ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 2161–2166 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.76 Spec. Issue on NCFCTA-2020

FUZZY \mathcal{Z} -OPEN MAPPINGS IN DOUBLE FUZZY TOPOLOGICAL SPACES

SHIVENTHIRA DEVI SATHAANANTHAN, A. VADIVEL¹, S. TAMILSELVAN, AND G. SARAVANAKUMAR

ABSTRACT. We introduce and investigate some new class of mappings called double fuzzy \mathcal{Z} -open map and double fuzzy \mathcal{Z} -closed map in double fuzzy topological spaces. Also, some of their fundamental properties are studied. Moreover, we investigate the relationships between some double fuzzy open and their respective closed mappings.

1. INTRODUCTION AND PRELIMINARIES

In 1986, Atanassov [1] started 'Intuitionistic fuzzy sets' and Coker [2] in 1997, initiated Intuitionistic fuzzy topological space. The term 'double' instead of 'intuitionistic' coined by Garcia and Rodabaugh [4] in 2005. In the previous two decades many analysts accomplishing more applications on double fuzzy topological spaces. From 2011, Z-open sets and maps were introduced in topological spaces by El-Maghrabi and Mubarki [5].

X denotes a non-empty set, $I_1 = [0, 1)$, $I_0 = (0, 1]$, I = [0, 1], $0 = \underline{0}(X)$, $1 = \underline{1}(X)$, $r \in I_0 \& \kappa \in I_1$ and always $1 \ge r + \kappa$. I^X is a family of all fuzzy sets on X. In 2002, Double fuzzy topological spaces (briefly, dfts), (X, η, η^*) , (r, κ) -fuzzy open (resp. (r, κ) -fuzzy closed) (briefly (r, κ) -fo (resp. (r, κ) -fc)) set were given by Samanta and Mondal [6].

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A40, 54A99, 45D05, 03E72.

Key words and phrases. DFZO, $DF\delta sO$, DFpO, DFsO and DFbO.

2162 S. DEVI SATHAANANTHAN, A. VADIVEL, S. TAMILSELVAN, AND G. SARAVANAKUMAR

All other undefined notions are from [3, 6, 7] and cited therein.

2. On double fuzzy $\mathcal Z$ open (resp. closed) mappings

Definition 2.1. A function f from a $dfts(X, \rho, \rho^*)$ to a $dfts(Y, \zeta, \zeta^*)$, is called as a double fuzzy \mathcal{Z} open (resp. δ semiopen, δ preopen, preopen, semi open and b open) (briefly $DF\mathcal{Z}O$ (resp. $DF\delta sO$, $DF\delta pO$, DFpO, DFsO and DFbO)) function if $f(\mu)$ is an (r, κ) - $f\mathcal{Z}o$ (resp. (r, κ) - $f\delta so$, (r, κ) - $f\delta po$, (r, κ) -fpo, (r, κ) -fso and (r, κ) -fso and (r, κ) -fo set in $I^Y \forall (r, \kappa)$ -fo set $\mu \in I^X$ for all $r \in I_0$ & $\kappa \in I_1$.

Definition 2.2. A function f from a dfts (X, ρ, ρ^*) to a dfts (Y, ζ, ζ^*) , is called as a double fuzzy \mathcal{Z} closed (resp. δ semiclosed, δ preclosed, preclosed, semi closed and b closed) (briefly $DF\mathcal{Z}C$ (resp. $DF\delta sC$, $DF\delta pC$, DFpC, DFsC and DFbC)) function if $f(\mu)$ is an (r, κ) - $f\mathcal{Z}c$ (resp. (r, κ) - $f\delta sc$, (r, κ) - $f\delta pc$, (r, κ) -fpc, (r, κ) -fscand (r, κ) -fbc) set in $I^Y \forall (r, \kappa)$ -fc set $\mu \in I^X$ for all $r \in I_0$ & $\kappa \in I_1$.

Theorem 2.1. Let $f : (X, \rho, \rho^*) \to (Y, \eta, \eta^*)$ be a mapping

- (i) Every $DF\delta O$ mapping is DFO (resp. $DF\delta pO$ and $DF\delta sO$) mapping.
- (ii) Every DFO mapping is DFsO (resp. DFpO) mapping.
- (iii) Every $DF\delta pO$ mapping is DFeO mapping.
- (iv) Every $DF\delta sO$ mapping is DFeO (resp. DFZO) mapping.
- (v) Every DFpO mapping is DFZO mapping.
- (vi) *Every DFsO* mapping is *DFbO* mapping.
- (vii) Every DFZO mapping is DFeO (resp. DFbO) mapping. But not conversely.

FIGURE 1

Example 1. Let $X = Y = \{l, m, n\}$ and let the fuzzy sets α_1 to α_7 are defined as $\alpha_1(l) = 0.3$, $\alpha_1(m) = 0.4$, $\alpha_1(n) = 0.5$; $\alpha_2(l) = 0.6$, $\alpha_2(m) = 0.9$, $\alpha_2(n) = 0.5$; $\alpha_3(l) = 0.2$, $\alpha_3(m) = 0.2$, $\alpha_3(n) = 0.2$; $\alpha_4(l) = 0.4$, $\alpha_4(m) = 0.4$, $\alpha_4(n) = 0.5$; $\alpha_5(l) = 0.5$, $\alpha_5(m) = 0.5$, $\alpha_5(n) = 0.5$; $\alpha_6(l) = 0.2$, $\alpha_6(m) = 0.4$, $\alpha_6(n) = 0.4$ and $\alpha_7(l) = 0.3$, $\alpha_7(m) = 0.0$, $\alpha_7(n) = 0.4$. Consider the double fuzzy topologies (X, η, η^*) , (Y, η_1, η_1^*) , (Y, η_2, η_2^*) , (Y, η_3, η_3^*) , (Y, η_4, η_4^*) , (Y, η_5, η_5^*) and (Y, η_6, η_6^*) with

$$\eta(\gamma) = \eta^{*}(\gamma) = \begin{cases} 1, & \text{if } \gamma \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \gamma \in \{\alpha_{1}, \alpha_{2}\}, \\ 0, & \text{o.w.} \end{cases}, \quad \eta_{1}(\gamma) = \eta_{1}^{*}(\gamma) = \begin{cases} 1, & \text{if } \gamma \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \gamma = \alpha_{2}, \\ 0, & \text{o.w.} \end{cases}$$

$$\eta_{2}(\gamma) = \eta_{2}^{*}(\gamma) = \begin{cases} 1, & \text{if } \gamma \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \gamma = \alpha_{3} \\ 0, & \text{o.w.} \end{cases}, \quad \eta_{3}(\gamma) = \eta_{3}^{*}(\gamma) = \begin{cases} 1, & \text{if } \gamma \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \gamma = \alpha_{4} \\ 0, & \text{o.w.} \end{cases},$$

$$\eta_4(\gamma) = \eta_4^*(\gamma) = \begin{cases} 1, & \text{if } \gamma \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \gamma = \alpha_5 \\ 0, & \text{o.w.} \end{cases}, \quad \eta_5(\gamma) = \eta_5^*(\gamma) = \begin{cases} 1, & \text{if } \gamma \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \gamma = \alpha_6 \\ 0, & \text{o.w.} \end{cases},$$

and

$$\eta_{6}(\gamma) = \begin{cases} 1, & \text{if } \gamma \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \gamma = \alpha_{7} \\ 0, & \text{o.w.} \end{cases}, \quad \eta_{6}^{*}(\gamma) = \begin{cases} 0, & \text{if } \gamma \in \{\underline{0}, \underline{1}\}, \\ \frac{1}{2}, & \text{if } \gamma = \alpha_{7} \\ 1, & \text{o.w.}, \end{cases}$$

Then the identity function (i) $f : (X, \eta_1, \eta_1^*) \to (Y, \eta, \eta^*)$ is a (i) *DFO* (resp. *DF* δpO) function but not a *DF* δO , (ii) *DFZO* but not a *DF* δsO . (ii) $f : (X, \eta_2, \eta_2^*) \to (Y, \eta, \eta^*)$ is a *DF*pO function but not a *DFO*. (iii) $f : (X, \eta_3, \eta_3^*) \to (Y, \eta, \eta^*)$ is a *DF*sO (resp. *DF* δsO) function but not a *DFO*. (iv) $f : (X, \eta_4, \eta_4^*) \to (Y, \eta, \eta^*)$ is a *DFZO* function but not a *DFpO*. (v) $f : (X, \eta_5, \eta_5^*) \to (Y, \eta, \eta^*)$ is a *DFbO* function but not a *DFsO* and (vi) $f : (X, \eta_6, \eta_6^*) \to (Y, \eta, \eta^*)$ is a *DFZO*. From the above we have,

Definition 2.3. A mapping $f : (X, \rho, \rho^*) \to (Y, \eta, \eta^*)$ is called DFZO at a fpt x_r if the image of each (r, κ) -Q neighbourhood of x_r is an (r, κ) -ZQ neighbourhood of $f(x_r) \in I^Y$.

2163

2164 S. DEVI SATHAANANTHAN, A. VADIVEL, S. TAMILSELVAN, AND G. SARAVANAKUMAR

Theorem 2.2. A mapping $f : (X, \rho, \rho^*) \to (Y, \eta, \eta^*)$ is DFZO iff it is DFZO at every fpt $x_r \in I^X$.

Theorem 2.3. Let (X, ρ, ρ^*) & (Y, η, η^*) be dfts's and $f : (X, \rho, \rho^*) \to (Y, \eta, \eta^*)$ be a mapping. Then statements the following statements are equivalent.

- (i) f is DFZO function.
- (ii) $f(\gamma)$ is an (r, κ) -f Zo set in $(Y, \eta, \eta^*) \forall (r, \kappa)$ -fo set γ in (X, ρ, ρ^*) .
- (iii) f is DFZC function.
- (iv) $f(\gamma)$ is an (r, κ) -fZc set in $(Y, \eta, \eta^*) \forall (r, \kappa)$ -fc set γ in (X, ρ, ρ^*) .
- (v) $\mathcal{Z}C_{\rho,\rho^*}(f(\gamma), r, \kappa) \leq f(C_{\eta,\eta^*}(\gamma, r, \kappa)), \ \forall \ \gamma \in I^X.$
- (vi) $I_{\rho,\rho^*}(\delta C_{\rho,\rho^*}(f(\gamma), r, \kappa), r, \kappa) \wedge C_{\rho,\rho^*}(I_{\rho,\rho^*}(f(\gamma), r, \kappa), r, \kappa) \leq f(C_{\eta,\eta^*}(\gamma, r, \kappa)),$ $\forall \gamma \in I^X.$
- (vii) $\begin{aligned} f(I_{\rho,\rho^*}(\gamma, r, \kappa)) &\leq C_{\eta,\eta^*}(\delta I_{\eta,\eta^*}(f(\gamma), r, \kappa), r, \kappa) \vee I_{\eta,\eta^*}(C_{\eta,\eta^*}(f(\gamma), r, \kappa), r, \kappa) \\ &\forall \ \gamma \in I^X. \end{aligned}$
- (viii) $f(I_{\rho,\rho^*}(\gamma, r, \kappa)) \leq \mathcal{Z}I_{\eta,\eta^*}(f(\gamma), r, \kappa), \forall \gamma \in I^X.$

(ix) $I_{\rho_1,\rho_1^*}(f^{-1}(\gamma), r, \kappa) \leq f^{-1}(\mathcal{Z}I_{\rho_2,\rho_2^*}(\gamma, r, \kappa)) \ \forall \ \gamma \in I^Y.$

Theorem 2.4. Let (X, ρ, ρ^*) & (Y, η, η^*) be dfts's. Let $f : X \to Y$ be a DFZCmapping iff f is surjective, then \forall subset μ of Y and each (r, κ) -fo set α in Xcontaining $f^{-1}(\mu)$, \exists an (r, κ) -fZo set β of Y containing $\mu \ni f^{-1}(\beta) \le \alpha$.

Theorem 2.5. Let (X, ρ_1, ρ_1^*) & (Y, ρ_2, ρ_2^*) be dfts's and $f : (X, \rho_1, \rho_1^*) \to (Y, \rho_2, \rho_2^*)$ be a DFZO (resp. DF δ sO and DFpO) mapping. If $\mu \in I^Y$ and $\gamma \in I^X$, $\rho_1(\underline{1} - \gamma) \geq r$, $\rho_1^*(\underline{1} - \gamma) \leq \kappa$, $r \in I_0 \ \kappa \in I_1 \ni f^{-1}(\mu) \leq \gamma$, \exists an (r, κ) -fZc (resp. (r, κ) -f δ sc and (r, κ) -fpc) set ν of $Y \ni \mu \leq \nu$, $f^{-1}(\nu) \leq \gamma$.

Theorem 2.6. If $f : (X, \rho_1, \rho_1^*) \to (Y, \rho_2, \rho_2^*)$ be a DFZO mapping. Then for each $\mu \in I^Y$, $f^{-1}(C_{\rho_2, \rho_2^*}(\delta I_{\rho_2, \rho_2^*}(\mu, r, \kappa), r, \kappa)) \wedge f^{-1}(I_{\rho_2, \rho_2^*}(C_{\rho_2, \rho_2^*}(\mu, r, \kappa), r, \kappa)) \leq C_{\rho_1, \rho_1^*}(f^{-1}(\mu), r, \kappa).$

Theorem 2.7. If $f : (X, \rho_1, \rho_1^*) \to (Y, \rho_2, \rho_2^*)$ be a bijective mapping such that $f^{-1}(C_{\rho_2,\rho_2^*}(I_{\rho_2,\rho_2^*}(\mu, r, \kappa), r, \kappa)) \wedge f^{-1}(I_{\rho_2,\rho_2^*}(\delta C_{\rho_2,\rho_2^*}(\mu, r, \kappa), r, \kappa)) \leq C_{\rho_1,\rho_1^*}(f^{-1}(\mu), r, \kappa)$, for each $\mu \in I^Y$, then f is DFZO map.

Theorem 2.8. Let (X, ρ, ρ^*) & (Y, η, η^*) be dfts's. Let $f : X \to Y$ be a DFZCmapping. Then (i) If f is a surjective map and $f^{-1}(\alpha)\overline{q}f^{-1}(\beta)$ in X, then there exists $\alpha, \beta \in I^Y$ such that $\alpha \overline{q}\beta$. (ii) $ZI_{\eta,\eta^*}(ZC_{\eta,\eta^*}(f(\gamma), r, \kappa), r, \kappa) \leq f(C_{\rho,\rho^*}(\gamma, r, \kappa))$, for each $\gamma \in I^X$ are hold. **Proposition 2.1.** Let $f : (X, \rho_1, \rho_1^*) \to (Y, \rho_2, \rho_2^*)$ DFZO mapping and if for any fuzzy subset γ of Y is (r, κ) -fuzzy nowhere dense then f is $df \delta pO$ map.

Theorem 2.9. If $f : (X, \rho_1, \rho_1^*) \to (Y, \rho_2, \rho_2^*)$ be a $DF\delta biCts$ mapping then the image of each (r, κ) - $f\mathcal{Z}o$ set in (X, ρ_1, ρ_1^*) under f is (r, κ) - $f\mathcal{Z}o$ set in (Y, ρ_2, ρ_2^*) .

Remark 2.1. Let (X, ρ_1, ρ_1^*) & (Y, ρ_2, ρ_2^*) be dfts's and $f : X \to Y$ be a mapping. The composition of two DFZO mappings need not be DFZO as shown by,

Theorem 2.10. Let (X, ρ_1, ρ_1^*) , (Y, ρ_2, ρ_2^*) and (Z, ρ_3, ρ_3^*) be dfts's. If

$$f: (X, \rho_1, \rho_1^*) \to (Y, \rho_2, \rho_2^*)$$

and $g: (Y, \rho_2, \rho_2^*) \to (Z, \rho_3, \rho_3^*)$ are mappings, then $g \circ f$ is DFZO mapping if (i) f is DFO & g is DFZO. (ii) f is DFZO & g is $DF\delta biCts$ mapping.

Theorem 2.11. Let $(X, \rho_1, \rho_1^*), (Y, \rho_2, \rho_2^*) \& (Z, \rho_3, \rho_3^*)$ be dfts's. If $f : (X, \rho_1, \rho_1^*) \to (Y, \rho_2, \rho_2^*)$ and $g : (Y, \rho_2, \rho_2^*) \to (Z, \rho_3, \rho_3^*)$ are mappings, then (i) If $g \circ f$ is DFZO mapping & f is a onto DFCts map, then g is DFZO map. (ii) If $g \circ f$ is DFO mapping & g is an 1-1 DFZCts map, then f is DFZO map.

3. CONCLUSION

In this paper, we introduced and investigated the classes of mappings called double fuzzy \mathcal{Z} -open map and double fuzzy \mathcal{Z} -closed map to the dfts's. Also, some fundamental properties were studied.

REFERENCES

- [1] K. ATANASSOV: Intuitionistic Fuzzy sets, Fuzzy sets and system, 20(1) (1986), 84–96.
- [2] D. COKER: An introduction to Intuitionistic Fuzzy Topological spaces, Fuzzy Sets and Systems, 88 (1997), 81–89.
- [3] F. M. MOHAMMED, M. S. M. NOORANI, A. GHAREEB: Generalized fuzzy b-closed and generalized *-fuzzy b-closed sets in double fuzzy topological spaces, Egyptian Journal of Basic and Applied Sciences, 3 (2016), 61–67.
- [4] J. G. GARCIA, S. E. RODABAUGH: Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued intuitionistic sets, intuitionistic fss and topologies, Fuzzy Sets and Systems, 156 (2005), 445–484.
- [5] A. I. EL-MAGHARABI, A. M. MUBARKI: *Z*-open sets and *Z*-continuity in topological spaces, International Journal of Mathematical Archive, **2**(10) (2011), 1819–1827.

2166 S. DEVI SATHAANANTHAN, A. VADIVEL, S. TAMILSELVAN, AND G. SARAVANAKUMAR

- [6] S. K. SAMANTA, T.K. MONDAL: On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131 (2002), 323–336.
- [7] S. DEVI SATHAANANTHAN, A. VADIVEL, S. TAMILSELVAN, G. SARAVANAKUMAR :*Fuzzy Z* continuous mappings in double fuzzy topological spaces, submitted.

DEPARTMENT OF MATHEMATICS EASTERN UNIVERSITY, VANTHARUMOOLAI CHENKALADY, SRI LANKA

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE (AUTONOMOUS), KARUR-639005, TAMIL NADU, INDIA, DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY, ANNAMALAINAGAR-608002, TAMIL NADU, INDIA

MATHEMATICS SECTION (FEAT) Annamalai University Annamalainagar-608002, Tamil Nadu, India

DEPARTMENT OF MATHEMATICS M.KUMARASAMY COLLEGE OF ENGINEERING(AUTONOMOUS) KARUR-639113, INDIA. *E-mail address*: saravananguru2612@gmail.com