Advances in Mathematics: Scientific Journal **9** (2020), no.4, 2267–2272 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.87 Spec. Issue on NCFCTA-2020

FUZZY SOFT CS-CLOSED SPACES IN FUZZY SOFT TOPOLOGICAL SPACES

V. CHANDRASEKAR¹ AND G. ANANDAJOTHI

ABSTRACT. In this paper, we present a fuzzy soft Cs-closed spaces in fuzzy soft Topological Spaces. A few properties and portrayals of this space are discussed. Fuzzy soft regular semi open set is introduced with example.

1. INTRODUCTION AND PRELIMINARIES

Zadeh [12], presented the fuzzy set in 1965 to solve the many real life problems and in 1999, Molodtsov [5] established the concept of soft sets as a sufficient mathematical tool for dealing the problems with uncertainties. Many researchers have applied the concept of fuzzy sets and soft sets separately. Later Maji [2] have initiated the generalized concept of fuzzy soft sets which combines the fuzzy and soft sets. The fuzzy soft topological structure was introduced by Tanay [10] in 2011. Based on this work, some authors studied the concept of fuzzy soft topological spaces [5,8].

In 2012, Zahran [13] introduced the concept of fuzzy Cs-closed and some of the characterizations in fuzzy topological spaces were studied. Let U be an initial Universe & E be a set of parameters, P(U) denote the power set of Uand A be a nonempty subset of E. In 2001 fuzzy soft set (briefly, fSs) [2], fuzzy soft topology (briefly, fSt) [9], fuzzy soft neighborhood [10], fuzzy soft closure (resp. interior) F_A [6], fuzzy soft semi open (briefly, fSso), fuzzy soft semi closed (briefly, fSsc) set [8], fuzzy soft semi closure (resp. interior) of

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 03E72.

Key words and phrases. fSCsc, fSF, fSrso, fSsCts, fSIrr.

 F_A and will be denoted by $Scl(F_A)$ (resp. $Sint(F_A)$), fuzzy soft regular open (resp. closed) set [4], fSo cover [7], fuzzy soft compact [7], fuzzy soft nearly C-compact [3], fuzzy soft filter [1] were given.

Definition 1.1. [11] Let $F_A \& G_B$ be two fSs's over (U, E). The following operations are defined as:

Subset: $F_A \subset G_B$, if $F_A(_1e) \subseteq G_B(_1e)$, $\forall \ _1e \in E$. Equal: $F_A = G_B$, if $F_A(_1e) \subseteq G_B(_1e) \& G_B(_1e) \subseteq F_A(_1e)$. Union : $H_{A\cup B} = F_A \cup G_B$ where $H_{A\cup B}(_1e) = F_A(_1e) \cup G_B(_1e) \forall \ _1e \in E$. Intersection: $H_{A\cap B} = F_A \cap G_B$ where $H_{A\cap B}(_1e) = F_A(_1e) \cap G_B(_1e) \forall \ _1e \in E$.

Definition 1.2. [11] The $fSs F_A$ over (U, E) is called a fuzzy soft point in (U, E) denoted by $_1e(F_A)$, if for the element $_1e \in F_A$, $F(_1e) \neq 0$ and $F(_1e) = 0 \forall _1e \notin F_A$.

Definition 1.3. [8] Let (U_1, E_1, τ_1) and (U_2, E_2, τ_2) be two fSts's. A fuzzy soft function $f_{up} : (U_1, E_1, \tau_1) \rightarrow (U_2, E_2, \tau_2)$ is said to be fuzzy

- (i) soft semi-continuous (resp. fSsCts) if $f_{up}^{-1}(g_B)$ is a fSsc set in (U_1, E_1, τ_1) \forall fuzzy soft closed set g_B in (U_2, E_2, τ_2) .
- (ii) *fSsCts* if $\forall fSs g_B$ in (U_2, E_2, τ_2) , $Scl(f_{up}^{-1}(g_B)) \subseteq f_{up}^{-1}(cl(g_B))$.
- (iii) soft semi-irresolute (resp. fSsIrr) if the inverse image of each fSsc set is fSsc (U_1, E_1, τ_1).
- (iv) *fSsIrr* if $\forall fSs g_B$ in (U_2, E_2, τ_2) , $Scl(f_{up}^{-1}(g_B)) \subseteq f_{up}^{-1}(Scl(g_B))$.

2. Fuzzy soft Cs-closed space

Definition 2.1. Let (U, E, τ) be fSts. Then (U, E, τ) is said to be a fuzzy soft Csclosed (resp. fSCsc) if given a fSsc set F_A on (U, E) and $\forall fSso$ cover ψ of $F_A \exists$ a finite subfamily $\{F_{A_i} : i = 1, 2, 3, \dots, n\}$ of $\psi \ni F_A \subseteq \bigcup_{i=1}^n Scl(F_{A_i})$.

Remark 2.1. It is clear that *fSCsc* implies fuzzy soft nearly *C*-compactness.

Definition 2.2. A $fSs \ F_A$ in a $fSts \ (U, E, \tau)$ is called a fuzzy soft regular semi open (briefly, fSrso) set iff \exists a fuzzy regular open set $G_B \ni G_B \subseteq F_A \subseteq cl(G_B)$.

Example 1. Let $X = \{a_1, b_1, c_1\}$, $E = \{e_1, e_2, e_3\}$, $A = \{e_1, e_2\} \subseteq E$. Let us consider the following fSs's over (X, E):

$$F_{A_1} = \{F(e_1) = \{a_1/0.5, b_1/0.3, c_1/0.3\}, F(e_2) = \{a_1/0.3, b_1/0.3, c_1/0.3\}\},$$

$$F_{A_2} = \{F(e_1) = \{a_1/1, b_1/0, c_1/0.5\}, F(e_2) = \{a_1/0.5, b_1/0.3, c_1/1\}\},$$

2268

FUZZY SOFT CS-CLOSED SPACES IN FUZZY ...

$$\begin{split} F_{A_3} &= \{F(e_1) = \{a_1/0.5, b_1/0, c_1/0.3\}, F(e_2) = \{a_1/0.3, b_1/0.3, c_1/0.3\}\},\\ F_{A_4} &= \{F(e_1) = \{a_1/1, b_1/0.3, c_1/0.5\}, F(e_2) = \{a_1/0.5, b_1/0.5, c_1/1\}\}.\\ \text{Let us consider the } fSt \ \tau &= \{0_E, 1_E, F_{A_1}, F_{A_2}, F_{A_3}, F_{A_4}\} \text{ over } (X, E). \text{ Now,}\\ F_{A_1}^c &= \{F^c(e_1) = \{a_1/0.5, b_1/0.7, c_1/0.7\}, F^c(e_2) = \{a_1/0.7, b_1/0.7, c_1/0.7\}\},\\ F_{A_2}^c &= \{F^c(e_1) = \{a_1/0, b_1/1, c_1/0.5\}, F^c(e_2) = \{a_1/0.5, b_1/0.7, c_1/0.7\}\},\\ F_{A_3}^c &= \{F^c(e_1) = \{a_1/0, b_1/1, c_1/0.7\}, F^c(e_2) = \{a_1/0.5, b_1/0.7, c_1/0.7\}\},\\ F_{A_4}^c &= \{F^c(e_1) = \{a_1/0, b_1/0.7, c_1/0.5\}, F^c(e_2) = \{a_1/0.5, b_1/0.5, c_1/0\}\},\\ Clearly, \ F_{A_1}^c, F_{A_2}^c, F_{A_3}^c, F_{A_4}^c \ are \ fuzzy \ soft \ closed \ sets.\\ Obviously \ F_{A_1}^c \ is \ fuzzy \ soft \ regular \ open \ set. \ Consider \ the \ fSs \ G_A = \{G(e_1) = \{G(e_1$$

 $\{a_1/0.5, b_1/0.4, c_1/0.3\}, G(e_2) = \{a_1/0.3, b_1/0.5, c_1/0.5\}\}$ in τ . Since $F_{A_1} \subseteq G_A \subseteq cl(F_{A_1})$. Hence G_A is fSrso set in τ .

Lemma 2.1. For a $fSs F_A$ in a $fSts (U, E, \tau)$. The following

- (i) Every fSrso set is fSso and fSsc.
- (ii) $Scl(F_A)$ is $fSrso \forall fSso \text{ set } F_A$ in (U, E) are hold.

Theorem 2.1. In a $fSts(U, E, \tau)$ the following conditions are equivalent:

- (i) U is fSCsc.
- (ii) $\forall fSsc \text{ set } F_A \text{ on } (U, E) \text{ and } \forall fSrso \text{ cover } \psi \text{ of } F_A \exists a \text{ finite subfamily}$ $\{F_{A_i} : i = 1, 2, 3, \dots, n\} \text{ of } \psi \ni F_A \subseteq \bigcup_{i=1}^n F_{A_i}.$
- (iii) $\forall fSsc \text{ set } F_A \text{ on } (U, E) \text{ and } \forall family \xi = \{G_{A_\alpha}\}_{\alpha \in \Delta} \text{ of non-empty } fSsc sets \ni \cap \xi \cap F_A = \phi \exists a \text{ finite subfamily } \{G_{A_i} : i = 1, 2, 3, \dots, n\} \text{ of } \xi \ni \bigcap_{i=1}^n Sint(G_{A_i}) \cap F_A = \phi.$
- (iv) $\forall fSsc \text{ set } F_A \text{ on } (U, E) \text{ and } \forall family \xi = \{G_{A_\alpha}\}_{\alpha \in \Delta} \text{ of } fSsc \text{ sets, if } \forall finite subfamily <math>\{G_{A_i} : i = 1, 2, 3, \cdots, n\}$ of ξ we have $\bigcap_{i=1}^n Sint(G_{A_i}) \cap F_A = \phi$ then $\cap \xi \cap F_A \neq \phi$.

Proof.

 $(i) \Rightarrow (ii)$: Suppose (i) holds. Let F_A be fSsc set and ψ of be a fSrso cover. Then by Lemma 2.1 (i), ψ is a fSso cover of F_A . There exist a finite subfamily $\{F_{A_i} : i = 1, 2, 3, \dots, n\}$ of $\psi \ni F_A \subseteq \bigcup_{i=1}^n Scl(F_{A_i})$. By Lemma 2.1 (ii), $Scl(F_{A_i})$ is regular semi open and $Scl(F_{A_i})$ is fSsc, since F_{A_i} fSsc. Hence $F_A \subseteq \bigcup_{i=1}^n Scl(F_{A_i}) \subseteq \bigcup_{i=1}^n F_{A_i}$.

 $(ii) \Rightarrow (i)$: Suppose (ii) holds. Let F_A be fSsc set and $\psi = \{F_{A_i} : i = 1, 2, 3, \dots, n\}$ be a fSso cover of F_A . Then $\xi = \{Scl(F_{A_i})\}$ is a fSrso cover

2269

of F_A . By (ii) there exist a finite subfamily $\{Scl(F_{A_i}) : i = 1, 2, 3, \dots, n\} \ni F_A \subseteq \bigcup_{i=1}^n Scl(F_{A_i}).$

 $(ii) \Rightarrow (iii)$: Let $\xi = \{G_{A_{\alpha}}\}_{\alpha \in \Delta}$ be a family of fSsc sets of fSts $(U, E, \tau) \Rightarrow \cap \xi \cap F_A = \phi \forall fSsc$ sets of (U, E, τ) . Then $\zeta = \{Scl(G_{A_{\alpha}})\}_{\alpha \in \Delta}$ is a fSrso cover of F_A . Thus there exist a finite subfamily $Scl(F_A) = \{Scl(G_{A_{\alpha}}), i = 1, 2, 3, \cdots, n\}$ of $\zeta \Rightarrow F_A \subseteq \bigcup_{i=1}^n Scl(F_{A_i})$.

Now for each *i*, we have $int(G_{A_i}) = Sint(F_{A_i}^c) = Sint(E - F_{A_i}) = E - Scl(E - (E - F_{A_i})) = E - Scl(F_{A_i}).$

So $\bigcap_{i=1}^{n} Sint(G_{A_i}) = E - \bigcup_{i=1}^{n} Scl(F_{A_i}) \subseteq E - F_A$, By (i). i.e., $\bigcap_{i=1}^{n} Sint(G_{A_i}) \cap F_A = \phi$.

 $(iii) \Rightarrow (ii)$: Let $\psi = \{F_{A_i} : i = 1, 2, 3, \dots, n\}$ be a fSso cover of the fSsc set F_A of $fSts (U, E, \tau)$. Since $F_Ah \subseteq \bigcup_{\alpha \in \Delta} F_{A_\alpha}$. We will show that $\bigcap_{i=1}^n F_{A_i}^c \cap F_A = \phi$. Since, F_A^c is a family of soft semi closed sets, then by (iii), $\bigcup_{\alpha \in \Delta} F_{A_\alpha} \cap F_A = \phi$, there exist a finite subfamily $F_{A_i}^c$, such that $\bigcap_{i=1}^n Sint(F_{A_i}^c) \cap F_A = \phi$. Thus $F_A \subseteq \bigcup_{i=1}^n (E - Sint(E - F_{A_i}))$. Now for each i, $Sint(E - F_{A_i}) = E - Scl(E - (E - F_{A_i})) = E - Scl(F_{A_i})$. So $F_A \subseteq \bigcup_{i=1}^n Scl(F_{A_i})$. Since F_{A_i} are fSsc sets, Hence $F_A \subseteq \bigcup_{i=1}^n F_{A_i}$.

 $(iii) \Rightarrow (iv)$: Let F_A be fSsc set and $\xi = \{G_{A_\alpha}\}_{\alpha \in \Delta}$ be a family of fSsc sets, if for each finite subfamily $\{G_{A_i} : i = 1, 2, 3, \dots, n\}$ of ξ , $\bigcap_{i=1}^n Sint(G_{A_i}) \cap F_A = \phi$.

Suppose that $\cap G_{A_i} \cap F_A = \phi$. Then by (ii) \exists a finite subfamily $\{G_{A_i} : i = 1, 2, 3, \dots, n\}$ of $\xi \ni \bigcap_{i=1}^n Sint(G_{A_i}) \cap F_A = \phi$, which is a contradiction. Hence $\cap G_{A_i} \cap F_A = \phi$.

 $(iv) \Rightarrow (iii)$: Obvious.

Theorem 2.2. Every fSsc subset of a fSCsc space (U, E, τ) is Cs-closed.

Theorem 2.3. In a $fSts(U, E, \tau)$ the following statements are equivalent:

- (i) U is fSCsc.
- (ii) If F_A is a proper fSsc set & ϕ is a family of fSsc sets of $(U, E, \tau) \ni F_A \subseteq (E \bigcap_{i=1}^n F_{A_i})$ then there exist a finite subfamily of ϕ say $F_{A_1}, F_{A_2}, \cdots, F_{A_n}$ $\ni F_A \subseteq (E - \bigcap_{i=1}^n Sint(F_{A_i})).$

Definition 2.3. Let (U, E, τ) be fSts. A fuzzy soft filter in U is said to be semi adherence convergent if every fSso neighborhood of the adherence set of ζ contains an element of ζ where the adherence set is defined by $\bigcap \{Scl(F_A) : F_A \in \zeta\}$.

2270

Theorem 2.4. If (U, E, τ) is fSCsc then every fSso filter is semi adherence convergent.

Theorem 2.5. Let $f_{up} : (U_1, E_1, \tau_1) \rightarrow (U_2, E_2, \tau_2)$ be a fuzzy soft function from a $fSts (U_1, E_1, \tau_1)$ to a $fSts (U_2, E_2, \tau_2)$. Then the image of a fSCsc space under a fuzzy soft irresolute function is fSCsc space.

Proof. Let $f_{up}: (U_1, E_1, \tau_1) \to (U_2, E_2, \tau_2)$ be a fuzzy soft irresolute function from fSCsc space U_1 onto U_2 and let F_A be a proper fSsc set in U_2 . Let $\psi = \{F_{A_\alpha}\}_{\alpha \in \Delta}$ be a fSso cover of F_A in U_2 . Since f_{up} is fuzzy soft irresolute, then $f_{up}^{-1}(F_A)$ is a fSsc set in U_1 & $\{f_{up}^{-1}(F_{A_\alpha})\}_{\alpha \in \Delta}$ is a fSso cover of $f_{up}^{-1}(F_{A_\alpha})$ in U_1 . Since U_1 is fSCsc, then there is a finite subfamily $\{f_{up}^{-1}(F_{A_\alpha}), i = 1, 2, \cdots, n\}$ such that $f_{up}^{-1}(F_{A_\alpha}) \subseteq \bigcup_{i=1}^n Scl(f_{up}^{-1}(F_{A_\alpha})) \subseteq \bigcup_{i=1}^n f_{up}^{-1}(Scl(F_{A_\alpha}))$ by Definition 1.3 (iv) and hence $F_A \subseteq \bigcup_{i=1}^n Scl(F_{A_i})$. Thus U_2 is fSCsc Space.

REFERENCES

- [1] V. CETKIN, H. AYGUN: On convergence of fuzzy soft filters, 3rd International Eurasian conference on Mathematical Sciences and Applications, Vienna, Austria, (2014), 25–28.
- [2] P. K. MAJI, R. BISWAS, R. ROY: Fuzzy soft sets, J. Fuzzy Math., 9(3) (2001), 589–602.
- [3] M. J. BORAH, B. HAZARIKA: Soft nearly C-compactness in fuzzy soft topological spaces, Annal. Fuzzy Math. Inform., **12**(5) (2016), 609–615.
- [4] P. MUKHERJEE, R. P. CHAKRABORTY, C. PARK: On fuzzy soft δ-open sets and fuzzy soft δ-continuity, Ann. Fuzzy Math. Inform., 11(2) (2016), 327–340.
- [5] D. MOLODTSOV: Soft set theory-First results, Comput. Math. Appl, 37(4/5) (1999), 19–31.
- [6] T. J. NEOG, D. K. SUT, G. C. HAZARIKA: Fuzzy soft topological spaces, Inter. J. Latest Trends Math., 2(1) (2012), 54–67.
- [7] I. OSMANOGLU, D. TOKAT: Compact fuzzy soft spaces, An.als Fuzzy Math. Inform., 7(1) (2014), 45–51.
- [8] R. P. CHAKRABORTY, P. MUKERJEE: A note on fuzzy soft semi open sets and fuzzy soft semi continuous functions, The J. Fuzzy Math., 22(4) (2014), 973–989.
- [9] S. RAY, T. K. SAMANTA: A note on fuzzy soft topological spaces, Ann. Fuzzy Math. Inform., 3(2) (2012), 305–311.
- [10] B. TANAY, M. B. KANDEMIR: Topological structures of fuzzy soft sets, Comput. Math. Appl., 61 (2011), 2952–2957.
- [11] B. P. VAROL, H. AYGUN: Fuzzy soft topology, Hacet. J. Math. Stat., 41(3) (2012), 407–419.
- [12] L. A. ZADEH: Fuzzy sets, Inform and control, 8 (1965), 338–353.

2272 V. CHANDRASEKAR AND G. ANANDAJOTHI

[13] A. M. ZAHRAN, A. GHAREEB: Fuzzy Cs-closed spaces, Annal. Fuzzy Math. And Infor., 3(1) (2012), 1–8.

DEPARTMENT OF MATHEMATICS KANDASWAMI KANDAR'S COLLEGE VELUR (NAMAKKAL) - 638 182 TAMIL NADU, INDIA *E-mail address*: vckkc3895@gmail.com

DEPARTMENT OF MATHEMATICS KANDASWAMI KANDAR'S COLLEGE VELUR (NAMAKKAL) - 638 182 TAMIL NADU, INDIA *E-mail address*: jothi.anandhi@gmail.com