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DISPERSION OF A SOLUTE IN A COUPLE STRESS FLUID
WITH CHEMICAL REACTION USING GENERALIZED DISPERSION MODEL

NIRMALA P. RATCHAGAR AND R. VIJAYAKUMAR1

ABSTRACT. The present work was carried out to investigate the dispersion of a
solute in a non-Newtonian fluid flow in an inclined channel bounded by porous
beds using Generalized Dispersion Model. This model is used to analysis the
dispersion of solute in blood flow and also externally and internally there is an
effect of chemical reaction and magnetic field. It found that the dispersion coef-
ficient decreases due the chemical reaction but accumulating when there is no
chemical reaction. The impacts of couple stress parameter, Reynolds number,
Froude number, Hartmann number on the velocity profile, dispersion coefficient
and mean concentration are discussed in detail with the help of graphs.

1. INTRODUCTION

In biological science, to study blood as a non-Newtonian fluid for the dis-
persion of solute with the effect of chemical reaction in the fluid film region
bounded by porous beds. Several biological applications to study the disper-
sion of a soluble matter in fluids plays vital role in blood circulation. Recently,
there has been a growing interest in the fluid dynamical studies of various
characteristics of dispersion of solute in blood flow under different conditions
see [1, 2, 4, 6, 11, 15]. The dispersion of soluble matter in fluid flow has been
intensively researched, since the classic papers on the subject by [13,14].
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Annapurna [3] utilized the generalized dispersion model to study the disper-
sion of a solute with the impact of transverse magnetic field. Pal [10] assuming
the chemical reaction to study the unsteady dispersion of a solute in a liquid and
its packed porous medium by utilizing the model of [7].

Jaafar et al., [8] considering the chemical reaction on dispersion of solute in
blood flow and utilized the model by [7]. Umavathi et al., [16] investigated the
dispersion of the solute in an electrically conducting immiscible channel flow. In
present paper is to established the unsteady convective diffusion in blood flow
for couple stress fluid with under impact of chemical reaction and magnetic
field by using the generalized dispersion model of [7]. It helps to study about
the transport of nutrients (drug) through fluid region into tissue region and also
it plays an vital role in cardiovascular flow.

2. FORMULATION OF THE PROBLEM

The physical configuration of the problem is shown in Figure 1. Assuming
the fluid is to be steady, fully developed, unidirectional and incompressible. The
Fluid Film Region is bounded by Porous Tissue Region and its distance 2h. The
solute diffuses in a fully developed flow through a parallel plate inclined channel
bounded by porous beds.
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Figure 1: Physical model of the problem

The continuity and momentum equations which govern the steady incompress-
ible blood flow subjected to external applied electric and magnetic fields are
given by

Fluid Film Region
∂u∗

∂x
= 0
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(2.1) −∂p
∗

∂x
+ µ

∂2u∗

∂y∗2
− λ ∂

4u

∂y∗4
−B2

0σ0u
∗ + ρg sinφ = 0

−∂p
∗

∂y∗
− ρg cosφ = 0.

The concentration C satisfying the convective diffusion equation is

∂C

∂t
+ u∗

∂C

∂x
= D

(
∂2C

∂x2
+
∂2C

∂y∗2

)
−K1C.

Porous Tissue Region

∂u∗p
∂x

= 0

(2.2) −∂p
∗

∂x
− µ

k
(1 + β1)u∗p + ρg sinφ = 0

(2.3) −∂p
∗

∂y∗
− ρg cosφ = 0,

with required intial and boundary conditions are

(2.4)
∂u∗

∂y∗
=
−α√
k

(u∗ − u∗p) at y∗ = h

(2.5)
∂u∗

∂y∗
=

α√
k

(u∗ − u∗p) at y∗ = −h

(2.6)
∂2u∗

∂y∗2
= 0 at y∗ = ±h

C =

 C0, |x| ≤
xs
2

0, |x| > xs
2

at t = 0

∂C

∂y∗
= 0 at y∗ = ±h

C =
∂C

∂x
= 0 at x→∞,(2.7)

where u∗ is the x component of velocity, p∗ is the pressure, µ is the viscosity of
the fluid, λ is the couple stress parameter, B0 is the applied magnetic field, σ0 is
the electrical conductivity, t is the time, D is the molecular diffusivity. Equation
(2.2) is the Darcy equation, incompressible couple stress parameter β1 in to the
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Darcy equation, k is the permeability of the porous medium and u∗p is the Darcy
velocity, α is the slip parameter, C0 is the reference concentration and K1 is the
first order reaction rate parameter.

Equations (2.4) and (2.5) are slip condition [5]. Equation (2.6) specifies the
vanishing of the couple stress.

We define the non-dimensional quantities

U =
u∗

ū
; Up =

u∗p
ū

; ξs =
xs
hPe

; η =
y

h
; p =

p∗

ρū2
; ξ′ =

x

hPe
;

τ =
Dt

h2
; Pe =

hū

D
; θ =

C

C0

.

Equations (2.1) to (2.3) in dimensionless form are
Fluid Film Region

(2.8)
∂4U

∂η4
− a2∂

2U

∂η2
+ a2M2U +

Re a2

Fr
sinφ = P a2 Re

and

(2.9)
∂θ

∂τ
+ U

∂θ

∂ξ′
=

1

Pe2

(
∂2θ

∂ξ′2
+
∂2θ

∂η2

)
− α2

1θ

We define the axial coordinate moving with the average velocity of flow as x1 =

x− τ ū which is in dimensionless form ξ = ξ′− τ , where ξ′ = x1
hPe

. Then equation
(2.13) becomes

(2.10)
∂θ

∂τ
+ U ′

∂θ

∂ξ
=

1

Pe2

(
∂2θ

∂ξ2
+
∂2θ

∂η2

)
− α2

1θ,

with U ′ = U−Ū
Ū

.
Porous Tissue Region

Up =
Re

σ2(1 + β1)

(
P +

1

Fr

)
The initial and boundary conditions (2.4) to (2.7) in dimensionless form

(2.11)
∂U

∂η
= −ασ(U − Up) at η = 1

(2.12)
∂U

∂η
= ασ(U − Up) at η = −1



DISPERSION OF A SOLUTE IN A COUPLE STRESS . . . 2237

(2.13)
∂2U

∂η2
= 0 at η = ±1

θ =

{
1, |ξ| ≤ ξs

2

0, |ξ| > ξs
2

at τ = 0

∂θ

∂η
= 0 at η = ±1

θ =
∂θ

∂ξ
= 0 at ξ →∞,(2.14)

where a = h
l

is the couple stress parameter, l =
√

λ
µ

is the material constant

characterizing the couple stress property of the fluid, M2 =
B2

0σ0h
2

µ
is the square

of the Hartmann number, α2
1 = K1h2

D
is the chemical reaction rate coefficient,

P = − 1
Pe

∂p
∂ξ′

, Re = ρūh
µ

is the Reynolds number, Pe = ūh
D

is the Peclet number,

σ = h√
k

is the porous parameter, Fr = ū2

hg
is the Froude number.

3. SOLUTION OF THE PROBLEM

The solution to equation (2.8) which is a fourth order differential equation
with constant coefficient gives U(η) as

(3.1) U(η) = C1e
m1η +C2e

−m1η +C3e
m3η +C4e

−m3η +
1

M2
Re

(
P − 1

Fr
sinφ

)
.

Applying the boundary conditions (2.10) - (2.12) in (3.1) , we obtain the veloc-
ity of blood as

U(η) = 2C1 coshm1η + 2C3 coshm3η +
1

M2
Re

(
P − 1

Fr
sinφ

)
,

where C1,C2,C3 and C3 are constants given in Appendix 1. Next, we get the
axial velocity components is

U ′ =
U − Ū
Ū

=

2

(
C1 coshm1η + C3 coshm3η −

C1 sinhm1

m1

− C3 sinhm3

m3

)
2C1 sinhm1

m1

+
2C3 sinhm3

m3

+
Re

M2

(
P − 1

Fr
sinφ

) ,
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where

Ū =
1

2

1∫
−1

U(η)dη =
2C1 sinhm1

m1

+
2C3 sinhm3

m3

+
1

M2
Re

(
P − 1

Fr
sinφ

)
.

3.1. Generalized Dispersion Model. To obtaining the mean concentration valid
for all time, we introduce the generalized dispersion model of [7], formulated
as

(3.2) θ(τ, ξ, η) = θm(τ, ξ) +
∞∑
k=1

fk(τ, η)
∂kθm
∂ξk

,

where θm is average concentration

(3.3) θm(τ, ξ) =
1

2

1∫
−1

θ(τ, ξ, η)dη.

Equation is obtained by integrating equation (2.9) gives

(3.4)
∂θm
∂τ

=
1

Pe2

∂2θm
∂ξ2

+
1

2

1∫
−1

∂2θ

∂η2
dη − 1

2

∂

∂ξ

1∫
−1

U ′ θ dη − α2
1θm.

Substituting equation (3.2) in (3.4), we obtain

∂θm
∂τ

=
1

P 2
e

∂2θm
∂ξ2

− 1

2

∂

∂ξ

1∫
−1

U ′
(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

(τ, ξ) + · · ·
)
dη(3.5)

−α2
1θm.

In this model we write

(3.6)
∂θm
∂τ

=
∞∑
i=1

Ki(τ)
∂iθm
∂ξi

.

Substituting the equation (3.6) in (3.5) we obtain

K1
∂θm
∂ξ

+K2
∂2θm
∂ξ2

+ K3
∂3θm
∂ξ3

+ · · · = 1

P 2
e

∂2θm
∂ξ2

− 1

2

∂

∂ξ

1∫
−1

U ′

(
θm(τ, ξ)

+ f1(τ, η)
∂θm
∂ξ

+ f2(τ, η)
∂2θm
∂ξ2

(τ, ξ) + · · ·

)
dη − α2

1θm.
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Equating the coefficients of
∂θm
∂ξ

,
∂2θm
∂ξ2

· · · we get,

(3.7) Ki(τ) =
δij
P 2
e

− 1

2

1∫
−1

U ′fi−1(τ, η)dη, (i = 1, 2, 3, · · · and j = 2)

where, Kroneckar delta δij =

{
1, if i = j

0, if i 6= j
.

Substituting equation (3.2) in (2.9) , we get

∂
∂τ

(
θm(τ, ξ) + f1(τ, η)∂θm

∂ξ
(τ, ξ) + f2(τ, η)∂

2θm
∂ξ2

(τ, ξ) + · · ·
)

+U ′ ∂
∂ξ

(
θm(τ, ξ) + f1(τ, η)∂θm

∂ξ
(τ, ξ) + f2(τ, η)∂

2θm
∂ξ2

(τ, ξ) + · · ·
)

= 1
P 2
e

∂2

∂ξ2

(
θm(τ, ξ) + f1(τ, η)∂θm

∂ξ
(τ, ξ) + f2(τ, η) + · · ·

)
+ ∂2

∂η2

(
θm(τ, ξ) + f1(τ, η)∂θm

∂ξ
+ · · ·

)
−α2

1

(
θm(τ, ξ) + f1(τ, η)∂θm

∂ξ
+ · · ·

)
Rearranging the terms and using

∂k+1θm
∂τ∂ξk

=
∞∑
i=1

Ki(τ)
∂k+iθm
∂ξk+i

we obtain[
∂f1

∂τ
− ∂2f1

∂η2
+ U ′ +K1(τ) + α2

1f1

]
∂θm
∂ξ

+

[
∂f2

∂τ
− ∂2f2

∂η2
+ U ′f1 +K1(τ)f1 +K2(τ)− 1

P 2
e

+ α2
1f2

]
∂2θm
∂ξ2

(3.8)

+
∞∑
k=1

[
∂fk+2

∂τ
− ∂2fk+2

∂η2
+ U ′fk+1 +K1(τ)fk+1 +

(
K2(τ)− 1

P 2
e

)
fk

+
k+2∑
i=3

Kifk+2−i + α2
1fk+2

]
∂k+2θm
∂ξk+2

= 0,

with f0 = 1. Comparing the coefficients of
∂kθm
∂ξk

(k = 1, 2, 3, . . .) in (3.8) and

equating to zero, we get

∂f1

∂τ
=

∂2f1

∂η2
− U ′ −K1(τ)− f1α

2
1(3.9)
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∂f2

∂τ
=

∂2f2

∂η2
− U ′f1 −K1(τ)f1 −K2(τ) +

1

P 2
e

− f2α
2
1

∂fk+2

∂τ
=

∂2fk+2

∂η2
− (U ′ −K1(τ))fk+1 −

(
K2(τ)− 1

P 2
e

)
fk

−
k+2∑
i=3

Kifk+2−i − fk+2α
2
1.

Since θm is chosen in such a way to satisfy the initial and boundary conditions
on θ, conditions (2.13) to (2.14) on fk function becomes

fk = 0 at τ = 0,(3.10)
∂fk
∂η

= 0 at η = −1,(3.11)

∂fk
∂η

= 0 at η = −1.(3.12)

Also, from equation (3.3) we have
1∫

−1

fk(τ, η)dη = 0,(3.13)

for k = 1, 2, 3, . . .. To find K2(τ), the f1 are evaluated using (3.10) - (3.13) .
Equation (3.7) for i = 1, we get

K1(τ) = 0.

Equation (3.7) for i = 2, we get K2 as

K2(τ) =
1

P 2
e

− 1

2

1∫
−1

U ′f1dη

(3.14) put f1 = f10(η) + f11(τ, η),

where f10(η) is independent of τ and f11 is τ− dependent satisfying

df10

dη
= 0 at η = ±1(3.15)

1∫
−1

f10dη = 0.(3.16)
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Using the (3.14) in (3.9) implies that

d2f10

dη2
− α2

1f10(3.17)

=

2

(
C1 coshm1η + C2 coshm3η −

C1 sinhm1

m1

− C3 sinhm3

m3

)
2C1 sinhm1

m1

+
2C3 sinhm3

m3

+
Re

M2

(
P − 1

Fr
sinφ

)
∂f11

∂τ
=

∂2f11

∂η2
− α2

1f11(3.18)

Solving the equation (3.17) with conditions (3.15) and (3.16) is

f10 = 2C6 sinhαη(3.19)

+

2

[
C1

coshm1η

m2
1 − α2

1

+ C3
coshm3η

m2
3 − α2

1

+
C1 sinhm1

m1α2
1

+
C3 sinhm3

m3α2
1

]
2C1 sinhm1

m1

+
2C3 sinhm3

m3

+
Re

M2

(
P − 1

Fr
sinφ

) .

Equation (3.18) is heat conduction type and its solution satisfying condition
f11(τ, η) = −f10(η) of the form

f11 =
∞∑
n=1

Bne
−(λ2n−α2

1)τ cos(λnη),(3.20)

where Bn = −2

1∫
0

f10(η) cos(λnη)dη

and λn = nπ. Substituting (3.19) and (3.20) in equation (3.14) we get,

f1 = 2C6 sinhαη +

2

[
C1

coshm1η

m2
1 − α2

1

+ C3
coshm3η

m2
3 − α2

1

+
C1 sinhm1

m1α2
1

+
C3 sinhm3

m3α2
1

]
2C1 sinhm1

m1

+
2C3 sinhm3

m3

+
Re

M2

(
P − 1

Fr
sinφ

)
+

∞∑
n=1

Bne
−(λ2n−α2

1)τ cos(λnη).(3.21)

Substituting f1 into equation (3.21) and performing the integration, we get so-
lution of dispersion coefficient with help of MATHEMATICA 8.0.

Similarly, K3(τ), K4(τ) and so on are negligibly small compared to dispersion
coefficent K2(τ).
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Dispersion model (3.6) brings to

(3.22)
∂θm
∂τ

= K2
∂2θm
∂ξ2

.

The exact solution of (3.22) satisfying the condition (2.13) to (2.14) can be
obtained using Fourier Transform [9] as

θm(ξ, τ) =
1

2

[
erf

(
ξs
2

+ ξ

2
√
T

)
+ erf

(
ξs
2
− ξ

2
√
T

)]
,

where T =
τ∫
0

K2(η)dη and erf(x) = 2√
π

x∫
0

e−z
2
dz.

4. DISCUSSION OF THE RESULTS

In this segment, the dispersion of a solute in a couple stress fluid(blood) flow
through a inclined channel with impact of Hartmann number (M = 1, 1.5, 2) ,
Froude number (Fr = 0.5, 1.5, 2.5) and couple stress parameter (a = 1, 5, 10),

on the velocity, dispersion coefficient and mean concentration profiles for Pe =

100, α = 0.1 and β1 = 0.1. The generalized dispersion model of [7] is to study
dispersion of solute.

We have extracted interesting insights regarding the influence of all the pa-
rameters that govern this problem. The influence of the parameters M,Fr and
a on horizontal velocity, dispersion coefficient and concentration profiles can be
analyzed from Figures 2-10.

Figure 2 plots of the velocity u versus η for different values of M. This figure
depict that the velocity profile decreases with the increase of the Hartmann
number (M). The effect of the magnetic field parameter M on the velocity profile
is displayed. Impact of magnetic field acts normal to the blood flow introduces
a Lorentz force, it resist to flow. Blood flow become slow while comparing with
the normal flow, the behavior of boundary layer reduces with the increase of the
magnetic field.

The effects of the velocity profiles for different values of the Froude number
and couple stress parameter(a) is shown in Figures 3 and 4. It is seen that the
effect of increasing Froude number and couple stress parameter increases the
velocity profile of the blood flow, found to be parabolic in nature.
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Dispersion coefficient is evaluated for various values of M,Fr and a. The
results obtained are plotted in Figures 5-7. From these Figures, the axial dis-
persion coefficient decreases K2(τ)− Pe−2 with the increase of Froude number,
couple stress and porous parameter. This phenomena is noticed to control the
rapture of red blood cell and it helps to design an artificial organs free from im-
purities and in the effective removable of liquid particles in industrial problems.

Figures 8 − 10 represented the θm mean concentration were plotted versus
axial distance ξ with changes in M,Fr and a. From figure 10, it is depict that θm
mean concentration raises with an increase in the magnitude of the Hartmann
number (M), Froude number(Fr) and couple stress parameter(a). From these
figures that the impact of increasing We, a, and Fr is to increase the peak value
of the θm. It shows that the concentration is large distribution along the ξ-
direction for huge values of We. The curve are bell shaped and symmetrical
about the origin. From these result it is very helpful to analyses the transport of
solute at various times.

5. CONCLUSIONS

Transport of a solute in blood flow with impact of magnetic field(M), Froude
number(Fr) and couple stress parameter(a) are discussed. The influence of dif-
ferent values of M is to reduce the dispersion coefficient and increase the mean
concentration. Also, it is found that the dispersion coefficient decrease due to
chemical reaction but increases in the absence of chemical reaction along the
mean concentration increases with an increasing the value of Hartmann num-
ber. K2−Pe−2 are obtained by generalised dispersion model and its valid for all
time. In general conclusion couple stress (a→∞) the flow become a Newtonian
fluid and also τ →∞ is particular case of Taylor’s dispersion model.

Figure 2: Velocity u on distinct values of (M)
with a = 20, σ = 120, β1 = 0.1 and α = 0.1
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The above results are pertinent to application of dispersion of nutrients, blood
oxygenators, branching and curvature pulsatile flow and various complexities in
the human circulatory system [11,12].

Figure 3: Velocity u on Figure 4: Velocity u on
distinct values of Fr distinct values of a

Figure 5: K2 − Pe−2 on Figure 6: K2 − Pe−2 on
distinct values of M distinct values of Fr

Figure 7: K2 − Pe−2 on Figure 8: θm on
distinct values of a distinct values of M
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Figure 9: θm on Figure 10: θm on
distinct values of Fr distinct values of a

6. APPENDICES

m1 =

√
a2 +

√
a4 − 4a2M2

√
2

; m3 =

√
a2 −

√
a4 − 4a2M2

√
2

;

a3 = em1 (ασ +m1) ; a4 = e−m1 (m1 − ασ) ; a5 = em3 (ασ +m3) ;

a6 = e−m3 (m3 − ασ) ; a7 = −Re
M2

(P − sinφ

Fr
) +

Re

σ2(1 + β1)
(P +

1

Fr
);

a8 = m2
1e
m1 ; a9 = m2

1e
−m1 ; a10 = m2

3e
m3 ;

a11 = m2
3e
−m3 ; a12 = 2α1 coshα1; a13 = 2α1 sinhα1;

a14 = 4C3m3
coshm3

m2
3 − α1

; a15 = 4C1m1
sinhm1

m2
1 − α1

;

C6 = −a13a14 + a12a15

2a12a13

;

C1 = C2 =
−a7a10 − a7a11

a5a8 − a6a8 + a5a9 − a6a9 − a3a10 + a4a10 − a3a11 + a4a11

;

C3 = C4 =
a7a8 + a7a9

a5a8 − a6a8 + a5a9 − a6a9 − a3a10 + a4a10 − a3a11 + a4a11

.
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