ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 2185–2190 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.79 Spec. Issue on NCFCTA-2020

M GENERALIZED OPEN SETS IN DOUBLE FUZZY TOPOLOGICAL SPACES

J. SATHIYARAJ¹, A. VADIVEL, AND O. UMA MAHESHWARI

ABSTRACT. In this paper we introduce some new class of generalized sets namely (r, κ) -fuzzy M generalized closed (resp. open) sets, (r, κ) -fuzzy M generalized closure (resp. interior) and (r, κ) -fuzzy M generalized q neighbourhood in double fuzzy topological spaces. Also, some of their fundamental properties and characterizations are discussed.

1. INTRODUCTION AND PRELIMINARIES

In 1986, Atanassov [1] started 'Intuitionistic fuzzy sets' and Coker [2] in 1997, initiated Intuitionistic fuzzy topological space. The term 'double' instead of 'intuitionistic' coined by Garcia and Rodabaugh [7] in 2005. In the previous two decades many analysts [9–11, 16] accomplishing more applications on dou ble fuzzy topological spaces. From 2011, *M*-open sets and maps were introduced in topological spaces by El-Maghrabi and Al - Johany [3–6].

X denotes a non-empty set, $I_1 = [0,1)$, $I_0 = (0,1]$, I = [0,1], $0 = \underline{0}(X)$, $1 = \underline{1}(X)$, $r \in I_0$ and $\kappa \in I_1$ and always $1 \ge r + \kappa$. I^X is a family of all fuzzy sets on X. In 2002, Double fuzzy topological spaces (briefly, dfts), (X, η, η^*) , (r, κ) -fuzzy open (resp. (r, κ) -fuzzy closed) (briefly (r, κ) -fo (resp. (r, κ) -fc)) set were given by Samanta and Mondal [13]. All other undefined notions are from [8–16] and cited therein.

²corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A40, 45D05, 03E72.

Key words and phrases. (r, κ) -fMgc, (r, κ) -fMgo sets, $MgC_{\rho,\rho^*}(\gamma, r, \kappa)$, $MgI_{\rho,\rho^*}(\gamma, r, \kappa)$.

2186 J. SATHIYARAJ, A. VADIVEL, AND O. UMA MAHESHWARI

2.
$$(r, \kappa)$$
-Fuzzy *M*-generalized closed sets

In this section, we define the concept of (r, κ) -fuzzy M-generalized closed sets. Some interesting properties and characterizations of them are also investigated.

Definition 2.1. A fuzzy subset γ in a dfts (X, ρ, ρ^*) is called an

(i) (r, κ) -fuzzy *M*-generalized closed (briefly, (r, κ) -fMgc) set if

 $MC_{\rho,\rho^*}(\gamma, r, \kappa) \le \mu,$

whenever $\gamma \leq \mu$ and μ is (r, κ) -fMo set.

(ii) (r, κ) -fuzzy *M*-generalized open (briefly, (r, κ) -fMgo) set if

 $\delta \le MI_{\rho,\rho^*}(\gamma, r, \kappa))$

whenever $\delta \leq \gamma$ and μ is (r, κ) -fMc set.

Also the complement of an (r, κ) -fMgc set is called as (r, κ) -fMgo set.

Definition 2.2. Let (X, ρ, ρ^*) be a dfts. For γ , $\delta \in I^X$, the intersection of all (r, κ) -fMgc sets containing γ is called the (r, κ) -fuzzy M-generalized closure of γ and is denoted by $MgC_{\rho,\rho^*}(\gamma, r, \kappa) = \bigwedge \{\delta \in I^X : \delta \geq \gamma, \mu \text{ is a } (r, \kappa)\text{-}fMgc \text{ set } \}$ and the union of all (r, κ) -fMgo sets contained in γ is called the (r, κ) -fuzzy M-generalized interior of γ and is denoted by $MgI_{\rho,\rho^*}(\gamma, r, \kappa) = \bigvee \{\delta \in I^X : \delta \leq \gamma, \mu \text{ is a } (r, \kappa)\text{-}fMgo \text{ set } \}$.

Example 1. Let γ , μ , be fuzzy subsets of $X = \{l, m, n\}$ and defined as, $\gamma(l) = 0.3$, $\gamma(m) = 0.4$, $\gamma(n) = 0.5$; $\mu(l) = 0.6$, $\mu(m) = 0.5$, $\mu(n) = 0.5$. Consider the dfts (X, ρ, ρ^*) with

$$\rho(\gamma) = \begin{cases} 1, & \text{if } \gamma = \underline{0} \text{ or } \underline{1} ,\\ \frac{1}{2}, & \text{if } \gamma = \gamma, \ \mu, \\ 0, & o.w. \end{cases} \qquad \rho^*(\gamma) = \begin{cases} 0, & \text{if } \gamma = \underline{0} \text{ or } \underline{1} ,\\ \frac{1}{2}, & \text{if } \gamma = \gamma, \ \mu, \\ 1, & o.w. \end{cases}$$

The fuzzy set, $\underline{0.4}$ is $(\frac{1}{2}, \frac{1}{2})$ -fMgc set in (X, ρ, ρ^*) .

Theorem 2.1. Every (r, κ) -fc (resp. (r, κ) -fMc) set in (X, ρ, ρ^*) is (r, κ) -fMgc set, but not conversely.

Example 2. In Example 1, the fuzzy set $\underline{0.4}$ is $(\frac{1}{2}, \frac{1}{2})$ -fMgc set in (X, ρ, ρ^*) but not an $(\frac{1}{2}, \frac{1}{2})$ -fc set.

Theorem 2.2. Let γ be any fuzzy subset of X. Then

γ is (r, κ)-fMgc if γ = MgC_{ρ,ρ*}(γ, r, κ).
MgC_{ρ,ρ*}(γ, r, κ) is (r, κ)-fMgc in X.

Theorem 2.3. A finite union of (r, κ) -fMgo sets is an (r, κ) -fMgo set.

Remark 2.1. Union of two (r, κ) -fMgc sets need not be an (r, κ) -fMgc set.

Example 3. Let α , β and $\gamma \in I^X$, $X = \{l, m\}$, $\alpha(l) = 0.3$, $\alpha(m) = 0.5$; $\beta(l) = 0.2$, $\beta(m) = 0.7$; $\gamma(l) = 0.6$, $\gamma(m) = 0.5$. Consider the dfts (X, ρ, ρ^*) with

$$\rho(\gamma) = \begin{cases} 1, & \text{if } \gamma = \underline{0} \text{ or } \underline{1} ,\\ \frac{1}{3}, & \text{if } \gamma = \alpha, \\ 0, & o.w. \end{cases} \qquad \rho^*(\gamma) = \begin{cases} 0, & \text{if } \gamma = \underline{0} \text{ or } \underline{1} ,\\ \frac{2}{3}, & \text{if } \gamma = \alpha, \\ 1, & o.w. \end{cases}$$

The fuzzy sets β and γ are $(\frac{1}{3}, \frac{2}{3})$ -fMc sets and hence β and γ are $(\frac{1}{3}, \frac{2}{3})$ -fMgc sets in (X, ρ, ρ^*) . But $\beta \lor \gamma = (0.6_a, 0.7_b)$ is not $(\frac{1}{3}, \frac{2}{3})$ -fMgc set in X.

Theorem 2.4. A finite intersection of (r, κ) -fMgc sets is an (r, κ) -fMgc set.

Remark 2.2. Intersection of two (r, κ) -fMgo sets need not be an (r, κ) -fMgo set.

Example 4. In Example 1, The intersection of two $(\frac{1}{2}, \frac{1}{2})$ -fMgc sets, $\beta = 0.5$, $\gamma(l) = 0.4$, $\gamma(m) = 0.3$, $\gamma(n) = 0.6$ then $\beta \wedge \gamma = (0.4_l, 0.3_m, 0.5_n)$ is not $(\frac{1}{2}, \frac{1}{2})$ -fMgc set in X.

Theorem 2.5. If γ is (r, κ) -fMgc set and (r, κ) -fMo set in (X, ρ, ρ^*) , then γ is (r, κ) -fMc in (X, ρ, ρ^*) .

Theorem 2.6. If γ is (r, κ) -fMgc set in (X, ρ, ρ^*) and $\gamma \leq \delta \leq MC_{\rho,\rho^*}(\gamma, r, \kappa)$, then μ is (r, κ) -fMgc set in (X, ρ, ρ^*) .

Theorem 2.7. If γ is (r, κ) -fMgo set in (X, ρ, ρ^*) and $MI_{\rho,\rho^*}(\gamma, r, \kappa) \leq \delta \leq \gamma$, then μ is (r, κ) -fMgo set in (X, ρ, ρ^*) .

Theorem 2.8. Let (X, ρ, ρ^*) be the dfts and γ be a fuzzy set of X. Then γ is (r, κ) fMgc set iff $\gamma \overline{q} \mu$ implies $MC_{\rho,\rho^*}(\gamma, r, \kappa) \overline{q} \mu, \forall (r, \kappa)$ -fMc set μ of X.

Theorem 2.9. Let γ be (r, κ) -fMgc set in (X, ρ, ρ^*) and x_p be a fuzzy point of $(X, \rho, \rho^*) \ni x_p q MC_{\rho, \rho^*}(\gamma, r, \kappa)$ then $MC_{\rho, \rho^*}(x_p, r, \kappa) q \gamma$.

2188

Theorem 2.10. Let (Y, ρ_Y, ρ_Y^*) be a subspace of (X, ρ, ρ^*) and γ be a fuzzy set of Y. If γ is (r, κ) -fMgc set in X, then γ is (r, κ) -fMgc set in Y.

Definition 2.3. Let γ be a fuzzy set in dfts X and x_p be a fpt of X, then γ is called (r, κ) -fuzzy M-generalized neighbourhood (briefly, (r, κ) -fMg-nbhd) of x_p if there exists a (r, κ) -fMgo set μ of $X \ni x_p \in \delta \leq \gamma$.

Definition 2.4. Let $\gamma \in I^X$ and x_p be a fpt of X, then γ is called (r, κ) -fuzzy M-generalized q-neighbourhood (briefly, (r, κ) -fMgq-nbhd) of x_p if there exists a (r, κ) -fMgo set μ of X such that $x_p q \delta \leq \gamma$.

Theorem 2.11. γ is (r, κ) -fMgo set in X if and only if for each fuzzy point $x_p \in \gamma$, γ is a (r, κ) -fMg-nbhd of x_p .

Theorem 2.12. If γ and μ are (r, κ) -fMg-nbhd of x_p , then $\gamma \wedge \mu$ is also a (r, κ) -fMg-nbhd of x_p .

Theorem 2.13. Let γ be a fs of a dfts X. Then a fuzzy point $x_p \in MC_{\rho,\rho^*}(\gamma, r, \kappa)$ if and only if every (r, κ) -fMgq-nbhd of x_p is quasi-coincident with γ .

Definition 2.5. A dfts X is df M-generalized $T_{\frac{1}{2}}$ -space (briefly, $df MgT_{\frac{1}{2}}$ -space) if every (r, κ) -fMgc set in X is (r, κ) -fMc.

Theorem 2.14. A dfts (X, ρ, ρ^*) is $df MT_{\frac{1}{2}}$ -space iff every (r, κ) -fMgo is (r, κ) -fMo set in (X, ρ, ρ^*) .

3. CONCLUSION

It is interesting to work on (r, κ) -fMg closed sets. As applications of these sets we may try several mappings in dfts.

REFERENCES

- [1] K. ATANASSOV: Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1) (1986), 84-96.
- [2] D. COKER: An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems, 88 (1997), 81-89.
- [3] A. I. EL-MAGHRABI, M. A. AL-JOHANY: *M* open set in topological spaces, Pioneer Journal of Mathematics and Mathematical Sciences, **4**(2) (2011), 213-308.
- [4] A. I. EL-MAGHRABI, M. A. AL-JOHANY: New types of functions by *M* open sets, Journal of Taibah University for Science, **7** (2013), 137-145.

- [5] A. I. EL-MAGHRABI, M. A. AL-JOHANY: Some applications of *M* open set in topological spaces, Journal of King Saud University- Science, **26** (2014), 261-266.
- [6] A. I. EL-MAGHRABI, M. A. AL-JOHANY: Further properties on M- continuity, Journal of Egyptain Mathematical Society, 22 (2014), 63-69.
- [7] J. G. GARCIA, S. E. RODABAUGH: Order-theoretic, topological, categorical redundancies of interval-valued sets, grey sets, vague sets, interval-valued-"intuitionistic" sets, "intuitionistic" tic" fuzzy sets and topologies, Fuzzy Sets and Systems, **156** (2005), 445-484.
- [8] E. P. LEE, Y. B. IM: Mated fuzzy topological spaces, International Journal of Fuzzy Logic and Intelligent Systems, 11 (2001), 161-165.
- [9] F. M. MOHAMMED, A. GHAREEB: More on generalized b-closed sets in double fuzzy topological spaces, Songklanakarin J. Sci. Technol., 38(1) (2016), 99-103.
- [10] F. M. MOHAMMED, M. S. M. NOORANI, A. GHAREEB: New notions from (r, κ) -generalized fuzzy preopen sets, GU J. Sci., **30**(1) (2017), 311-331.
- [11] P. PERIYASAMY, V. CHANDRASEKAR, G. SARAVANAKUMAR, A. VADIVEL: Fuzzy e-closed and generalized fuzzy e-closed sets in double fuzzy topological spaces, JETIR, 6(3) (2019), 34-40.
- [12] A. A. RAMADAN, S. E. ABBAS, A. EL-LATIF: Compactness in intuitionistic fuzzy topological spaces, International Journal of Mathematics and Mathematical Sciences, 1 (2005), 19-32.
- [13] S. K. SAMANTA, T. K. MONDAL: On intuitionistic gradation of openness, Fuzzy Sets and Systems, 131 (2002), 323-336.
- [14] J. SATHIYARAJ, A. VADIVEL, O. UMA MAHESWARI: On an (r, κ) fuzzy M closed and (r, κ) -generalized fuzzy M closed sets in double fuzzy topological spaces, Malaya Journal of Mathematik, 5(1) (2019), 284-289.
- [15] J. SATHIYARAJ, A. VADIVEL, O. UMA MAHESWARI: On double fuzzy M continuous functions, AIP Conference Proceedings 2177, 020085, 2019.
- [16] A. M. ZAHRAN, M. A. ABD-ALLAH, A. GHAREEB: Several types of double fuzzy irresolute functions, International Journal of Computational Cognition, 8(2) (2010), 19-23.

2190 J. SATHIYARAJ, A. VADIVEL, AND O. UMA MAHESHWARI

PG AND RESEARCH DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE (AUTONOMOUS) KARUR - 639005, (Affiliated to Bharathidasan University, Tiruchirappalli), India *E-mail address*: sjsathiyaa@gmail.com

DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY ANNAMALAINAGAR -608002, TAMIL NADU, INDIA *E-mail address*: avmaths@gmail.com

PG AND RESEARCH DEPARTMENT OF MATHEMATICS J. J. COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) PUDUKKOTTAI -622422, (AFFILIATED TO BHARATHIDASAN UNIVERSITY) INDIA *E-mail address*: ard_uma@yahoo.com.sg.