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TRAVELING WAVE EXACT SOLUTIONS
FOR GENERAL SINE-GORDON EQUATION

SUBIN P. JOSEPH

ABSTRACT. Several variants of Sine-Gordon equations are used to describe vari-
ous physical phenomena in nonlinear optics , propagation of fluxons in Joseph-
son junctions charge density materials, and in many other fields. A general
double Sine-Gordon equation is considered in this paper and several new ex-
act solutions are derived. The solutions are derived in terms of Jacobi elliptic
functions using traveling wave ansatz method.

1. INTRODUCTION

Different variants of Sine-Gordon equation are used to describe several phys-
ical phenomena in nonlinear optics , propogation of fluxons in Josephson junc-
tions charge density materials, and in certain other fields [1–9, 11–15]. In this
paper, we consider the general double Sine-Gordon equation given by

(1.1) vtt + βvxx = γ sin(nv) + δ sin(2nv),

where β, γ, δ are real constants and t and x are independent variables. The
ordinary double Sine-Gordon equations is a special case of this general equation
when n = 1. Only a few exact solutions are available for this general equation
[12]. Traveling wave ansatz method is successfully applied to derive several
exact solution for this general double Sin-Gordon equation in this paper. The
method is described in the next section. Several new exact solutions are derived
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in the third section in terms of Jacobi elliptic functions and we conclude the
paper with a discussion on the results obtained.

2. THE METHOD

Any partial diffferential equation of the form

P (v, vt, vx, vtt, vtx, vxx, · · · ) = 0 ,

can be converted to an ODE of the form

O(v(u), v′(u), v′′(u), · · · ) = 0,

by means of the transformation u = at+ bx. Then, solving this ODE will lead to
exact traveling wave solutions to the original PDE.

To convert the generalized double Sin-Gordon equation (1.1) in to an ODE,
let

(2.1) v(t, x) =
2 arctanχ(u)

n
.

Then χ = tan
(
nv
2

)
,

sin v =
2χ

1 + χ2
,

vtt + βvxx =
2 (a2 + b2β) (χ2φ′′ + χ′′ − 2χχ′2)

n (χ2 + 1)2

and the double Sine-Gordon the equation (1.1) becomes

χ
(
2
(
a2 + b2β

)
χ′2 + n(γ + 2δ)

)
− χ2

(
a2 + b2β

)
χ′′ −

(
a2 + b2β

)
χ′′

+ n(γ − 2δ)χ3 = 0 .
(2.2)

We solve this ODE using different Jacobi elliptic function ansatz in the follow-
ing section to derive several new traveling wave exact solutions for the double
Sine-Gordon equation.



TRAVELING WAVE EXACT SOLUTIONS. . . 2295

3. DIFFERENT EXACT SOLUTIONS

In this section several exact solutions are derived using Jacobi elliptic func-
tions ansatz. Jacobi elliptic functions [10] are doubly periodic functions with
modulus k, where 0 ≤ k ≤ 1. For convenience we take e = k2 with 0 ≤ e ≤ 1 in
this paper. The first ansatz we consider is

(3.1) χ(u) = A sn(u).

Substitute this ansatz in the equation (2.2). On simplification we get a cubic
polynomial in sn(u), with odd powers only. Equating to zero the coefficients of
different powers of sn(u), we get the following non linear algebraic equations:

A
(
−2A2

(
−a2 − b2β

)
− e

(
−a2 − b2β

)
+ a2 + b2β + γn+ 2δn

)
= 0,

A
(
A2
(
−
(
a2 + b2β

))
+ A2e

(
−a2 − b2β

)
− 2e

(
a2 + b2β

)
+ A2n(γ − 2δ)

)
= 0.

Solving this system of non linear equations, we get the following sets of solutions

A = ±

√
φ−γ(e+1)
γ−2δ√
2

, a = ±
√
n(φ− 2δ(e+ 1))− b2β(e− 1)2√

(e− 1)2
,

A = ±

√
φ−γ(e+1)
γ−2δ√
2

, a = ±
√
−b2β(e− 1)2 − n(2δ(e+ 1) + φ)√

(e− 1)2
,

where φ =
√
γ2(e− 1)2 + 16δ2e. Applying these solutions and using the equa-

tions (2.1) and (3.1), we get the following set of eight exact solutions for the
Sine-Gordon equations:
(3.2)

v(t, x) =
2

n
tan−1

(
±

√
γ(1+e)+φ

2δ−γ√
2

sn

(
bx±

√
n(φ− 2δ(e+ 1))− b2β(e− 1)2√

(e− 1)2
t

))
,

v(t, x) =
2

n
tan−1

(
±

√
φ−γ(e+1)
γ−2δ√
2

sn

(
bx±

√
−b2β(e− 1)2 − n(2(e+ 1)δ + φ)√

(e− 1)2
t

))
.

To derive second family of exact solutions we consider the anstaz

(3.3) χ(u) = A cn(u).

Substitute this ansatz in the equation (2.2). On simplification we get a cubic
polynomial in cn(u), with odd powers only. Equating to zero the coefficients of



2296 S. P. JOSEPH

different powers of cn(u), we get the following non linear algebraic equations

A
(
2A2

(
a2 + b2β

)
− 2A2e

(
a2 + b2β

)
− e

(
a2 + b2β

)
+a2(−e) + a2 + b2β − b2βe+ γn+ 2δn

)
= 0

A
(
−2A2

(
a2 + b2β

)
+ 2A2e

(
a2 + b2β

)
+ a2A2 + e

(
a2 + b2β

)
+a2e+ A2b2β + A2n(γ − 2δ) + b2βe

)
= 0.

Solving this system of non linear equations, we get the following four sets of
solutions

A = ±

√
γ−2γe−ψ

(e−1)(γ−2δ)√
2

, a = ±
√
−b2β − n(δ(2− 4e) + ψ),

A = ±

√
γ−2γe+ψ

(e−1)(γ−2δ)√
2

, a = ±
√
n(δ(4e− 2) + ψ)− b2β,

where ψ =
√
γ2 + 16δ2(e− 1)e. Applying these solutions and using the equa-

tions (2.1) and (3.3), we get the second set of eight exact solutions for the
Sine-Gordon equations

v(t, x) =
2

n
tan−1

(
±

√
γ−2γe−ψ

(e−1)(γ−2δ)√
2

cn
(
bx+±

√
−b2β − n((2− 4e)δ + ψ)t

))
,

(3.4) v(t, x) =
2

n
tan−1

(
±

√
γ−2γe+ψ

(e−1)(γ−2δ)√
2

cn
(
bx±

√
n(4eδ − 2δ + ψ)− b2βt

))
.

4. DISCUSSION

In the previous section we derived two families of traveling wave exact solu-
tions for generalized double Sine-Gordon equation (1.1), in terms of two differ-
ent Jacobi elliptic functions sn(u) and cn(u). In the same way we can generate
other exact solutions of double Sine-Gordon equation corresponding to the re-
maining ten Jacobi elliptic functions. So, we are getting twelve different families
of exact solutions for this equation, each containing eight solutions in terms of
one of the Jacobi elliptic functions.

It is also possible to derive periodic solutions from the derived new exact
solutions. These solutions are obtained by letting the modulus of the Jacobi
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elliptic functions tends to zero in each of the solutions. For example, letting
e = 0 in (3.2) and (3.4) we get the following periodic solutions,

2

n
arctan

(
±
√

γ

2δ − γ
sin
(
bx± t

√
n(γ − 2δ)− b2β

))
,

and
2

n
arctan

(
±
√

γ

2δ − γ
cos
(
bx± t

√
n(γ − 2δ)− b2β

))
,

respectively. Hence, we derived several doubly periodic and periodic traveling
wave exact solutions for general double Sin-Gordon equation and the solutions
obtained in terms of Jacobi elliptic functions are all new solutions in the litera-
ture. Also, all these solutions are validated by direct verification using computer
algebra system.
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