

Advances in Mathematics: Scientific Journal **9** (2020), no.4, 2279–2283 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.9.4.89 Spec. Issue on NCFCTA-2020

A NOTE ON HOMEOMORPHISM USING GRILLS

J. R. SUJITHRA¹ AND N. CHANDRAMATHI

ABSTRACT. In this research article we give emphasize to a make out the characterizations and properties of the new type of homeomorphisms called $\zeta - \Re \omega g$ -homeomorphism and $\zeta - \Re \omega g^{\circ}$ -homeomorphism described in the grill topological spaces.

1. INTRODUCTION

It is obvious that closed sets are the basic objects in a topological space. Benchalli and Wali introduced Regular weakly closed sets [1]. Levine introduced generalized closed set in topology [4]. N. Chandramathi introduced $\zeta \omega$ -closed set and $\zeta \omega$ -homeomorphism [2]. We introduce $\zeta - \Re \omega g$ -Homeomorphism and $\zeta - \Re \omega g^\circ$ -Homeomorphism in grill topological space without assuming any separation axioms.

2. Preliminaries

Definition 2.1. [3] A bijective function $f : (X, \tau) \to (Y, \sigma)$ is called R-homeomorphism if f is both R- continuous and R-open.

Definition 2.2. A bijective function $f : (X, \tau) \to (Y, \sigma)$ is called R^* – homeomorphism if both f and f^{-1} are continuous.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 57S05.

Key words and phrases. $\zeta - \Re \omega g$ -continuous, $\zeta - \Re \omega g$ -open, $\zeta - \Re \omega g$ -closed, $\zeta - \Re \omega g$ -irresolute.

J. R. SUJITHRA AND N. CHANDRAMATHI

3. $\zeta - \Re \omega g -$ Homeomorphism

Definition 3.1. A bijection $f : (X, \tau, \zeta) \to (Y, \upsilon, \zeta)$ is $\zeta - \Re \omega g -$ continuous and $\zeta - \Re \omega g$ -open then it is called as a $\zeta - \Re \omega g -$ homeomorphism.

Case 3.1: Let $X = \{1, 2, 3\}, Y = \{1, 2, 3\}, \tau = \{\varphi, X, \{1\}\}, \upsilon = \{\varphi, X, \{3\}, \{1, 3\}, \{2, 3\}\}, \zeta = \{\{1\}, \{3\}, \{1, 2\}, \{2, 3\}, \{3, 1\}\}.$ Define an identity function $f : (X, \tau, \zeta) \to (Y, \upsilon, \zeta)$ as $f\{1\} = \{1\}, f\{2\} = \{2\}, f\{3\} = \{3\}$. Here f is bijective, $\zeta - \Re \omega g$ - continuous, $\zeta - \Re \omega g$ -open. Thus f is satisfying all the conditions of homeomorphisms. So f is a $\zeta - \Re \omega g$ -homeomorphism.

Remark 3.1. All homeomorphisms are $\zeta - \Re \omega g$ -homeomorphism.

Case 3.2: Let $X = Y = \{1, 2, 3\}, \tau = \{\varphi, X, \{1\}, \{1, 2\}, \{1, 3\}\}, \upsilon = \{\varphi, X, \{1\}, \{3\}, \{1, 3\}, \{2, 3\}\}$ and an identity function $f : (X, \tau, \zeta) \rightarrow (Y, \upsilon, \zeta)$ as $f\{1\} = \{1\}, f\{2\} = \{2\}, f\{3\} = \{3\}$. Here f is not a homeomorphism but it is a $\zeta - \Re \omega g$ -homeomorphism.

Theorem 3.1. All ζ -homeomorphisms are $\zeta - \Re \omega g$ -homeomorphism.

Proof. Consider a ζ -homeomorphic function $f : (X, \tau, \zeta) \to (Y, \upsilon, \zeta)$. Since f is ζ -homeomorphism we know that the function f and its inverse are ζ -continuous functions, one to one and onto functions. But all ζ - continuous functions are $\zeta - \Re \omega g$ - continuous function, f and its inverse functions are $\zeta - \Re \omega g$ - continuous functions. Hence f is a $\zeta - \Re \omega g$ -homeomorphism.

Theorem 3.2. All rwg-homeomorphism are $\zeta - \Re \omega g$ -homeomorphism.

Proof. Consider a rwg-homeomorphic function $f : (X, \tau, \zeta) \to (Y, v, \zeta)$. Since f is rwg-homeomorphism we know that the function f and its inverse are rwg- continuous functions, one to one and onto functions. But all rwg- continuous functions are $\zeta - \Re \omega g$ -continuous function, f and its inverse functions are $\zeta - \Re \omega g$ -continuous functions.

Hence *f* is a $\zeta - \Re \omega g$ -homeomorphism.

Theorem 3.3. Define a bijective function $f : (X, \tau, \zeta) \to (Y, \upsilon, \zeta)$. Then the following are equivalent:

- (a) Its inverse function $f^{-1}: (X, \tau, \zeta) \to (Y, v, \zeta)$ is $\zeta \Re \omega g$ -irresolute.
- (b) The function is a $\zeta \Re \omega g^{\circ}$ -open function.
- (c) The function is a $\zeta \Re \omega g^{\circ}$ -closed function.

2280

Proof.

 $(a) \Rightarrow (b)$: Consider a $\zeta - \Re \omega g$ -open set S in (X, τ, ζ) . According to (a) $(f^{-1})^{-1}(S) = f(S)$ is $\zeta - \Re \omega g$ -open in (Y, v, ζ) . Thus the given function is a $\zeta - \Re \omega g^{\circ}$ -open function.

 $(b) \Rightarrow (c)$: Consider a $\zeta - \Re \omega g$ -closed set P. Then X - P is $\zeta - \Re \omega g$ -open and by (b) f(X - P) = Y - f(V) is $\zeta - \Re \omega g$ -open function in (Y, v, ζ) . So f(P)is $\zeta - \Re \omega g$ -closed function in Y. So f is a $\zeta - \Re \omega g^{\circ}$ -closed function.

 $(c) \Rightarrow (a)$: Let us take a $\zeta - \Re \omega g$ -closed set P. By (c) f(P) is $\zeta - \Re \omega g$ -closed in (Y, v, ζ) . But $f(P) = (f^{-1})^{-1}(P)$. Hence $(c) \Rightarrow (a)$ holds.

Remark 3.2. Let f, k be any two $\zeta - \Re \omega g$ -homeomorphisms. Then $k \circ f$ need not to be a $\zeta - \Re \omega g$ -homeomorphism.

Case 3.3: Let $X = \{1, 2, 3\}, Y = \{1, 2, 3\}, \tau = \{\varphi, X, \{2\}, \{1, 2\}, \{2, 3\}\}, \alpha = \{\varphi, X, \{1\}\}, \beta = \{\varphi, X, \{1\}, \{3\}, \{1, 3\}\}$. Let us take the corresponding grill as $\zeta = \{\{1\}, \{3\}, \{1, 2\}, \{2, 3\}, \{3, 1\}\}$. Define an identity function $f : (X, \tau, \zeta) \rightarrow (Y, \alpha, \vartheta)$ and $k : (Y, \alpha, \vartheta) \rightarrow (Z, \beta, \mu)$ as f(1) = 1, f(2) = 2, f(3) = 3. We can see that the function f and k are $\zeta - \Re \omega g$ -homeomorphisms. But we can see that their composition $k \circ f : (X, \tau, \zeta) \rightarrow (Z, \beta, \mu)$ is not a $\zeta - \Re \omega g$ -homeomorphism. $k \circ f$ is a $\zeta - \Re \omega g$ -continuous function but $(k \circ f)(\{1, 2\}) = \{1, 2\}$ is not a $\zeta - \Re \omega g$ -homeomorphism.

4. $\zeta - \Re \omega g^{\circ} -$ Homeomorphism

Here we introduce $\zeta - \Re \omega g^{\circ}$ -homeomorphism in grill topological space.

Definition 4.1. A bijection $f : (X, \tau, \zeta) \to (Y, \upsilon, \zeta)$ is called $\zeta - \Re \omega g^{\circ} -$ homeomorphism if both f and f^{-1} are $\zeta - \Re \omega g$ -irresolute.

Theorem 4.1. All $\zeta - \Re \omega g^{\circ}$ -homeomorphisms are $\zeta - \Re \omega g$ -homeomorphism. That is $\zeta - \Re \omega g^{\circ} - H(X, \tau, \zeta)$ is a subset of $\zeta - \Re \omega g - H(X, \tau, \zeta)$.

Proof. We know that all $\zeta - \Re \omega g$ -irresolute functions are $\zeta - \Re \omega g$ -continuous function and all $\zeta - \Re \omega g^{\circ}$ -open functions are $\zeta - \Re \omega g$ -open. Hence proved. \Box

Theorem 4.2. Let $f : (X, \tau, \zeta) \to (Y, \upsilon, \zeta)$ is a $\zeta - \Re \omega g^{\circ}$ -homeomorphism then $f(\zeta - \Re \omega g - int(B)) = \zeta - \Re \omega g - intf(B)$ for all $B \subseteq X$.

J. R. SUJITHRA AND N. CHANDRAMATHI

Proof. We have

$$(\zeta - \Re \omega g - int(A))^c = (\zeta - \Re \omega g - cl(A^c)),$$

$$(\zeta - \Re \omega g - int(B)) = (\zeta - \Re \omega g - cl(B^c))^c.$$

Then

$$f(\zeta - \Re \omega g - int(B)) = f(\zeta - \Re \omega g - cl(B^c))^c = (f(\zeta - \Re \omega g - cl(B^c)))^c$$
$$= (\zeta - \Re \omega g - cl(f(B^c)))^c = (\zeta - \Re \omega g - int(f(B))).$$

Corollary 4.1. $f : (X, \tau, \zeta) \to (Y, \upsilon, \zeta)$ is a $\zeta - \Re \omega g^{\circ}$ -homeomorphism then $f^{-1}(\zeta - \Re \omega g - int(B)) = \zeta - \Re \omega g - intf^{-1}(B)$ for all $B \subseteq Y$

Theorem 4.3. Consider a $\zeta - \Re \omega g^{\circ}$ -homeomorphism $f : (X, \tau, \zeta) \to (Y, \upsilon, \zeta)$. Then f induces an isomorphism from the group $\zeta - \Re \omega g^{\circ} - H(X, \tau, \zeta)$ onto $\zeta - \Re \omega g^{\circ} - H(Y, \upsilon, \zeta)$.

Proof. Let us define a function $\varpi_f : \zeta - \Re \omega g^\circ - H(X, \tau, \zeta) \to \zeta - \Re \omega g^\circ - H(Y, \upsilon, \zeta)$ through the function f by $\varpi_f(g) = f \circ k \circ f^{-1}$ for all $g \in \zeta - \Re \omega g^\circ - H(X, \tau, \zeta)$. Then ϖ_f is a bijective function. Also for every $k_1, k_2 \in \zeta - \Re \omega g^\circ - H(X, \tau, \zeta)$,

$$\varpi_f(k_1 \circ k_2) = f \circ (k_1 \circ k_2) \circ f^{-1} = (f \circ k_1 \circ f^{-1}) \circ (f \circ k_2 \circ f^{-1})$$
$$= \varpi_f(k_1) \circ \varpi_f(k_2).$$

Hence, ϖ_f is a homeomorphism. Therefore it is an isomorphism induced by f.

REFERENCES

- S. S. BENCHALLI, R. S. WALI: On RW-closed sets in topological spaces, Bull. Malays. Math. Sci. Soc., 30(2) (2007), 99–110.
- [2] N. CHANDRAMATHI: A New class of generalized closed sets using grills, Int. J. Math. Archive, 7(7) (2016), 66–71.
- [3] N. LEVINE: Semi-open Sets Semi-continuity in Topological Spaces, Amer. Math., 70(1) (1963), 36–41.
- [4] N. PALANIAPPAN, K. C. RAO: Regular generalized closed sets, Kyungpook Math. J., 33(2) (1993), 211–219.

2282

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE OOTY-643002, TAMIL NADU, INDIA *E-mail address*: sujithra.pkr@gmail.com

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS COLLEGE UDUMALPET-641126, TAMIL NADU, INDIA *E-mail address*: drmathi@gmail.com