ADV MATH SCI JOURNAL

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 2203–2207 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.82 Spec. Issue on NCFCTA-2020

$\mathcal{N}_{NC} \beta$ -OPEN SETS

A. VADIVEL¹ AND C. JOHN SUNDAR

ABSTRACT. In this article, we study a new types of β -open sets and β -closed sets in $\mathcal{N}_{nc}ts$ and their properties are evaluated with different forms of near sets.

1. INTRODUCTION

The concepts of neutrosophy and neutrosophic set was first presented by Smarandache [6, 7]. In 2014, the concept of neutrosophic crisp topological space presented by Salama, Smarandache and Kroumov [5]. Al-Omeri [2] also investigated neutrosophic crisp sets in the build of neutrosophic crisp topological Spaces. Lellis Thivagar et al. [8] introduced the concept of N_n -open (closed) sets in *N*-neutrosophic topological spaces. Al-Hamido [4] explore the possibilities in idea of neutrosophic crisp topological spaces into N_{nc} -topological spaces. In 1983, Abd EL Monsef et al. [1] presented β - open sets in topology. Also, the equivalent notion of semi-pre open sets was independently developed by Andrijevic [3] in 1986.

2. Preliminaries

Throughout this article, the preliminaries are as mentioned in the paper [9] and other undefined symbols and definitions are also from [9].

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54A10.

Key words and phrases. $\mathcal{N}_{nc}\beta$ -open sets, $\mathcal{N}_{nc}\beta$ -closed sets, $\mathcal{N}_{nc}\beta int(K)$, $\mathcal{N}_{nc}\beta cl(K)$.

A. VADIVEL AND C. JOHN SUNDAR

3. β -open sets in $\mathcal{N}_{nc}ts$

Throughout the sections 3 & 4, let $(Y, \mathcal{N}_{nc}\Gamma)$ be any $\mathcal{N}_{nc}ts$. Let K and M be an $\mathcal{N}_{nc}s$'s in $(Y, \mathcal{N}_{nc}\Gamma)$.

Definition 3.1. A set K is said to be a \mathcal{N}_{nc} - β -open (briefly, $\mathcal{N}_{nc}\beta_0$) set if $K \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)))$. The \mathcal{N}_{nc} - β -closed set (briefly, $\mathcal{N}_{nc}\beta_c$) set is the complement of an $\mathcal{N}_{nc}\beta_0$ set in Y. The family of all $\mathcal{N}_{nc}\beta_0$ (resp. $\mathcal{N}_{nc}\beta_c$) set of Y is denoted by $\mathcal{N}_{nc}\beta_0S(Y)$ (resp. $\mathcal{N}_{nc}\beta_0S(Y)$).

Definition 3.2. The $N_{nc}\beta$ interior of K (briefly, $N_{nc}\beta int(K)$) and $N_{nc}\beta$ closure of K (briefly, $N_{nc}\beta cl(K)$) are defined as

- (i) $\mathcal{N}_{nc}\beta int(K) = \bigcup \{A : A \subseteq K \& A \text{ is a } \mathcal{N}_{nc}\beta o \text{ set in } Y \}.$
- (ii) $\mathcal{N}_{nc}\beta cl(K) = \cap \{C : K \subseteq C \& C \text{ is a } \mathcal{N}_{nc}\beta c \text{ set in } Y\}.$

Proposition 3.1. The $N_{nc}\beta$ -closure and $N_{nc}\beta$ -interior operator satisfies

- (i) $K \subseteq \mathcal{N}_{nc}\beta cl(K)$.
- (ii) $\mathcal{N}_{nc}\beta int(K) \subseteq K$.
- (iii) $K \subseteq M \Rightarrow \mathcal{N}_{nc}\beta cl(K) \subseteq \mathcal{N}_{nc}\beta cl(M).$
- (iv) $K \subseteq M \Rightarrow \mathcal{N}_{nc}\beta int(K) \subseteq \mathcal{N}_{nc}\beta int(M)$.
- (v) $\mathcal{N}_{nc}\beta cl(K\cup M) = \mathcal{N}_{nc}\beta cl(K)\cup \mathcal{N}_{nc}\beta cl(M).$
- (vi) $\mathcal{N}_{nc}\beta int(K \cap M) = \mathcal{N}_{nc}\beta int(K) \cap \mathcal{N}_{nc}\beta int(M).$
- (vii) $(\mathcal{N}_{nc}\beta cl(K))^c = \mathcal{N}_{nc}\beta int(K^c).$
- (viii) $(\mathcal{N}_{nc}\beta int(K))^c = \mathcal{N}_{nc}\beta cl(K^c).$
 - (ix) $\mathcal{N}_{nc}\beta cl(K) = K$ iff K is an $\mathcal{N}_{nc}\beta c$ set.
 - (x) $\mathcal{N}_{nc}\beta int(K) = K$ iff K is an $\mathcal{N}_{nc}\beta o$ set.
 - (xi) $\mathcal{N}_{nc}\beta cl(K)$ is the smallest $\mathcal{N}_{nc}\beta c$ set containing K.
- (xii) $\mathcal{N}_{nc}\beta int(K)$ is the largest $\mathcal{N}_{nc}\beta o$ set containing K.

Proposition 3.2. The union (resp. intersection) of any family of $\mathcal{N}_{nc}\beta OS(Y)$ (resp. $\mathcal{N}_{nc}\beta CS(Y)$) is a $\mathcal{N}_{nc}\beta OS(Y)$ (resp. $\mathcal{N}_{nc}\beta CS(Y)$).

Remark 3.1. The intersection of two $N_{nc}\beta os$'s need not be $N_{nc}\beta os$.

Example 1. Let $Y = \{l_1, m_1, n_1, o_1\}$, ${}_{nc}\Gamma_1 = \{\phi_N, X_N, L, M, N\}$, ${}_{nc}\Gamma_2 = \{\phi_N, X_N\}$. $L = \langle \{l_1\}, \{\phi\}, \{m_1, n_1, o_1\} \rangle$, $M = \langle \{m_1, o_1\}, \{\phi\}, \{l_1, n_1\} \rangle$, $N = \langle \{l_1, m_1, o_1\}, \{\phi\}, \{n_1\} \rangle$, then we have $2_{nc}\Gamma = \{\phi_N, X_N, L, M, N\}$. The sets $\langle \{m_1, n_1\}, \{\phi\}, \{l_1, o_1\} \rangle$ & $\langle \{n_1, o_1\}, \{\phi\}, \{l_1, m_1\} \rangle$ are $\mathcal{N}_{nc}\beta$ os but the intersection $\langle \{n_1\}, \{\phi\}, \{l_1, m_1, o_1\} \rangle$ is not $\mathcal{N}_{nc}\beta$ os.

2204

$\mathcal{N}_{NC} \beta$ -OPEN SETS

Proposition 3.3. The statements are hold but the equality does not true.

- (i) Every $\mathcal{N}_{nc}ros$ (resp. $\mathcal{N}_{nc}rcs$) is a $\mathcal{N}_{nc}\beta os$ (resp. $\mathcal{N}_{nc}\beta cs$).
- (ii) Every $\mathcal{N}_{nc}os$ (resp. $\mathcal{N}_{nc}cs$) is a $\mathcal{N}_{nc}\beta os$ (resp. $\mathcal{N}_{nc}\beta cs$).
- (iii) Every $\mathcal{N}_{nc}\alpha os$ (resp. $\mathcal{N}_{nc}\alpha cs$) is a $\mathcal{N}_{nc}\beta os$ (resp. $\mathcal{N}_{nc}\beta cs$).
- (iv) Every $\mathcal{N}_{nc}Sos$ (resp. $\mathcal{N}_{nc}Scs$) is a $\mathcal{N}_{nc}\beta os$ (resp. $\mathcal{N}_{nc}\beta cs$).
- (v) Every $\mathcal{N}_{nc}\mathcal{P}os$ (resp. $\mathcal{N}_{nc}\mathcal{P}cs$) is a $\mathcal{N}_{nc}\beta os$ (resp. $\mathcal{N}_{nc}\beta cs$).
- (vi) Every $\mathcal{N}_{nc}\gamma os$ (resp. $\mathcal{N}_{nc}\gamma cs$) is a $\mathcal{N}_{nc}\beta os$ (resp. $\mathcal{N}_{nc}\beta cs$).

Proof. (i) K is a $\mathcal{N}_{nc}ros$, then $K = \mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)) \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)))$. K is a $\mathcal{N}_{nc}\beta os$.

(ii) K is a $\mathcal{N}_{nc}os$, then $K = \mathcal{N}_{nc}int(K)$ and so $K \subseteq \mathcal{N}_{nc}cl(K)$. Then $K \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K)) \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)))$. K is a $\mathcal{N}_{nc}\beta os$.

(iii) Since $\mathcal{N}_{nc}int(K) \subseteq K$, $\mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K)) \subseteq \mathcal{N}_{nc}cl(K)$. Then $\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)) \subseteq \mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)) \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)))$. K is a $\mathcal{N}_{nc}\beta$ os.

(iv) Suppose that K is a $\mathcal{N}_{nc}\mathcal{S}os$, then $K \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K)) \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K))$. K is a $\mathcal{N}_{nc}\beta os$.

(v) Suppose that K is a $\mathcal{N}_{nc}\mathcal{P}os$, then $K \subseteq \mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)) \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K))))$. K is a $\mathcal{N}_{nc}\beta os$.

(vi) Suppose that K is a $\mathcal{N}_{nc}\gamma os$ then by Proposition 3.2, (iv) & (v), $K \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)))$. K is a $\mathcal{N}_{nc}\beta os$.

It is also true for their respective closed sets.

Example 2. In Example 1, the set $\langle \{m_1, n_1\}, \{\phi\}, \{l_1, o_1\} \rangle$ is a $\mathcal{N}_{nc}\beta os$ but not a $\mathcal{N}_{nc}ros$, $\mathcal{N}_{nc}os$, $\mathcal{N}_{nc}\alpha os$, $\mathcal{N}_{nc}\mathcal{P}os$, $\mathcal{N}_{nc}\mathcal{S}os$, $\mathcal{N}_{nc}\gamma os$.

Remark 3.2. The diagram shows $\mathcal{N}_{nc}\beta os$'s in $\mathcal{N}_{nc}ts$.

A. VADIVEL AND C. JOHN SUNDAR

4. Properties of $\mathcal{N}_{nc}\beta os$

Proposition 4.1. If K is a $\mathcal{N}_{nc}os$ and M is a $\mathcal{N}_{nc}\beta os$, then $K \cap M$ is a $\mathcal{N}_{nc}\beta os$.

Proof. $K \cap M \subseteq K \cap \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K))) \subseteq \mathcal{N}_{nc}cl(K \cap \mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)))$ $\subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K \cap M)))$. Therefore, $K \cap M$ is a $\mathcal{N}_{nc}\beta os$. \Box

Proposition 4.2. *M* is a \mathcal{N}_{nc} subset of *Y* and *K* is a $\mathcal{N}_{nc}\mathcal{P}os$ on *Y* such that $K \subseteq M \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K))$. Then *M* is a $\mathcal{N}_{nc}\beta os$.

Proof. Since K is a $\mathcal{N}_{nc}\mathcal{P}os$, $K \subseteq \mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K))$. Now $M \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K)) \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)))) = \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(M)))$. Hence $M \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(M)))$. Therefore, M is a $\mathcal{N}_{nc}\beta os$.

Proposition 4.3. If each K is a $\mathcal{N}_{nc}\beta os$ which is a $\mathcal{N}_{nc}\mathcal{S}cs$ is also a $\mathcal{N}_{nc}\mathcal{S}os$.

Proof. Let K be a $\mathcal{N}_{nc}\beta os$ and $\mathcal{N}_{nc}\mathcal{S}cs$. Then, $K \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)))$ and $\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)) \subseteq K$. Therefore, $\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)) \subseteq \mathcal{N}_{nc}(K)$ and so, $\mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K))) \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K))$. Hence, $K \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K))) \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K))$. Therefore, K is a $\mathcal{N}_{nc}\mathcal{S}os$.

Proposition 4.4. If K is a $\mathcal{N}_{nc}\beta cs$ and $\mathcal{N}_{nc}\mathcal{S}os$, then it is a $\mathcal{N}_{nc}\mathcal{S}cs$.

Proof. Since *K* is a $\mathcal{N}_{nc}\beta cs$ and $\mathcal{N}_{nc}\mathcal{S}os$. Then, $Y \setminus K$ is $\mathcal{N}_{nc}\beta os$ and $\mathcal{N}_{nc}\mathcal{S}cs$ and so by Proposition 4.3, $Y \setminus K$ is a $\mathcal{N}_{nc}\mathcal{S}os$. Therefore, *K* is a $\mathcal{N}_{nc}\mathcal{S}cs$.

Proposition 4.5. If K is a $\mathcal{N}_{nc}\beta cs$ iff $\mathcal{N}_{nc}cl(Y\setminus\mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K))) \setminus (Y\setminus\mathcal{N}_{nc}cl(K)) \supset \mathcal{N}_{nc}cl(K)\setminus K.$

Proof. $\mathcal{N}_{nc}cl(Y\setminus\mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K)))\setminus(Y\setminus\mathcal{N}_{nc}cl(K)) \supset \mathcal{N}_{nc}cl(K)\setminus K$ iff $(Y\setminus\mathcal{N}_{nc}int(\mathcal{N}_{nc}int(K))))\setminus(Y\setminus\mathcal{N}_{nc}cl(K)) \supset \mathcal{N}_{nc}cl(K)\setminus K$ iff $(Y\setminus\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}int(\mathcal{N}_{nc}int(K)))))\cap \mathcal{N}_{nc}cl(K) \supset \mathcal{N}_{nc}cl(K)\setminus K$ iff $(Y\cap\mathcal{N}_{nc}cl(K)\setminus(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K))))\cap \mathcal{N}_{nc}cl(K)) \supset \mathcal{N}_{nc}cl(K)\setminus K$ iff $\mathcal{N}_{nc}cl(K)\setminus(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(K)))) \supset \mathcal{N}_{nc}cl(K)\setminus K$ iff $K \supset \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}int(K)))$ iff K is a $\mathcal{N}_{nc}\beta cs$. \Box

Proposition 4.6. If each K is a $\mathcal{N}_{nc}\beta os$ which is a $\mathcal{N}_{nc}\alpha cs$ is also a $\mathcal{N}_{nc}cs$.

Proof. Let K be a $\mathcal{N}_{nc}\beta os$ and $\mathcal{N}_{nc}\alpha cs$. Then, $K \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)))$ and $\mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K))) \subseteq K$. Therefore, $\mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K))) \subseteq K \subseteq \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)))$. So, $K = \mathcal{N}_{nc}cl(\mathcal{N}_{nc}int(\mathcal{N}_{nc}cl(K)))$. Therefore, K is a $\mathcal{N}_{nc}cs$.

2206

$\mathcal{N}_{NC} \ \beta$ -OPEN SETS

Corollary 4.1. If each K is a $\mathcal{N}_{nc}\beta cs$ which is $\mathcal{N}_{nc}\alpha os$ is also a $\mathcal{N}_{nc}os$.

REFERENCES

- [1] M. E. ABD EL-MONSEF, S. N. EL-DEEP, R. A. MAHMOUND: β -open sets and β -continuous mappings, Bull. Fac. Sci., Assiut Univ., **12** (1983), 77–90.
- [2] W. AL-OMERI: *Neutrosophic crisp sets via neutrosophic crisp topological Spaces NCTS*, Neutrosophic Sets and Systems, **13** (2016), 96–104.
- [3] D. ANDRIJEVIC: Semi-pre open sets, Matematicki Vesnik, 38(1) (1986), 24–32.
- [4] R. K. AL-HAMIDO, T. GHARIBAH, S. JAFARI, F. SMARANDACHE: On neutrosophic crisp topology via *N*-topology, Neutrosophic Sets and Systems, **23** (2018), 96–109.
- [5] A. A. SALAMA: F. Smarandache and V. Kroumov, Neutrosophic crisp sets and neutrosophic crisp topological spaces, Neutrosophic Sets and Systems, 2 (2014), 25–30.
- [6] F. SMARANDACHE: A Unifying field in logics: neutrosophic logic. neutrosophy, neutrosophic set, neutrosophic probability, American Research Press, Rehoboth, NM, 1999.
- [7] F. SMARANDACHE: Neutrosophy and neutrosophic logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA 2002.
- [8] M. LELLIS THIVAGAR, S. JAFARI, V. ANTONYSAMY, V.SUTHA DEVI: *The ingenuity of neutrosophic topology via N-topology*, Neutrosophic Sets and Systems, **19** (2018), 91–100.
- [9] A. VADIVEL, C. JOHN SUNDAR: γ -open sets in N_{nc} -topological spaces, Submitted in AMSJ.

PG AND RESEARCH DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE (AUTONOMOUS), KARUR - 639 005, INDIA DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY, ANNAMALAI NAGAR - 608 002, INDIA *E-mail address*: avmaths@gmail.com

DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY ANNAMALAI NAGAR - 608 002, INDIA *E-mail address*: johnphdau@hotmail.com