(l, k)-fo set of Y is (l, k)-fZgo set of X.

Theorem 3.3. If f : (X,α, α∗)→ (Y, β, β∗) is DFZgCts, then (i) ∀ fp xp of X &

each γ ∈ Y 3 f(xp) ∈ γ, ∃ a (l, k)-fZgo set σ of X 3 xp ∈ σ & f(σ) ≤ γ. (ii) ∀ fp
xp of X & each γ ∈ Y 3 f(xp) q γ, ∃ a (l, k)-fZgo set σ of X 3 xp q σ & f(σ) ≤ γ.

Theorem 3.4. Let f : (X,α1, α
∗
1)→ (Y, α2, α

∗
2) be DFZgCts mapping and if X is

DFZT 1
2
-space, then f is DFZCts.

Definition 3.2. Let (X,α1, α
∗
1) & (Y, α2, α

∗
2) be two dfts’s. The function f :

(X,α1, α
∗
1)→ (Y, α2, α

∗
2) is said to be:

(i) double fuzzy Z-open (resp. closed) [6] (briefly, DFZO (resp. DFZC))
map if the image of every (l, k)-fo (resp. (l, k)-fc) set in X is (l, k)-fZo
(resp. (l, k)-fZc) set in Y.

(ii) pre double fuzzy Z-open (resp. closed) (briefly, pDFZO (resp. pDFZC))
map if the image of every (l, k)-fZo (resp. (l, k)-fZc) set inX is (l, k)-fZo
(resp. (l, k)-fZc) set in Y.

(iii) double fuzzy Zg-open (resp. closed) (briefly, DFZgO (resp. DFZgC))
map if the image of every (l, k)-fo (resp. (l, k)-fc) set in X is (l, k)-fZgo
(resp. (l, k)-fZgc) in Y. (iv) pre double fuzzy Zg-open (resp. closed)
(briefly, pDFZgO (resp. pDFZgC)) map if the image of every (l, k)-
fZgo (resp. (l, k)-fZgc) set in X is (l, k)-fZgo (resp. (l, k)-fZgc) in
Y.

Theorem 3.5. Let f : (X,α1, α
∗
1) → (Y, α2, α

∗
2) be onto, DFZIrr and pDFZC

mapping. If X is DFZgT 1
2
-space, then (Y, α2, α

∗
2) is DFZgT 1

2
-space.

Theorem 3.6. If the bijective map f : (X,α1, α
∗
1) → (Y, α2, α

∗
2) is DFZIrr &

pDFZO mapping then f is DFZgIrr.

Theorem 3.7. Let u : (X,α1, α
∗
1)→ (Y, α2, α

∗
2). Then the statements

(i) f is DFZgIrr.
(ii) ∀ fZgc set γ ∈ Y, u−1(γ) is fZgc in X.

(iii) ∀ fp xp of X & every fZgo set γ of Y 3 f(xp) ∈ γ, ∃ a fZgo set 3 xp ∈ σ
and f(σ) ≤ γ.
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are equivalent.

Theorem 3.8. Let u : (X,α, α∗) → (Y, β, β∗), v : (Y, β, β∗) → (Z, ρ, ρ∗) be two
maps 3 v ◦ u : (X,α, α∗) → (Z, ρ, ρ∗) is DFZgC map. (i) If u is DFCts &

surjective, then v is DFZgC map. (ii) If v is DFZgIrr and injective, then u is
DFZgC map.

Theorem 3.9. Let u : (X,α, α∗) → (Y, β, β∗), v : (Y, β, β∗) → (Z, ρ, ρ∗) be two
maps 3 v ◦ u : (X,α, α∗)→ (Z, ρ, ρ∗) is DFZ∗gC map.

(i) If u is DFCts & surjective, then v is pDFZgC map.
(ii) If v is DFZgIrr & injective, then u is pDFZgC map

Theorem 3.10. For the functions u : X → Y & v : Y → Z the following relations
hold:

(i) If u : X → Y is DFZgCts & v : Y → Z is DFCts then v ◦ u : X → Z is
DFZgCts.

(ii) If u : X → Y & v : Y → Z are DFZgIrr. then v ◦ u : X → Z is
DFZgIrr.

(iii) If u : X → Y is DFZgIrr & v : Y → Z is DFZCts then v ◦ u : X → Z is
DFZgCts.

Theorem 3.11. If u : (X,α, α∗) → (Y, β, β∗) is DFZgCts & v : (Y, β, β∗) →
(Z, ρ, ρ∗) is DFZCts 3 Y is DFZgT 1

2
-space then v ◦ u : (X,α, α∗)→ (Z, ρ, ρ∗)

is DFZgCts.
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