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MATRICES OVER MULTILATTICES

K. K. GIREESAN

ABSTRACT. This paper is an extension of the concept of Lattice matrices (Ln-
matrices) to Multilattice matrices (Mn-matrices) using complete, consistent and
distributive multilattice M with 0 and 1 along with some algebraic properties of
these matrices are discussed.

1. INTRODUCTION

In the paper Lattice Matrices (Ln − Matrices) [7], the author defined and
explained the particular properties of algebra of square matrices over an arbi-
trary distributive lattice with 0 and 1 [1,3]. The properties of these matrices are
useful tools in various situations like switching nets, automata theory, theory of
finite graphs, etc. In this paper we extend the concept of Lattice matrices to
Multilattice matrices(Mn −Matrices)) using complete ,consistent and distribu-
tive multilattice M with 0 and 1 along with some algebraic properties of these
matrices are discussed.

The organization of the paper is as follows. In section 2, the definition and
some preliminary (theoretical)results about a multilattice are introduced. Later
the concept of matrices over multilattices and Some definitions and properties
of these matrices are introduced in section 3. In section 4, the concept of or-
thogonal matrices and some properties of these matrices are discussed.
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2. PRELIMINARY RESULTS

Let (M, ≤) is a partially ordered set and U ⊆ M , the multisupremum of U is
a minimal element of the set of upper bounds of U and Multisup(U) denote the
multisuprema of U . Dually we define the multiinfima.

Definition 2.1. [2, 5, 6] A poset (M,≤) be an ordered multilattice if and only
if it satisfies the condition that for all u, v, xwith u ≤ x and v ≤ x, there exist
z ∈ Multisup {u, v} such that z ≤ x and its dual.

When comparing with lattices, we see that least upper bound (which is a
unique element) is replaced by the non empty set of all minimal (instead of
least)upper bounds and dually.

Definition 2.2. [5, 6] A multilattice is distributive if for each u, v, w ∈ P , the
conditions (u ∨ v) ∩ (u ∨ w) 6= ∅ and (u ∧ v) ∩ (u ∧ w) 6= ∅ ⇒ v = w (where ∩ - is
the usual set intersection and ∪ is the usual set unions). Similarly to lattice theory,
if we define (u∨v) =Multisup{u, v} and (u∧v) =Multiinf{u, v}, then (M,∧,∨)
be a algebraic multilattice and if we define u ≤ v if and only if u ∨ v = {v} and
u ∧ v = {u} it is possible to obtain the order version of multilattice.

Definition 2.3. A complete multilattice is a partially ordered set (M,≤) such that
every subset S ⊆ M the set of upper bounds of S has minimal (maximal) ele-
ment, which are called multisuprema (multi infima), that is for any subset S of X,
multiinf(S) and multiSup(S) exists and non empty.

Definition 2.4. Let(M, ≤) be a poset. The element u ∈ M is called a greatest
element of M if all other element are smaller. That is u ≥ x for every x ∈ M .
similarly v ∈M is called a smallest element of M if v ≤ x for every x ∈M .

If a multilattice has a greatest element and smallest element, then (M, ≤) is said
to be bounded. Normally greatest element is taken as 1 and smallest element is
taken as 0.

Definition 2.5. A multilattice M with 0 and 1 is called complemented if for each
u ∈M , there is atleast one element v such that u ∧ v = {0} and u ∨ v = {1}.

Remark 2.1. Let M be complete distributive multilattice. Then every element in
M has exactly one complement in M .
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It is Noted that for any subset of a multilattice may not necessary have a
supremum but a set of multisuprema. So we introduce some ordering between
subsets of posets, which are the Hoare ordering, the Smyth ordering and the
Egli-Milner ordering respectively.

Definition 2.6. [4–6] consider U, V ∈ 2M , then

- U vH V if, and only if, for all a ∈ U there exists b ∈ V such that a ≤ b;
- U vS V if, and only if, for every b ∈ V there exists a ∈ U such that a ≤ b,
- U vEM V if, and only if, U vH V and U vS V .

Definition 2.7. [4–6] (M,∧,∨) - be a algebraic multilattice . Let p ∈ M and U
and V be subsets of M , then

- p ∧ U = ∪ {(p ∧ x)/x ∈ U};
- p ∨ U = ∪ {(p ∨ x)/x ∈ U}.

Also, U ∧ V = ∪{(x ∧ y)/x ∈ U, y ∈ V } and U ∨ V = ∪ {(x ∨ y)/x ∈ U, y ∈ V }.

Throughout this paper, we use U ≤ V means U vEM V .

3. MATRICES OVER MULTILATTICES

Let M be a complete, consistent and distributive multilattice with 0 and 1.
The multisup(p,q) is denoted by p+q and multiinf(p,q) is denoted by p.q. Recall
that multisuprimum and multiinfimum of elements are set of elements in M . In
a lattice matrix [7] each entries of a matrix are single elements. Here we are
taking a set of elements to each entry of a matrix from a multilattice M instead of
taking a single elements. As defined in the lattice matrix , here we are defining
matrices over a Multilattice along with some basic concepts and properties of
these matrices are studied. In this chapter we use 0 and 1 for bottom and top
element respectively in a multilattice M instead of using 0M and 1M .

Definition 3.1. Let M be a complete, consistent and distributive multilattice with
0 and 1.The multisup(p, q) is denoted by p+q and multiinf(p, q) is denoted by p.q.
Let Mn (for n > o) be the set of n×n matrices over M , i.e., Mn = {P = (pij)/pij ∈
2M}, where pij is the (ij)th element of P .

Definition 3.2. Let P = (pij), Q = (qij) and R = (rij) are elements of Mn, we
define:

(1) P +Q = P ∨M Q = R if, and only if, rij = pij + qij;
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(2) P vEM Q if, and only if, pij vEM qij;
(3) P ∧M Q = R if, and only if, rij = pij.qij;

(4) P.Q = PQ = R If and only rij =
n∑
k=1

pikqkj;

(5) P T = R if, and only if, rij = pji;
(6) For k ∈M , kP = k.P = R if, and only if, rij = k.pij;
(7) I = (pij), where pij = {1} for i = j

and = {0} for i 6= j;
(8) P 0 = I ,P k+1 = P k.P ;
(9) O = (oij) ,where oij = 0 for every i and j;

(10) E = (eij), where eij = {1} for every i and j.

Example 3.1. Consider the multilattice in Figure 1.

1

r s

p q

0

FIGURE 1. The multilattice in Example 3.1

Let

P =

[
{p} {1}
{q} {0}

]
, Q =

[
{q} {s}
{p} {1}

]

P +Q =

[
{p+ q} {1 + s}
{q + p} {0 + 1}

]
=

[
{r, s} {1}
{r, s} {1}

]

P ∧M Q =

[
{p.q} {1.s}
{q.p} {0.1}

]
=

[
{0} {s}
{0} {0}

]

PQ =

[
{0 + p} {p+ 1}
{q + 0} {q + 0}

]
=

[
{p} {1}
{q} {q}

]

Properties with respect to addition and multiplication:
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(1) P + P 6= P

(2) P +Q = Q+ P

(3) (P +Q) +R = P + (Q+R)

(4) PQ 6= QP

(5) (PQ)R = P (QR)

(6) P.I = I.P = P

(7) P.O = O.P = O

(8) P i.Aj = Ai+j

(9) (P i)j = Aij

(10) P (Q+R) = PQ+ PR

(11) (P +Q)R = PR +QR

(12) if P vEM Q and R vEM S then PR vEM QS

(13) Let E = (eij), where eij = {1} for every i and j and
I = (aij), where aij = {1} for i = j and

= {0} for i 6= j

Let P = (pij be any matrix over a multilattice M .
Now if I vEM P and P vEM I then I = P .
Also if P vEM E and E vEM P , then E = P .

Properties of transposition:

(1) (P + q)T = P T +QT

(2) if P vEM Q then P T vEM QT

(3) (P ∧M Q)T = P T ∧M QT

(4) (P T )T = P

Definition 3.3. For α ∈ 2M we shall use the notation α ↪→ (Pm)ij, the ijth entry
of Pm whenever α = pi0i1 .pi1i2 . · · · .pim−1im, where i0 = i and im = j for some
i1, i2, · · · , im−1.

Note 1. (Pm)ij =
∑

α↪→(Pm)ij

α.

Proposition 3.1. If α ↪→ (Pm)ij, where m ≥ n, then there are integers k1, k2,
k3 and ν (all of them dependent on α) such that 0 ≤ k2 ≤ n, k1 + k2 + k3 = k,
1 ≤ γ ≤ n and such that for each positive integer k:

α vEM (P k1)iγ.(P
k.k2)γγ.(P

k3)γj.
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Proof. Let α = ai0i1 .ai1i2 . · · · .aim−1im, where α ∈ 2M . Since n ≤ m, Then n ≤
m + 1, two indices among the m+1 indices i0, i1, · · · , im must be equal. Let
is = it, where s < t. Also, we can find such s and t such that is = it, s < t and
t− s ≤ n. So, let k1 = s, k2 = t− s, k3 = m− t and ν = is = it. �

Corollary 3.1. If α ↪→ (Pm)ij, where m ≥ n, then there are natural numbers k1,
k2, k3 and γ such that k1 + k2 ≤ n, 0 ≤ k2 ≤ n, 1 ≤ γ ≤ n and such that for each
k,

α vEM (P k1)iγ.(P
k.k2)γγ.(P

k3)γj.

Theorem 3.1. If m ≥ n, then (Pm)ij vEM multisup(Pm+(p.n!))ij, where p is an
arbitrary number.

Proof. Suppose α ↪→ (Pm)ij. Then by the above proposition, there are natural
numbers k1, k2, k3 and γ (all of them dependent on α) such that 0 < k2 ≤ n, k1+
k2+k3 = k, 1 ≤ γ ≤ n and such that for each k, α vEM (P k1)iγ.((P

k.k1)γγ.(P
k2)νj.

Hence, α vEM (P k1+k.k2+k3)ij = (Pm+(k−1).k2)ij.
Replace (k − 1) by (p.n!/k2), where p is an arbitrary natural number.

Then α vEM (Pm+(p.n!/k2).k2)ij = (Pm+pn!)ij, and further, for all α′s such that∑
α↪→(Pm)ij

α = (Pm)ij. Therefore,
∑

α↪→(Pm)ij

α vEM Multisup(Pm+pn!)ij. This im-

plies (Pm)ij vEM Multisup(Pm+pn!)ij. �

4. ORTHOGONAL MATRICES

Definition 4.1. A Mn Matrix P is called a unit if, and only if, there is an Mn

matrix Q such that PQ = QP = I, and P is called orthogonal if, and only if,
PP T = P TP = I.

Proposition 4.1.

(1) If RQ = E, then EQ = E.
(2) If EPQ = E, then EQ = E.
(3) Assume P ∧M P = P . Then EP = E if, and only if, I vEM P TP .

Proof.

(1) For any matrix EQ vEM E and R vEM E are always true. Therefore by
the property 12, RQ vEM EQ.
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But RQ = E implies E vEM EQ. Thus EQ vEM E and E vEM EQ,
this implies E = Q.

(2) This proof is a particular case of 1.
(3) Let P ∧M P = P .EP = E holds if, and only if, for each i and j:

{1} = (EP )ij =
n∑
k=1

eikpkj

=
n∑
k=1

pkj , since eik = {1}

=
n∑
k=1

pkj.pkj

=
n∑
k=1

(P T )jk.Pkj

= (P T .P )jj, that is each diagonal entries are {1}.

Hence, EP = E holds if, and only if, I vEM (P T .P ) holds.

�

Note 2. From the above proposition we have ,I vEM P TP =⇒ EP = E, since
I vEM P TP =⇒ EI vEM EP TP . That is I vEM P TP implies EP TP = E.

Proposition 4.2. If P is a unit, then P is orthogonal.

Proof. If P is a unit, then there is a Q such that PQ = QP = I. This implies
QTP T = P TQT = I. Hence, E = EPQ = EQP = EQTP T = EP TQT and
therefore by above proposition, we have I vEM P TP ,I vEM PP T , I vEM QTQ,
I vEM QQT . Then, to show That P TP vEM I and PP T vEM I, that is to
show that P TP vEM QP and PP T vEM PQ since PQ = I and QP = I, it is
suffices to show that P T vEM Q holds. But I vEM QTQ =⇒ P T vEM P TQTQ,
since P TQT = I and therefore P T vEM Q holds. Therefore, P TP vEM I and
PP T vEM I. This implies P TP = I, P is orthogonal. �

Definition 4.2.

(1) A set {M1,M2, . . . ,Mn} of subsets of M is a decomposition of {1} in 2M if,

and only if,
n∑
k=1

Mk = {1}. That is Multisup{M1,M2, . . . ,Mn} = {1}.

(2) A set {M1,M2, . . . ,Mn} of subsets of M is said to be orthogonal if, and only
if, MiMj = {0}. That is multiinf{Mi,Mj} = 0 provided i 6= j.
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(3) A set of subsets of M is an orthogonal decomposition of {1} in 2M if, and
only if, it is orthogonal and a decomposition of {1} in 2M .

We know that I vEM P TP , I vEM P Tp implies EP = E. Since P is or-
thogonal PP T = P Tp = I implies PP T vEM I, P TP vEM I I vEM P TP and
I vEM PP T . Also, EP = E =⇒ EP T = E. From this the following proposition
follows.

Proposition 4.3. A Mn is orthogonal if, and only if, each row and each column of
it is an orthogonal decomposition of {1} in 2M .

5. CONCLUSION

We have introduced the concept of Multilattices and also we defined and
showed the algebraic properties of these matrices. Finally ,we observe that the
extension of lattice Matrix to multilattice matrix is valid using a complete con-
sistent distributive multilattice M.
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