

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 2167–2175 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.77 Spec. Issue on NCFCTA-2020

# ON FUZZY $\tilde{G}$ -CLOSED SETS AND IT'S PROPERTIES

K. BALASUBRAMANIYAN<sup>1</sup> AND R. PRABHAKARAN

ABSTRACT. New category of sets, specifically fuzzy  $\tilde{g}$ -closed sets is to launch and argue of fuzzy topological spaces. Further, compare with related sets are investigated. More over, the properties of fuzzy  $\tilde{g}$ -closed sets are given of this paper.

## 1. INTRODUCTION

In 1965, L. A. Zadeh [13] was introduced and discussed the novel model of a fuzzy subsets. The consequent research behavior in this field and linked have originate relevance in various bough of Modern sciences. In 1968, C. L. Chang [4] by the idea of generalized fuzzy spaces. Another researchers similar to K. K. Azad [1], S. P. Sinha [3], C. K. Wong [11] and any more authors donate to the growth of fuzzy topological spaces and so on.

New category of sets, specifically fuzzy  $\tilde{g}$ -closed sets is to launch and argue of fuzzy topological spaces. Further, compare with related sets are investigated. More over, the properties of fuzzy  $\tilde{g}$ -closed sets are given of this paper.

<sup>&</sup>lt;sup>1</sup>corresponding author

<sup>2010</sup> Mathematics Subject Classification. 54A05, 54A10, 54C08, 54C10.

*Key words and phrases.* fuzzy closed sets, fuzzy *g*-closed sets,  $f\tilde{g}$ -closed sets and properties of  $f\tilde{g}$ -closed sets.

### K. BALASUBRAMANIYAN AND R. PRABHAKARAN

#### 2. Preliminaries

During this paper  $(X, F_{\tau})$  (briefly, X) will denote fuzzy topological spaces or space  $(X, F_{\tau})$ . A fuzzy subset A of a fuzzy topological space  $(X, F_{\tau})$  is called a fuzzy semi-open [1],  $\alpha$ -open [3] and regular open [10], the complement of open sets are called closed in  $(X, F_{\tau})$ . The operators namely, fuzzy semi-closure [12], fuzzy  $\alpha$ -closure [6], fuzzy semi-preclosure [12] in  $(X, F_{\tau})$ . Further some fuzzy generalized closed sets are indicated [resp. shortly denotes fg-closed [2], (fsgclosed, fgsp-closed [5], fpsg-closed [8],  $f\omega$ -closed [9] and  $f\psi$ -closed [7]], the complement of closed sets are called open.

## 3. Fuzzy $\tilde{g}$ -closed sets

**Definition 3.1.** A fuzzy subset H of a space  $(X, F_{\tau})$  is said to be a

- (1) fuzzy  $\tilde{g}$ -closed set (shortly denotes  $f\tilde{g}$ -closed): condition says that  $cl(H) \leq S$  each time  $H \leq S$  and S is fsg-open.
- (2) fuzzy  $\tilde{g}_{\alpha}$ -closed set (shortly denotes  $f\tilde{g}_{\alpha}$ -closed): condition says that  $\alpha cl(H) \leq S$  each time  $H \leq S$  and S is fsg-open.
- (3) fuzzy  $\alpha gs$ -closed set: condition says that  $\alpha cl(H) \leq S$  each time  $H \leq S$  and S is fuzzy semi-open.

The complement of above closed set is called an open.

**Proposition 3.1.** Entire fuzzy closed set is  $f\tilde{g}$ -closed but not converse.

*Proof.* Let H be a fuzzy closed set of a space  $(X, F_{\tau})$  with K is a fsg-open set such that  $H \leq K$ , then  $K \geq H = cl(H)$ . Thus H is  $f\tilde{g}$ -closed.  $\Box$ 

As shown from the follows.

**Example 1.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = 1, \eta(n) = 0$ . In the space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = 0, \alpha(n) = 0.5$  is  $f\tilde{g}$ -closed set but not fuzzy closed set.

**Proposition 3.2.** Entire  $f\tilde{g}$ -closed set is fgsp-closed but not converse.

*Proof.* Let H be a  $f\tilde{g}$ -closed subset of  $(X, F_{\tau})$  and K be a fuzzy open set such that  $K \ge H$ , then  $K \ge cl(H) \ge spcl(H)$ . Thus H is fgsp-closed in  $(X, F_{\tau})$ .  $\Box$ 

As shown from the follows.

2168

**Example 2.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = \eta(n) = 0.4$ . In the space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = \alpha(n) = 0.5$  is fgsp-closed set but not f $\tilde{g}$ -closed set.

**Proposition 3.3.** Entire  $f\tilde{g}$ -closed set is fuzzy  $\omega$ -closed but not converse.

*Proof.* Assuming that  $H \leq K$  and K is fuzzy semi-open subsets of  $(X, F_{\tau})$ , we have  $cl(H) \leq K$ . Thus H is fuzzy  $\omega$ -closed.

As shown from the follows.

**Example 3.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \mu, \eta, 1_X\}$  where  $\mu, \eta$  are fuzzy subsets in X, it's elected by  $\mu(m) = \mu(n) = 0.4$  and  $\eta(m) = \eta(n) = 0.6$ . In the space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = \alpha(n) = 0.3$  is fuzzy  $\omega$ -closed but not  $f\tilde{g}$ -closed set.

**Proposition 3.4.** Entire  $f\tilde{g}$ -closed set is fg-closed but not converse.

*Proof.* Let *H* be a  $f\tilde{g}$ -closed set with *K* is a fuzzy open set of  $(X, F_{\tau})$  such that  $K \ge H$ , then  $K \ge cl(H)$ . Hence *H* is *fg*-closed.

As shown from the follows.

**Example 4.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  where  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = \eta(n) = 0.5$ . In the space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = \alpha(n) = 0.4$  is fg-closed but not f $\tilde{g}$ -closed set.

**Proposition 3.5.** Entire  $f\tilde{g}$ -closed set is fag-closed but not converse.

*Proof.* Let H be a  $f\tilde{g}$ -closed set K be a fuzzy open set of a space  $(X, F_{\tau})$  such that  $K \ge H$ , then  $K \ge cl(H) \ge \alpha cl(H)$ . Thus H is  $f \alpha g$ -closed.

As shown from the follows.

**Example 5.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  where  $\eta$  is a fuzzy subset in X can be represented as  $\eta(m) = \eta(n) = 0.5$ . In a space  $(X, F_{\tau})$ , then  $\mu$  defined by  $\mu(m) = \mu(n) = 0.4$  is  $f \alpha g$ -closed but not  $f \tilde{g}$ -closed.

**Proposition 3.6.** Entire  $f\tilde{g}$ -closed set is fgs-closed but not converse.

*Proof.* Let *H* is a  $f\tilde{g}$ -closed set and *K* be a fuzzy open set of a space  $(X, F_{\tau})$  such that  $K \ge H$ , then  $K \ge cl(H) \ge scl(H)$ . Thus *H* is *fgs*-closed.  $\Box$ 

As shown from the follows.

**Example 6.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  where  $\eta$  is a fuzzy subset in X defined by  $\eta(m) = \eta(n) = 0.5$ . In a space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = \alpha(n) = 0.4$  is fgs-closed but not f $\tilde{g}$ -closed.

**Proposition 3.7.** Entire  $f\tilde{g}$ -closed set is  $f\tilde{g}_{\alpha}$ -closed but not converse.

*Proof.* Let H be a  $f\tilde{g}$ -closed subset of  $(X, F_{\tau})$  with K is a fsg-open set such that  $K \ge H$  then we have  $K \ge cl(H) \ge \alpha cl(H)$ . Thus H is  $f\tilde{g}_{\alpha}$ -closed.  $\Box$ 

As shown from the follows.

**Example 7.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, \mu, \eta \lor \mu, 1_X\}$  where  $\eta, \mu$  are fuzzy sets in X can be represented as  $\eta(m) = 0.6, \eta(n) = 0$  and  $\mu(m) = 0, \mu(n) = 0.3$ . In a space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = \alpha(n) = 0.3$  is  $f\tilde{g}_{\alpha}$ -closed but not  $f\tilde{g}$ -closed.

**Proposition 3.8.** Entire fuzzy  $\alpha$ -closed set is  $f\tilde{g}_{\alpha}$ -closed but not converse.

*Proof.* Let *K* be a *fsg*-open set so as to  $K \ge H$ , then  $K \ge H = \alpha cl(H)$ . Thus  $f\tilde{g}_{\alpha}$ -closed.

As shown from the follows.

**Example 8.** Let a set be  $X = \{m, n\}$  and  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = 1, \eta(n) = 0$ . In the space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = 0, \alpha(n) = 1$  is  $f\tilde{g}_{\alpha}$ -closed but not fuzzy  $\alpha$ -closed.

**Proposition 3.9.** Entire  $f\tilde{g}$ -closed set is  $f\psi$ -closed but not converse.

*Proof.* Let *H* be a  $f\tilde{g}$ -closed set of a space  $(X, F_{\tau})$  with *K* is a fsg-open set such that  $K \ge H$  then  $H \ge cl(H) \ge scl(H)$ . Thus *H* is  $f\psi$ -closed.

As shown from the follows.

**Example 9.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = 1, \eta(n) = 0$ . In a space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = 0, \alpha(n) = 0.5$  is  $f\psi$ -closed but not  $f\tilde{g}$ -closed.

**Proposition 3.10.** *Entire*  $f\psi$ *-closed set is* fsg*-closed but not converse.* 

2170

*Proof.* Assuming that  $H \leq K$  and K is fuzzy semi-open in  $(X, F_{\tau})$ , then  $scl(H) \leq K$ . Thus H is fsg-closed.

As shown from the follows.

**Example 10.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = \eta(n) = 0.5$ . In the space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = \alpha(n) = 0.4$  is fsg-closed but not  $f\psi$ -closed.

**Proposition 3.11.** Entire fuzzy semi-closed set is  $f\psi$ -closed but not converse.

*Proof.* Let H be a fuzzy semi-closed subset of a space  $(X, F_{\tau})$  such that  $K \ge H$ , then we have  $K \ge H = scl(H)$ . Thus H is  $f\psi$ -closed.

As shown from the follows.

**Example 11.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = 1, \eta(n) = 0$ . In the space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = 0, \alpha(n) = 0.5$  is  $f\psi$ -closed but not fuzzy semi-closed.

**Proposition 3.12.** Entire  $f\omega$ -closed set is fuzzy  $\alpha gs$ -closed but not converse.

*Proof.* Let H be a fuzzy  $\omega$ -closed subset and K be a fuzzy semi-open set of a space  $(X, F_{\tau})$  such that  $K \ge H$ , then we have  $K \ge cl(H) \ge \alpha cl(H)$ . Thus H is fuzzy  $\alpha gs$ -closed.

As shown from the follows.

**Example 12.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = 1, \eta(n) = 0$ . In the space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = 0, \alpha(n) = 0.5$  is fuzzy  $\alpha gs$ -closed but not  $f\omega$ -closed.

**Proposition 3.13.** Entire  $f\tilde{g}$ -closed set is fuzzy  $\alpha gs$ -closed but not converse.

*Proof.* Let H be a  $f\tilde{g}$ -closed subset with K is a fuzzy semi-open set of a space  $(X, F_{\tau})$ . Such that  $K \ge H$ , then  $K \ge cl(H) \ge \alpha cl(H)$ . Thus H is fuzzy  $\alpha gs$ -closed.

As shown from the follows.

**Example 13.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = 1, \eta(n) = 0$ . In the space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = 0, \alpha(n) = 0.5$  is fuzzy  $\alpha gs$ -closed but not  $f\tilde{g}$ -closed.

**Proposition 3.14.** Entire fuzzy  $\alpha gs$ -closed set is fuzzy  $\alpha g$ -closed but not converse.

*Proof.* Assuming that  $H \leq K$  and K is fuzzy open in  $(X, F_{\tau})$  such that  $H \leq K$ . Then  $K \geq \alpha cl(H)$ . Thus H is fuzzy  $\alpha g$ -closed.

As shown from the follows.

**Example 14.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = 0.3, \eta(n) = 0.6$ . In the space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = \alpha(n) = 0.4$  is fuzzy  $\alpha g$ -closed but not fuzzy  $\alpha g$ s-closed set.

**Proposition 3.15.** Entire  $f\omega$ -closed set is fg-closed but not converse.

*Proof.* Assuming that  $H \leq K$  and K is fuzzy open set such that  $K \geq H$ . then  $K \geq cl(H)$ . Therefore H is fg-closed.

As shown from the follows.

**Example 15.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = \eta(n) = 0.5$ . In the space  $(X, F_{\tau})$ , then  $\alpha$  defined by  $\alpha(m) = \alpha(n) = 0.4$  is fg-closed but not f $\omega$ -closed.

**Remark 3.1.** The concepts of  $f\tilde{g}$ -closed sets are independent of the concepts of fuzzy  $\alpha$ -closed sets and the concepts of fuzzy semi-closed sets.

As shown from the follows.

**Example 16.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = \eta(n) = 0.5$ . In the space  $(X, F_{\tau})$ , then  $\mu$  defined by  $\mu(m) = \mu(n) = 0.4$  is f $\tilde{g}$ -closed set but it is neither fuzzy  $\alpha$ -closed nor fuzzy semi-closed.

**Example 17.** Let a set be  $X = \{m, n\}$  with  $F_{\tau} = \{0_X, \eta, 1_X\}$  whereas  $\eta$  is a fuzzy subset in X, it's elected by  $\eta(m) = 1, \eta(n) = 0$ . In the space  $(X, F_{\tau})$ , then  $\mu$  defined by  $\mu(m) = 0.5, \mu(n) = 0$  is fuzzy  $\alpha$ -closed as it's fuzzy semi-closed but not  $f\tilde{g}$ -closed.

**Remark 3.2.** Above outcomes are obtain as shown in the following diagram.



None of the implications are reversible.

# 4. Some more properties of fuzzy $\tilde{g}\text{-}\text{closed}$ sets

**Proposition 4.1.** In a space  $(X, F_{\tau})$ , if H and K are  $f\tilde{g}$ -closed sets  $\Rightarrow H \lor K$  is  $f\tilde{g}$ -closed sets.

*Proof.* If  $H \lor K \le A$  and H is fsg-open, then  $H \le A$  and  $K \le A$ . Since H and K are  $f\tilde{g}$ -closed,  $A \ge cl(H)$  and  $A \ge cl(K)$  and therefore  $cl(H) \lor cl(K) = cl(H \lor K) \le A$ . Hence  $H \lor K$  is  $f\tilde{g}$ -closed set.  $\Box$ 

**Theorem 4.1.** In a space  $(X, F_{\tau})$ , if H is  $f\tilde{g}$ -closed and  $H \leq K \leq cl(H) \Rightarrow K$  is  $f\tilde{g}$ -closed.

*Proof.* Let  $K \leq G$  where G is fsg-open in  $(X, F_{\tau})$ . Since  $H \leq K$  and  $H \leq G$ . Since H is  $f\tilde{g}$ -closed in  $(X, F_{\tau})$ ,  $cl(H) \leq G$ . Since  $K \leq cl(H), cl(K) \leq cl(H) \leq G$ . Hence K is  $f\tilde{g}$ -closed.

**Proposition 4.2.** In a space  $(X, F_{\tau})$ , H is a fsg-open and  $f\tilde{g}$ -closed  $\Rightarrow H$  is fuzzy closed.

*Proof.* Since *H* is *fsg*-open and  $f\tilde{g}$ -closed,  $cl(H) \leq H$  and hence *H* is fuzzy closed in  $(X, F_{\tau})$ .

2174

**Theorem 4.2.** Let *H* be a  $f\tilde{g}$ -closed set of a space  $(X, F_{\tau})$ , then *H* is fuzzy regular open  $\Rightarrow$  scl(*H*) is also  $f\tilde{g}$ -closed set.

*Proof.* Since H is fuzzy regular open in  $(X, F_{\tau})$ , H = int(cl(H)). Then  $scl(H) = H \lor int(cl(H)) = H$ . Thus, scl(H) is  $f\tilde{g}$ -closed.

#### REFERENCES

- K. K. AZAD: On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal., 82(1) (1981), 14–32.
- [2] G. BALASUBRAMANIAN, P. SUNDARAM: On some generalizations of fuzzy continuous functions, Fuzzy Set. Syst., 86(1) (1997), 93–100.
- [3] A. S. BIN SHAHNA: On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Set. Syst., 44(2) (1991), 303–308.
- [4] C. L. CHANG: Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182–190.
- [5] M. E. EL-SHAFEI, A. ZAKARI: Semi-generalized continuous mappings fuzzy topological spaces, J. Egypt Math. Soc., 15(1) (2007), 57–67.
- [6] R. PRASAD, S. S. THAKUR, R. K. SARAF: *Fuzzy* α-*irresolute mappings*, J. Fuzzy Math., 2(2) (1994), 335–339.
- [7] R. K. SARAF, M. KHANNA: Fuzzy generalized semi preclosed sets, J. Tripura Math. Soc., 3 (2001), 59–68.
- [8] R. K. SARAF, G. NAVALAGI, M. KHANNA: On fuzzy semi-pre-generalized closed sets, Bull. Malays. Math. Sci. Soc., 28(1) (2005), 19–30.
- [9] M. SUDHA, E. ROJA, M. K. UMA: Slightly fuzzy  $\omega$ -continous mappings, Int. J. Math. Anal., 5(16) (2011), 779–787.
- [10] S. S. THAKUR, S. SINGH: On fuzzy semi pre-open sets and fuzzy semi pre continuity, Fuzzy Set. Syst., 98(3) (1998), 383–391.
- [11] C. K. WONG: Fuzzy points and local properties of fuzzy topology, J. Math. Anal. Appl., 46 (1974), 316–328.
- [12] T. H. YALVAC: semi-interior and Semi-closure of a fuzzy set, J. Math. Anal. Appl., 132(2) (1988), 356–364.
- [13] L. A. ZADEH: Fuzzy sets, Inform. Cont., 8 (1965), 338-353.

DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY ANNAMALAI NAGAR-608 002 CHIDAMBARAM, CUDDALORE, TAMIL NADU, INDIA *E-mail address*: kgbalumaths@gmail.com

DEPARTMENT OF MATHEMATICS ARIGNAR ANNA GOVERNMENT ARTS COLLEGE VADACHENNIMALAI-636 121 SALEM, TAMIL NADU, INDIA *E-mail address*: pkraviprabha@gmail.com