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STUDY THE IMPACT OF CHEMICAL REACTION ON
ELECTROMAGNETOHYDRODYNAMIC

FLOW OF BLOOD IN A CHANNEL BOUNDED BY POROUS LAYERS

N. P. RATCHAGAR AND R. VIJAYAKUMAR1

ABSTRACT. In this paper contains some physiological model, to decorated the
study the impact of chemical reaction on Electromagnetohydrodynamic (EMHD)
flow of blood using generalized dispersion model to get dispersion of solute in
couple stresses effects. Influence of chemical reaction, arising as a body cou-
ple in the governing equations is shown to decrease the dispersion coefficient.
Expression for the velocity, dispersion coefficient and mean concentration are
determined and compares with distinct parameters such as reaction rate, Hart-
mann number, electric number, porous parameter and couple stress parameter.
Finally, we conclude with some interesting results in detail with the help of
graphs.

1. INTRODUCTION

In biomechanics there is so many number of problem in blood flow with elec-
tromagnetic fields and its plays an vital role by interacting with the chemical
reaction. Huge number of applications about the transport of drugs in physio-
logical systems and pollutants in environment engineering, chemical engineer-
ing helps the dispersion of gaseous tracer and cancer tumor treatment. Many
authors have utilized these model to study the dispersion of solute to [2,13–17].
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Kolin was first introduced the concept of electromagnetic fields in medical
research [11]. Later, Korchevskii and Marochnik [12] are discussed the idea
of electromagnetohydrodynamic to reduces the blood flow for the treatment of
brain-hemorrhage and hypertension etc. Rudraiah et al., [9] scrunizied the un-
steady convective diffusion in a couple-stress fluid flow by utilize the technique
of [10].

Chiu-On Ng et al. [4, 5] have investigated the dispersion increase and de-
creases the concentration of RBCs with the impact of influence of electric field.
Nirmala P.Ratchagar and VijayaKumar [8] investigated the unsteady connective
diffusion of erythrocytes in the plasma flow with impact of magnetic field. Re-
cently, Debnath et al. [6] studied the physiological impact in the blood flow
through a artery.

In this paper, we focused on the dispersion of solute in blood flow for an in-
compressible couple stress fluid influenced by chemical reaction, electric field
(EF) and magnetic field(MF) by utilizing the technique of [7]. In Section 2
consist the mathematical formulation of the problem with corresponding ap-
propriate initial and boundary conditions. In Section 3 contains the method
of solution of the mathematical model by the technique of generalized disper-
sion model. In section 4 the effect of Hartmann number(M) ,electric number,
chemical reaction rate coefficient(α1) and porous parameter σ on the dispersion
coefficients and mean concentration is discussed. Section 5 consist of the final
conclusions.

2. FORMULATION AND SOLUTION OF THE PROBLEM

A model of the problem is shown in Figure 1.
y
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Figure 1. Geometry of the problem

Fluid Film Region
Let us consider the couple stress fluid with chemical reaction is to be steady,
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fully developed, unidirectional and incompressible. The fluid region is bounded
by porous layers and it distance 2h. The governing equations of motion for an
electric and magnetic fields of couple stress fluid are given by,

(2.1) ∇ · ~q = 0

(2.2) ρ

(
∂~q

∂t
+ (~q.∇)~q

)
= −∇p+ µ∇2~q − λ∇4~q + ρeEi + Ji ×B

The conservation of species

(2.3)
∂ ~C

∂t
+ (~q.∇)~C = D∇2 ~C +RC

Porous Tissue Region

(2.4) ∇ · ~qp = 0

(2.5) ρ

(
∂~qp
∂t

+ (~q.∇)~qp

)
= −∇p+ µ∇2~qp −

µ

k
(1 + β)~qp + ρeE

where, ~q and ~qp are the velocity vector in fluid film and porous tissue region, p is
the pressure, λ is the couple stress parameter, B = (0, B0, 0) the magnetic field,
k is the permeability parameter of porous medium, µ is the dynamic viscosity
of the blood, ~C is the concentration, RC is the sources or sink of the species
concentration and D is the coefficient of mass diffusivity. The conservation of
charges

∂ρe
∂t

+ (~q.∇) ρe +∇.Ji = 0.

The interaction between the fluid motion and the electromagnetic fields are
expressed by Maxwell’s equations. Using the electromagnetohydrodynamics
(EMHD) approximation, these equations are written as:

∇ ·B = 0,∇×B = µ0Ji,

∇× Ei = −∂B0

∂t
,

where, µ0 magnetic permeability.
Put Ji ×B = −B2

0σ0u
∗ (small magnetic Reynolds number).

To find ρeEx.
Conservation of charges:

∂ρe
∂t

+
∂Ji
∂xj

= 0.(2.6)
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(2.7) Ji = ρeqi + σcEi.

Gauss law
∂Ei
∂xi

=
ρe
ε0
,

where Ji, ρe, ρeqi, σcEi, σc, Ei and ε0 are the current density, distribution of
charge density, convective current, conduction current, the electrical conductiv-
ity, the electric field and dielectric constant for free space, respectively.

Faraday’s law
∂Ei
∂xj
− ∂Ej
∂xi

= 0

Ei = − ∂φ
∂xi

,

electric field is conservative, where, φ is the electric potential. From (2.6) by
(2.7), gives

(2.8)
(
∂

∂t
+ qj

∂

∂xi

)
ρe +

∂(σcEi)

∂xi
= 0 (since ρeqi << σcEi)

In cartesian form, using the above assumptions equations (2.1)-(2.5) becomes

Fluid Film Region
∂u∗

∂x
= 0,

(2.9) 0 = −∂p
∗

∂x
+ µ

∂2u∗

∂y2
− λ∂

4u∗

∂y4
+ ρeEx −B2

0σ0u
∗,

0 = −∂p
∗

∂y
+ ρeEy.

The concentration C(t, x, y) with slug and it is satisfies convective diffusion
equation

(2.10)
∂C

∂t
+ u∗

∂C

∂x
= D

(
∂2C

∂x2
+
∂2C

∂y2

)
−K1C.

Porous Tissue Region
∂u∗p
∂x

= 0,

(2.11) 0 = −∂p
∗

∂x
− µ(1 + β1)

k
u∗p + ρeEx,

0 = −∂p
∗

∂y
+ ρeEy,
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with required boundary are

(2.12)
∂u∗

∂y
=
−α√
k

(u∗ − u∗p) at y = h,

(2.13)
∂u∗

∂y
=

α√
k

(u∗ − u∗p) at y = −h.

The couple stress conditions,

(2.14)
∂2u∗

∂y2
= 0 at y = ±h,

C(0, x, y) =

 C0, |x| ≤
xs
2

0, |x| > xs
2

,(2.15)

∂C

∂y
(t, x,−h) =

∂C

∂y
(t, x, h) = 0,(2.16)

C(t,∞, y) =
∂C

∂x
(t,∞, y) = 0,(2.17)

where, u∗ represents the axial velocity of the blood, u∗p is the Darcy velocity.It
may be noted that (2.11) is Darcy equation, α is the slip parameter. Equations
(2.12) and (2.13) is slip condition [3].−K1C is the volume rate of disappearance
of the solute due to chemical reaction and K1 represents the first order chemical
reaction, C0 is the initial concentration.

Introducing the non-dimensional variables

u =
u∗

ū
, up =

u∗p
ū
, η =

y

h
, ξ′ =

x

hPe
, ξs =

xs
hPe

, ρ∗e =
ρe(
ε0V
h2

) , P e =
ūh

D
,

τ =
tD

h2
, p =

p∗

ρū
, E∗x =

Ex(
V
h

) , E∗y =
Ey(
v
h

) , φ =
φ∗

v
,

where h,v and φ are the characteristic length, applied constant, and electric
potential.

Equations (2.9) and (2.10) in non-dimensional form are

Fluid Film Region

(2.18)
∂4u

∂η4
− a2∂

2u

∂η2
+ a2M2u = −Ka2P + l1(1− αcη)
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and
∂θ

∂τ
+ u

∂θ

∂ξ′
=

1

Pe2

(
∂2θ

∂ξ′2
+
∂2θ

∂η2

)
− α2

1θ.

We define the axial coordinate moving with the average velocity of flow as x1 =

x− tū which is in dimensionless form ξ = ξ′ − τ , where ξ = x1
hPe

. Then equation
(2.25) becomes

(2.19)
∂θ

∂τ
+ U∗

∂θ

∂ξ
=

1

Pe2

(
∂2θ

∂ξ2
+
∂2θ

∂η2

)
− α2

1θ,

with U∗ =
u

ū
( moving coordinate system of velocity) and α2

1 = h2K1

D
is the

chemical reaction rate coefficient.

Porous Tissue Region

up =
Re

σ2(1 + β1)

(
− P

Pe
+
WeX0αc(1− αcη)Pe

2

)
,

with required non-dimensional form of equations (2.12)-(2.17) gives
∂u

∂η
= −ασ(u− up) at η = 1,

∂u

∂η
= ασ(u− up) at η = −1,

∂2u

∂η2
= 0 at η = ±1,

where P = ∂p
∂ξ
, K = D

γ
, αc = αh

(
∆T
2

)
is the conductivity variation parameter,

σ = h√
k

is the porous parameter, and

θ(0, ξ, η) =

{
1, |ξ| ≤ ξs

2

0, |ξ| > ξs
2

,(2.20)

∂θ

∂η
(τ, ξ,−1) =

∂θ

∂η
(τ, ξ, 1) = 0,(2.21)

θ(τ,∞, η) =
∂θ

∂ξ
(τ,∞, η) = 0.(2.22)

From equation (2.8),poorly conducting fluid is σc << 1 and grows with tem-
perature condition,

(2.23) σc = σ0 [1 + σh (Tb − T0)] .

Here σ0 is that of σc at Tb = T0, αh is the volumetric expansion coefficient of σc.
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The expression for conduction temperature(Tb) is obtained by solving non-
dimensional equation

(2.24)
d2Tb
dη2

= 0,

where Tb is non-dimensional equation using Tb
∆T

with boundary condition in non-
dimensional form

(2.25) Tb = T0 at η = −1,

(2.26) Tb = T1 at η = 1.

The solution to equation (2.24) using (2.25) and (2.26), we get

(2.27) Tb =
∆T

2
η +

∆T

2
+ T0,

where ∆T = T1 − T0.
Equation (2.27) using (2.23) becomes

σc = σ0 [1 + αc (η + 1)] ≈ σ0e
αc(η+1) (because αc << 1).

The electrical conductivity is

∂2φ∗

∂y2
+

1

σc

∂φ∗

∂y

∂σc
∂y

= 0.

The required boundary conditions are

φ∗ =
xv

h
at y = −h,

φ∗ =
(x− x0)v

h
at y = h.

Introducing the non-dimensional quantities, we get

(2.28)
∂2φ

∂η2
+

1

σc

∂φ

∂η

∂σc
∂η

= 0,

with boundary conditions

φ = XPe at η = −1

φ =
Pe(X −X0)

h
at η = 1

The solution of equation (2.28), we get

φ = Pe

[
X − X0(1− e−αcy)

eαc − e−αc

]
.
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The expression for ρe is

ρe = −PeX0α
2
ce
−αcy

eαc − e−αc
,

Ex = −1, Ey =
PeX0αce

−αcy

eαc − e−αc
.

Hence,

ρeEx =
PeX0α

2
ce
−αcη

eαc − e−αc
≈ PeX0αc(1− αcη)

2
(because αc << 1).

3. SOLUTION OF THE PROBLEM

3.1. Velocity distribution. From equation (2.18), we obtain the velocity of
blood as

Region 1: Fluid Film Region

(3.1) u = C1e
m1η + C2e

−m1η + C3e
m2η + C4e

−m2η − KP

M2
+
l1(1− αcη)

a2M2
.

The normalized axial components of velocity is

U∗ =
u

ū
,

where the average velocity is

ū =
1

2

1∫
−1

u(η)dη =
(C1 + C2) sinh(m1)

m1

+
(C3 + C4) sinh(m2)

m2

− 2KP

M2
+

2l1
a2M2

.

3.2. Generalized Dispersion model. Now we introduce the generalized dis-
persion model of [7], formulated as

(3.2) θ(τ, ξ, η) = θm(τ, ξ) +
∞∑
k=1

fk(τ, η)
∂kθm
∂ξk

,

where θm is average concentration

θm(τ, ξ) =
1

2

1∫
−1

θ(τ, ξ, η)dη.

Integrating equation(2.19), we get

(3.3)
∂θm
∂τ

=
1

Pe2

∂2θm
∂ξ2

+
1

2

1∫
−1

∂2θ

∂η2
dη − 1

2

∂

∂ξ

1∫
−1

U∗ θ dη − α2
1θm.
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Substituting value of θ from equation (3.1) in (3.2), we obtain
(3.4)

∂θm
∂τ

=
1

P 2
e

∂2θm
∂ξ2

− 1

2

∂

∂ξ

1∫
−1

U∗
(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

(τ, ξ) + . . .

)
dη − α2

1θm.

In this model we write

(3.5)
∂θm
∂τ

=
∞∑
k=1

Kk(τ)
∂kθm
∂kξ

,

where the dispersion coefficient, Kk(τ). Substituting the Equation (3.4) in (3.3)
we obtain

K1
∂θm
∂ξ

+K2
∂2θm
∂ξ2

+K3
∂3θm
∂ξ3

+ . . . =
1

P 2
e

∂2θm
∂ξ2

− 1

2

∂

∂ξ

1∫
−1

U∗(θm(τ, ξ)

+f1(τ, η)
∂θm
∂ξ

+ f2(τ, η)
∂2θm
∂ξ2

(τ, ξ) + . . .)dη − α2
1θm.

Comparing the coefficient ∂θm
∂ξ
, ∂

2θm
∂ξ2

. . . we get,

(3.6) Ki(τ) =
δij
P 2
e

− 1

2

1∫
−1

Ufi−1(τ, η)dη,

i = 1, 2, 3, . . . and j = 2, where, Kroneckar delta δij =

{
1, if i = j

0, if i 6= j
.

Substituting equation (3.1) in (2.19), we get

∂

∂τ

(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

(τ, ξ) + f2(τ, η)
∂2θm
∂ξ2

(τ, ξ) + . . .

)
+ U∗

∂

∂ξ

(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

(τ, ξ) + f2(τ, η)
∂2θm
∂ξ2

(τ, ξ) + . . .

)
=

1

P 2
e

∂2

∂ξ2

(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

(τ, ξ) + f2(τ, η) + . . .

)
+

∂2

∂η2

(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

+ . . .

)
− α2

1

(
θm(τ, ξ) + f1(τ, η)

∂θm
∂ξ

+ . . .

)
.
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Rearranging the terms and using

∂k+1θm
∂τ∂ξk

=
∞∑
i=1

Ki(τ)
∂k+iθm
∂ξk+i

we obtain[
∂f1

∂τ
− ∂2f1

∂η2
+ U∗ +K1(τ) + α2

1f1

]
∂θm
∂ξ

+

[
∂f2

∂τ
− ∂2f2

∂η2
+ f1U

∗ +K1(τ)f1 +K2(τ)− 1

P 2
e

+ α2
1f2

]
∂2θm
∂ξ2

+
∞∑
k=1

[
∂fk+2

∂τ
− ∂2fk+2

∂η2
+ fk+1 U

∗ + fk+1 K1(τ) +

(
K2(τ)− 1

P 2
e

)
fk

+
k+2∑
i=3

Kifk+2−i + α2
1fk+2

]
∂k+2θm
∂ξk+2

= 0,

with f0 = 1. Comparing the coefficients of ∂kθm
∂ξk

(k = 1, 2, 3, . . .) in (3.6) and
equating to zero, we get

∂f1

∂τ
=
∂2f1

∂η2
− U∗ −K1(τ)− α2

1f1

∂f2

∂τ
=
∂2f2

∂η2
− f1 U

∗ −K1(τ)f1 −K2(τ) +
1

P 2
e

− α2
1f2

∂fk+2

∂τ
=
∂2fk+2

∂η2
− fk+1 U

∗ −K1(τ)fk+1

−
(
K2(τ)− 1

P 2
e

)
fk −

k+2∑
i=3

Kifk+2−i − α2
1fk+2.

To find Ki’s we know the fk’s and its corresponding initial and boundary condi-
tions are

fk(0, η) = 0

∂fk
∂η

(τ,−1) = 0

∂fk
∂η

(τ, 1) = 0

1∫
−1

fk(τ, η)dη = 0.



STUDY THE IMPACT OF CHEMICAL REACTION . . . 2259

Put i = 1 in (3.5), we get K1(τ) = 0. Put i = 2 in (3.5), we get K2 as,

(3.7) K2(τ) =
1

P 2
e

− 1

2

1∫
−1

U∗f1dη.

To evaluate K2(τ), let

(3.8) f1 = f10(η) + f11(τ, η),

where f10(η) is independent of τ and f11 is τ− dependent obeying

df10

dη
= 0 at η = ±1,

1∫
−1

f10dη = 0.

Using the (3.9) in (3.7) gives

d2f10

dη2
− α2

1f10 = U∗(η),(3.9)

∂f11

∂τ
=

∂2f11

∂η2
− α2

1f11.(3.10)

The solution of the equation (3.10), we get

f10 = C5e
α1η + C6e

−α1η +
1

ū

(
C1e

m1η + C2e
−m1η

m2
1 − α2

1

+
C3e

m2η + C4e
−m2η

m2
2 − α2

1

)
+

1

M2α2
1ū

(
KP +

l1(αη − 1)

a2

)
.

Equation (3.11) is heat conduction type and its solution satisfying condition
f11(τ, η) = −f10(η) of the form

f11 =
∞∑
n=1

Bne
−λ2nτ cos(λnη),

where

Bn = −2

1∫
0

f10(η) cos(λnη)dη.



2260 N. P. RATCHAGAR AND R. VIJAYAKUMAR

Equation (3.9) gives,

f1 = C5e
α1η + C6e

−α1η +
1

ū

(
C1e

m1η + C2e
−m1η

m2
1 − α2

1

+
C3e

m2η + C4e
−m2η

m2
2 − α2

1

)
+

1

M2α2
1ū

(
KP +

l1(αη − 1)

a2

)
− 2

∞∑
n=1

(
e−m1m1 (cos(πn) (C1e

2m1 − C2) + em1(C2 − C1))

ū (m2
1 − α2

1) (m2
1 + π2n2)

+
e−m2m2 (cos(πn) (C3e

2m2 − C4) + em2(C4 − C3))

ū (m2
2 − α2

1) (m2
2 + π2n2)

+
αl1(cos(πn)− 1)

π2n2ū (m2
2 − α2

1)

+
α1 (cos(πn) (eα1C5 − e−α1C6)− C5 + C6)

α2
1 + π2n2

)e−n
2π2τ cos(πnη),

where, C1, C2, C3, C4, C5, and C6 are constant and are given in the appendix.
Dispersion model equation (3.4) brings to

∂θm
∂τ

= K2
∂2θm
∂ξ2

.

The exact solution of (3.12) satisfying the conditions (2.20)-(2.22) can be ob-
tained using Fourier Transform [10] as

θm(ξ, τ) =
1

2

[
erf

(
ξs
2

+ ξ

2
√
T

)
+ erf

(
ξs
2
− ξ

2
√
T

)]
,

where T =
τ∫
0

K2(η)dη and erf(x) = 2√
π

x∫
0

e−z
2
dz.

4. DISCUSSION OF THE RESULTS

A mathematical model of blood flow through a capillary bounded by porous beds
has been developed is to investigate the dispersion of a solute in a couple stress
fluid with impacts of chemical reaction, magnetic and electric field. Generalized
dispersion model helps to analyze the unsteady convective diffusion process
with help of MATHEMATICA 8.0.

The results are obtained to illustrate the influence of the Hartmann number
(M = 1.1, 1.2, 1.3, 1.4) , electric number (We = 30, 40, 50), chemical reaction rate
coefficient α1 = 0.01, 0.1, 0.15 and porous parameter σ = (60, 120, 180) on the
velocity, dispersion coefficient and the concentration profiles, for Pe = 100, α =

0.1, τ = 0.3, a = 5 and β1 = 0.1. The impact of the parameters M,We, α1
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and σ on velocity, dispersion coefficient and concentration can be demonstrates
through graphs 2-10.

Using the Beavers and Joseph’s boundary conditions, velocity distribution in
fluid region are obtained and show in Figure 2. From this we conclude that
the impact of Hartmann number(M)and electric number(We) is to increase the
velocity whereas the influence of magnetic field is to flatten the velocity profiles
of the blood flow, But it is seen that the effect of increasing electric number is to
increases the velocity profile of the blood flow, found to be parabolic in nature.

The expression for K2(τ) − Pe−2 are numerically evaluated using equation
(3.8) and are shown in Figures 3 − 6. These Figure evident that K2(τ) − Pe−2

decreases with an increase in the magnitude of the Hartmann number(M) ,elec-
tric number, chemical reaction rate coefficient(α1) and porous parameter σ. This
result is useful in the design of an artificial organs and it reduces the rapture of
red blood cell . Also, it is noted that the K2(τ) − Pe−2 has no changes on very
long period. Impact of Hartmann number(M) ,electric number, chemical reac-
tion rate coefficient(α1) and porous parameter σ are used to reduces the rate of
dispersion of the solute in the fluid flow. This result noticed previously by [1].

Figures 10− 14 are illustrates the effect on θm mean concentration versus ax-
ial distance ξ for different values of M,We, σ and τ1.Clearly, it is depicts that
θm mean concentration increases with an raise in the magnitude of the Hart-
mann number(M) ,electric number, chemical reaction rate coefficient(α1) and
porous parameter σ is to increase the peak value of the mean concentration.
This implies that the concentration is more distribution in ξ-direction for larger
and larger values of We. The curve are bell shaped and symmetrical about the
origin. From these result it is very helpful to analyses the transport of solute at
various times.

5. CONCLUSIONS

Finally the conclusion about the dispersion of a solute with chemical reac-
tion in blood flow under the influence of electric field and magnetic field is
discussed. This impact reveals that the decrease the dispersion coefficient with
an raises the magnitude of time(τ). Also, it is found that the peak of the mean
concentration increases with an increasing the value of α1. Generalised disper-
sion model is used to calculate the time dependent coefficients and it is valid
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for all time. In general conclusion of Taylor’s dispersion model are recovered as
a particular case in the limit τ → ∞. The present study is significant effect on
some physiological blood flow analysis in comparison to different works.

Figure 2. Velocity u on distinct values of (M) and (We).

Figure 3. Dispersion coefficient K2(τ)− Pe−2 on distinct values of (α1).

Figure 4. Dispersion coefficient K2(τ)− Pe−2 on distinct values of (M).
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Figure . Dispersion coefficient K2(τ)− Pe−2 on distinct values of (We).

Figure 6. Dispersion coefficient K2(τ)− Pe−2 on distinct values of (σ).

Figure 7. Mean concentration θm on distinct values of (α1).

Figure 8. Mean concentration θm on distinct values of (M).
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Figure 9. Mean concentration θm on distinct values of (We).

Figure 10. Mean concentration θm on distinct values of (σ).

6. APPENDICES

C1 = −1
l4

(a3a5a7l2 − a4a6a7l2 + a4a5a8l2 − a3a6a8l2 + a1a
2
8l2 − a4a5a7l3

+a3a6a7l3 + a2a
2
7l3 − a3a5a8l3 + a4a6a8l3 − a2a

2
8l3);

C2 = −1
l4

(a4a5a7l2 − a3a6a7l2 − a2a
2
7l2 + a3a5a8l2 − a4a6a8l2 + a2a

2
8l2 − a3a5a7l3

+a4a6a7l3 + a1a
2
7l3 − a4a5a8l3 + a3a6a8l3 − a1a

2
8l3);

C3 = −1
l4

(−a3a
2
5l2 + a3a

2
6l2 + a1a5a7l2 + a2a6a7l2 − a2a5a8l2 − a1a6a8l2 + a4a

2
5l3

−a4a
2
6l3 − a2a5a7l3 − a1a6a7l3 + a1a5a8l3 + a2a6a8l3);

C4 = −1
l4

(−a4a
2
5l2 + a4a

2
6l2 + a2a5a7l2 + a1a6a7l2 − a1a5a8l2 − a2a6a8l2 + a3a

2
5l3

−a3a
2
6l3 − a1a5a7l3 − a2a6a7l3 + a2a5a8l3 + a1a6a8l3));

C5 = 1
2

(
l7
l5

+ l8
l6

)
; C6 =

(
1
2

(
− l7
l5

+ l8
l6

))
;

m1 =

√
a2+
√
a4−4a2M2
√

2
; m2 =

√
a2−
√
a4−4a2M2
√

2
;

a1 = em1 (ασ +m1) ; a2 = e−m1 (m1 − ασ) ; a3 = em2 (ασ +m2) ;

a4 = e−m2 (m2 − ασ) ; a5 = m2
1e
m1 ; a6 = m2

1e
−m1 ; a7 = m2

2e
m2 ; a8 = m2

2e
−m2 ;

l1 = Ka2WePe2αcx0; l2 = −ασ
(
−KP
M2 + l1(1−αc)

a2M2 − up0
)

+ l1αc

a2M2 ;
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l3 = ασ
(
−KP
M2 + l1(1+αc)

a2M2 − up1
)

+ l1αc

a2M2 ;

l4 = a2
1a

2
7 − a2

1a
2
8 − 2a1a3a5a7 + 2a1a3a6a8 − 2a1a4a5a8 + 2a1a4a6a7 − a2

2a
2
7 + a2

2a
2
8

+2a2a3a5a8− 2a2a3a6a7 + 2a2a4a5a7− 2a2a4a6a8 + a2
3a

2
5− a2

3a
2
6− a2

4a
2
5 + a2

4a
2
6;

l5 = 2α1 coshα1; l6 = 2α1 sinhα1;

l7 = 1
ū

[
2(C1 − C2)m1 coshm1

m2
1 − α2

1

+
2(C3 − C4)m2 coshm2

m2
2 − α2

1

]
;

l8 = 1
ū

[
2(C1 + C2)m1 sinhm1

m2
1 − α2

1

+
2(C3 + C4)m2 sinhm2

m2
2 − α2

1

+
2l1αc
a2M2α2

1

]
;

up0 = Re
σ2(1+β1)

(
−P
Pe

+ WePex0αc(1−αc)
2

)
;up1 = Re

σ2(1+β1)

(
−P
Pe

+ WePex0αc(1+αc)
2

)
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