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EXISTENCE RESULTS FOR IMPLICIT FRACTIONAL DIFFERENTIAL
EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS

A. ANGURAJ1, M. KASTHURI, AND P. KARTHIKEYAN

ABSTRACT. In this paper, we examine the existence of solutions for implicit
FDE’s with fractional boundary conditions. To prove the existence results by
applying fixed point theorems and continuous on parameters and functions.
Finally an example is included to show the applicability of our results.

1. INTRODUCTION

The fundamental of the fractional calculus and FDE’s has been proved by
applying importance in the modeling of many development in various fields
of engineering, medicine, chemistry, physics, economics and signal processing.
For more details on this theory and on its applications, it is to be refered in
[7,8,13–15].

In [4] M. Benchohra and J. E. Lazreg have given an investigation the IFDE’s
and [12] K. D. Kucche, J. J. Nieto and V. Venktesh have given an investigation
the nonlnear IFDE’s and continuous dependence. Recently we refer the [9] S. K.
Ntouyas and J. Tariboon have considered the FBVP with multiple order of frac-
tional derivatives and integral by applied the single-valued case using Sadovski’s
fixed point theorem. The reader for further identification and clarification need
to refer the papers of [1–3,5,6,10,11,16,17].
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Motivated by above research papers, we study the the existence of solutions
for implicit FDE’s with fractional boundary conditions of the forms

(1.1) cDαx(t) = f(t, x(t),cDαx(t)), t ∈ J := (0, T ), 1 < α ≤ 2,

(1.2) x(0) = 0, λDβ1x(T ) + (1− λ)Dβ2x(T ) = β3,

where Dφ is the Caputo fractional derivative of order φ ∈ {α, β1, β2} such that
1 < α ≤ 2, 0 < β1, β2 < α, β3 ∈ R, 0 ≤ λ ≤ 1 is given constant and f :

J × R× R→ R be a continuous function.
In this paper is planned as shades. Section 2 has definitions and elementary

results of the fractional calculus. In section 3, implicit FDE’s with fractional
boundary conditions are proved the theorems on the existence results by apply-
ing fixed point theorems, continuous dependence on parameters and function
involved in the equations. In section 4, an illustrative example is provided in
support of the results of a problem (1.1) and (1.2).

2. PRELIMINARIES

In this section, the most important basic concepts and lemma are stated.

Definition 2.1. For a function h ∈ ACn(J), the Caputo’s fractional-order deriv-
ative of order α is defined by (cDα

0 )(t) = 1
Γ(n−α)

∫ t
0
(t − s)n−α−1h(n)(s)ds, where

n = [α] + 1 and [α] denotes the integer part of the real number α.

Definition 2.2. A function x ∈ PC ′(J,R) is said to be a solution of the problem
(1.1), if x(t) = xk(t) for t ∈ (tk, tk+1) and xk ∈ C([0 = t0 < t1 < ... < tm <

tm+1 = T ],R) satisfies cDαxk(t) = f(t, xk(t),
cDαxk(t)), almost everywhere on

(0, tk+1) with the restriction of xk(t) on [0, tk) is just xk−1(t) and the conditions
∆x(tk) = yk, ∆x′(tk) = ȳk, yk, ȳk ∈ R k = 1, 2, ...,m with x(0) = 0, x′(1) = 0.

Lemma 2.1. For α > 0, the general solution of the FDE’s cDαx(t) = 0 is given by
x(t) = c0 + c1t+ . . .+ cn−1t

n−1, where ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [α] + 1).

In view of Lemma 2.1, it follows that Iα cDαx(t) = x(t)+c0+c1t+. . .+cn−1t
n−1,

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1 (n = [α] + 1).

Lemma 2.2. The boundary value problem

(2.1)
Dαx(t) = ω(t), t ∈ (0, T ),

x(0) = 0, λDβ1x(T ) + (1− λ)Dβ2x(T ) = β3,
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is equivalent to the integral equation

(2.2)

x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ω(s)ds+
t

Λ1

(
β3

− λ

Γ(α− β1)

∫ T

0

(T − s)α−β1+1ω(s)ds

− 1− λ
Γ(α− β2)

∫ T

0

(T − s)α−β2+1ω(s)ds
)
, t ∈ J := [0, T ],

where the non zero constant Λ1 is defined by Λ1 = λT 1−β1
Γ(2−β1)

+ (1−λ)T 1−β2

Γ(2−β2)
.

Proof. From the first equation of (2.1), we have Dαx(t) = ω(t), t ∈ J. We obtain
x(t) = 1

Γ(α)

∫ t
0
(t − s)α−1ω(s)ds + C1 + C2t, for C1, C2 ∈ R. The first boundary

condition of (2.1) implies that C1 = 0. Hence

(2.3) x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1ω(s)ds+ C2t.

Applying the Caputo fractional derivative of order ψ ∈ {β1, β2} such that
0 < ψ < α− β to (2.3), we have

Dψx(t) =
1

Γ(α− ψ)

∫ t

0

(t− s)α−ψ−1ω(s)ds+ C2
1

Γ(2− ψ)
t1−ψ.

Substituting the values ψ = β1 and ψ = β2 to the above relation and using the
second condition of (2.1), we obtain

β3 =
λ

Γ(α− β1)

∫ T

0

(T − s)α−β1+1ω(s)ds+
λT 1−β1

Γ(2− β1)
C2

+
1− λ

Γ(α− β2)

∫ T

0

(T − s)α−β2+1ω(s)ds+
(1− λ)T 1−β2

Γ(2− β2)
C2,

which leads to

C2 =
1

Λ1

[
β3 −

λ

Γ(α− β1)

∫ T

0

(T − s)α−β1+1ω(s)ds

− 1− λ
Γ(α− β2)

∫ T

0

(T − s)α−β2+1ω(s)ds
]
.

Substituting the value of the constant C2 in (2.3), we deduce the integral equa-
tion (2.2). The converse follows by direct computation. This completes the
proof. �
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3. MAIN RESULTS

To prove the existence and uniqueness results we need the following assump-
tions: (A1) The function f : J × R × R → R be a continuous function. (A2)

There exists constants K > 0 and 0 < L < 1 such that |f(t, u, v)− f(t, u1, v1)| ≤
K|u− u1|+L|v− v1|, for any u, v, u1, v1 ∈ R, t ∈ J . The two fractional boundary
value problem (1.1)-(1.2) is equivalent to the integral equation

x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s),cDαx(s))ds

+
t

Λ1

(
β3 −

λ

Γ(α− β1)

∫ T

0

(T − s)α−β1+1f(s, x(s),cDαx(s))ds

− (1− λ)

Γ(α− β2)

∫ T

0

(T − s)α−β2+1f(s, x(s),cDαx(s))ds
)
, t ∈ J,

where the non zero constant Λ1 is defined by

Λ1 =
λT 1−β1

Γ(2− β1)
+

(1− λ)T 1−β2

Γ(2− β2)
.

Theorem 3.1. Assume that (A1) and (A2) are holds. If[
Tα

Γ(α + 1)
− T

Λ1

{
λTα−β1+1

Γ(α− β1 + 1)
+

(1− λ)Tα−β2+1

Γ(α− β2 + 1)

}]
K

(1− L)
< 1,

then there exists a unique solution for (1.1)-(1.2) on J .

Proof. Let Br = {x ∈ C : ‖x‖ ≤ r} be a closed bounded and convex subset of C,
where r is a fixed constant. Consider the operator 	 : C → C defined by

(3.1) 	y(t) = Iαg(t) +
t

Λ1

[
γ3 − Iα−β1g1(t)− Iα−β2g2(t)

]
,

where g(t) = f(t, x(t), g(t)), g1(t) = f(t, x(t), g1(t)), g2(t) = f(t, x(t), g2(t)),

g, g1, g2 ∈ C(J,R). Clearly, the fixed points of operator 	 is solution of prob-
lem (1.1)-(1.2). Let x1, x2 ∈ C(J,R). Then,

|(	x1)(t)− (	x2)(t)| = 1

Γ(α)

∫ t

0

(t− s)α−1|(g(s)− h(s))|ds

− t

Λ1

( λ

Γ(α− β1)

∫ T

0

(T − s)α−β1+1|(g1(s)− h1(s))|ds

+
(1− λ)

Γ(α− β2)

∫ T

0

(T − s)α−β2+1|(g2(s)− h2(s))|ds
)
,(3.2)
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where g, h, g1, g2, h1, h2 ∈ C(J,R) be such that
g(t) = f(t, x1(t), g(t)), g1(t) = f(t, x1(t), g1(t)),

g2(t) = f(t, x1(t), g2(t)), h(t) = f(t, x1(t), h(t)),

h1(t) = f(t, x1(t), h1(t)), h2(t) = f(t, x1(t), h2(t)).
By hypothesis (A2), we have

|(g(t)− h(t))| ≤ K|x1(t)− x2(t)|+ L|x1(t)− x2(t)| ≤ K

1− L
|x1(t)− x2(t)|

|(g1(t)− h1(t))| ≤ K

1− L
|x1(t)− x2(t)|

and

|(g2(t)− h2(t))| ≤ K

1− L
|x1(t)− x2(t)|.

The equation (3.2) implies

|(	x1)(t)− (	x2)(t)| ≤ KTα

(1− L)Γ(α + 1)
||x1 − x2||∞

− t

Λ1

( λKTα−β1+1

(1− L)Γ(α− β1 + 1)
+

(1− λ)KTα−β2+1

(1− L)Γ(α− β2 + 1)

)
||x1 − x2||∞.

Thus

||	x1 −	x2||∞ ≤

[
Tα

Γ(α + 1)
− T

Λ1

[
λTα−β1+1

Γ(α− β1 + 1)
+

(1− λ)Tα−β2+1

Γ(α− β2 + 1)

]]

· K

(1− L)
||x1 − x2||∞.

By (3.1), the operator 	 is a continuous. Hence by Banach’s contraction prin-
ciple, 	 has a unique fixed point which is a unique solution of the problem
(1.1)-(1.2). �

4. CONTINUOUS ON PARAMETERS AND FUNCTIONS

cDαx1(t) = f(t, x1(t),cDαx1(t), δ1), t ∈ (0, T ), 1 < α ≤ 2

x1(0) = 0, λDβ1x1(T ) + (1− λ)Dβ2x1(T ) = β3,(4.1)

and
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cDαx2(t) = f(t, x2(t),cDαx2(t), δ2), t ∈ (0, T ), 1 < α ≤ 2

x2(0) = 0, λDβ1x2(T ) + (1− λ)Dβ2x2(T ) = β3,(4.2)

where Dα1 is the Caputo fractional derivative of order α1 ∈ {α, β1, β2} such that
1 < α ≤ 2, 0 < β1, β2 < α, β3 ∈ R, 0 ≤ λ ≤ 1 is given constant, δ1, δ2 are real
parameters and f : J × R × R × R → R. We need the assumptions and lemma
to prove the dependence of solution of implicit fractional differential equations
on parameters: (A3) There exists h ∈ C(J,R), l ∈ L1[0, T ] and M ∈ (0, 1) the
continuous function f satisfies |f(t, x, y, δ1) − f(t, x1, y1, δ2)| ≤ h(t)|x − x1| +
M |y − y1| and |g(t, x, y, δ1)− g(t, x1, y1, δ2)| ≤ l(t)|δ1 − δ2|.

Lemma 4.1. let V : [0, T ] → [0,+∞) be a real function and W (.) is nonnegative,
locally integrable function on [0, T ]. Assume that there is a constant a > 0 such that
for 0 < α ≤ 2. V (t) ≤ W (t) + a

∫ t
0
(t − s)−αV (s)ds. Then, there exists a constant

K = K(α) such that V (t) ≤ W (t) +Ka
∫ t

0
(t− s)−αW (s)ds for any t ∈ [0, T ].

Theorem 4.1. Let f : J × R × R → R satisfy (A3). If x1(t) and x2(t) are the
solutions of (4.1) and (4.2) respectively, then

|x1(s)− x2(s)| ≤ |δ1 − δ2|
[
Iαl(t) +

KH

(1−M)Γ(α)
Iα(Iαl(t))

+
t

Λ1

(
Iα−β1l(t) + Iα−β2l(t) +

λKH

(1−M)Γ(α− β1)
Iα−β1(Iα−β1l(t))

+
(1− λ)KH

(1−M)Γ(α− β2)
Iα−β2(Iα−β2l(t))

)]
, t ∈ [0, T ],

where K is a constant depending on α and H = max{h(t), t ∈ [0, T ]}.

Proof. Let x1(t) and x2(t) be the solution of (4.1) and (4.2) respectively, then

cDαx1(t) = f(t, x1(t),cDαx1(t), δ1), t ∈ (0, T ), 1 < α ≤ 2,

x1(0) = 0, λDβ1x1(T ) + (1− λ)Dβ2x1(T ) = β3,

and
cDαx2(t) = f(t, x2(t),cDαx2(t), δ2), t ∈ (0, T ), 1 < α ≤ 2,

x2(0) = 0, λDβ1x2(T ) + (1− λ)Dβ2x2(T ) = β3.
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Implies

x1(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x1(s),cDαx1(s), δ1)ds

+
t

Λ1

(
β3 −

λ

Γ(α− β1)

∫ T

0

(T − s)α−β1+1f(s, x1(s),cDαx1(s), δ1)ds

− (1− λ)

Γ(α− β2)

∫ T

0

(T − s)α−β2+1f(s, x1(s),cDαx1(s), δ1)ds
)
, t ∈ J,

and

x2(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x2(s),cDαx2(s), δ2)ds

+
t

Λ1

(
β3 −

λ

Γ(α− β1)

∫ T

0

(T − s)α−β1+1f(s, x2(s),cDαx2(s), δ2)ds

− (1− λ)

Γ(α− β2)

∫ T

0

(T − s)α−β2+1f(s, x2(s),cDαx2(s), δ2)ds
)
, t ∈ J.

|x1(s)− x2(s)|

= |δ1 − δ2|Iαl(t) +
H

(1−M)Γ(α)

∫ t

0

(t− s)α−1|x1(s)− x2(s)|ds

+
t

Λ1

(
|δ1 − δ2|Iα−β1l(t) + |δ1 − δ2|Iα−β2l(t)

+
λH

(1−M)Γ(α− β1)

∫ T

0

(T − s)α−β1+1|x1(s)− x2(s)|ds

+
(1− λ)H

(1−M)Γ(α− β2)

∫ T

0

(T − s)α−β2+1|x1(s)− x2(s)|ds
)

(4.3)

By lemma 4.1, the equation (4.3) implies that

|x1(s)− x2(s)| ≤ |δ1 − δ2|
[
Iαl(t) +

KH

(1−M)Γ(α)
Iα(Iαl(t))

+
t

Λ1

(
Iα−β1l(t) + Iα−β2l(t) +

λKH

(1−M)Γ(α− β1)
Iα−β1(Iα−β1l(t))

+
(1− λ)KH

(1−M)Γ(α− β2)
Iα−β2(Iα−β2l(t))

)]
, t ∈ [0, T ].

�
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Next result, proves the Continuous dependence of solution of IFDE’s (1.1)-
(1.2) on the function involved in right hand side of equation (1.1)-(1.2).

cDαy(t) = f̃(t, y(t),cDαy(t)), t ∈ (0, T ), 1 < α ≤ 2

y(0) = 0, λDβ1y(T ) + (1− λ)Dβ2y(T ) = β̃3,(4.4)

where f̃ : J × R× R→ R and β̃3 ∈ R.

Theorem 4.2. Suppose that f in (1.1) Satisfies the hypothesis: there exists q ∈
C[J,R] and L ∈ (0, 1) such that |f(t, x, y)− f(t, x1, y1)| ≤ q(t)|x− x1|+ L|y − y1|
where Q = max{q(t), t ∈ [0, T ]}. Further suppose, for arbitirarily small constant ε,
δ > 0 that |f(t, x(t), Dαx(t))− f̃(t, y(t), Dαy(t))| ≤ ε and |β3 − β̃3| < δ, t ∈ [0, T ].
Then the solution x(t) of (1.1) depends continuously on the functions involved in
right hand side of equation (1.1).

Proof. Let x(t) and y(t) be the solution of (1.1) and (4.4) respectively, then
cDαx(t) = f(t, x(t),cDαx(t)), t ∈ (0, T ), 1 < α ≤ 2

x(0) = 0, λDβ1x(T ) + (1− λ)Dβ2x(T ) = β3,

and
cDαy(t) = f̃(t, y(t),cDαy(t)), t ∈ (0, T ), 1 < α ≤ 2

y(0) = 0, λDβ1y(T ) + (1− λ)Dβ2y(T ) = β̃3,

implies

x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s),cDαx(s))ds

+
t

Λ1

(
β3 −

λ

Γ(α− β1)

∫ T

0

(T − s)α−β1+1f(s, x(s),cDαx(s))ds

− (1− λ)

Γ(α− β2)

∫ T

0

(T − s)α−β2+1f(s, x(s),cDαx(s))ds
)
, t ∈ J,

and

y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f̃(s, y(s),cDαy(s))ds

+
t

Λ1

(
β̃3 −

λ

Γ(α− β1)

∫ T

0

(T − s)α−β1+1f̃(s, y(s),cDαy(s))ds

− (1− λ)

Γ(α− β2)

∫ T

0

(T − s)α−β2+1f̃(s, y(s),cDαy(s))ds
)
, t ∈ J.
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By using the hypothesis and

|Dα(x(t)− y(t))| ≤ |f(t, x(t),cDαx(t))− f̃(t, y(t),cDαy(t))|

≤ q(t)

(1− L)
|x(t)− y(t)|+ ε

(1− L)
.

By lemma 4.1,
(4.5)
|x(t)− y(t)|

≤ ε

[
1

1− L

]{
1

Γ(α + 1)
tα +

KQ

(1− L)Γ(2α + 1)
t2α
}

− t

Λ1

(
δ

{
1 +

KQλ

(1− L)Γ(α− β1 + 1)
Tα−β1 +

KQ(1− λ)

(1− L)Γ(α− β2 + 1)
Tα−β2

}
+ ε

[
1

1− L

](
KQλ2

(1− L)Γ(2α− β1 + 1)
T 2α−β1 +

KQ(1− λ)2

(1− L)Γ(2α− β2 + 1)
T 2α−β2

+
λTα−β1

Γ(α− β1 + 1)
+

(1− λ)Tα−β2

Γ(α− β2 + 1)

))
.

From the equation (4.5), it follows that the solution x(t) of (1.1) depends con-
tinuouly on the functions involved in right hand side of eqaution (1.1). For ε = 0

in the inequality (4.5) gives continuous dependence of solutions on boundary
conditions. We also note that as ε, δ > 0 were arbitrary, by taking ε, δ → 0+, we
have x→ y where x : [0, T ]→ R and y : [0, T ]→ R are the solution of (1.1) and
(4.4) respectively. �

Example 1. Consider the implicit FDE’s with fractional boundary conditions of the
form

(4.6) cD
10
7 x(t) =

1

10(1 + |x(t)|+ |cD 10
7 x(t)|)

, t ∈ (0, T ), 1 < α ≤ 2,

(4.7) x(0) = 0,
8

20
D

6
14x(1) +

3

5
D

4
17x(1) =

1

11
.

Here α =
10

7
, f(t, x(t), cDαx(t)) = 1

10(1+|x(t)|+|cD
10
7 x(t)|)

, λ =
8

20
, β1 =

6

14
, β2 =

4

17
,

β3 =
1

11
, T = 1, observe that 0 < β1, β2 <

10

7
. Hence the hypothesis (A2) holds
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with K = L = 1
10

and we shall check that[
Tα

Γ(α + 1)
− T

Λ1

{
λTα−β1+1

Γ(α− β1 + 1)
+

(1− λ)Tα−β2+1

Γ(α− β2 + 1)

}]
K

(1− L)
< 1

⇔ ≈ 0.8846 < 1.

Thus, the theorem 3.1, the fractional boundary value problem (4.6) and (4.7) has
a unique solution on J .
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