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SOME TYPES OF IDEALS IN SYMMETRIC RINGS
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ABSTRACT. In Ring theory, a branch of abstract algebra, an ideal is a special
subset of a ring. Ring theory is an extension of Group theory. Ideals generalize
certain subsets of the integers, such as the even number or the multiple of 3.
The concept of an order ideal in order theory is derived from the notion of ideal
in ring theory. Ideals were introduced by Marshall H. Stone, who derived their
name from the ring ideals of Abstract algebra. Ideals were proposed by Richard
Dedekind in 1876 in the third edition of his book Vorlesungen Uber Zahlenthe-
ore (English: Lecturers on Number Theory). They were a generalization of the
concept of ideal numbers developed by Ernt Kummer. Later the concept was ex-
panded by David Hilbert and especially Emmy Noether. In this paper we would
like to introduce a new type of ideals in symmetric ring that is in two cases of
Sy ring, S5 ring and we define two type of ideals in S ring, S5 ring. We give
some properties of symmetric ideals and symmetric group and we introduce a
new concept of reverse composition and plus circle compo.

1. INTRODUCTION

In algebra, which is a broad division of mathematics, Abstract algebra is a
study of algebraic structures. Algebraic structures include groups, rings, fields,
modules, vector spaces, lattices and algebras. The term abstract algebra was
coined in the early 20" century to distinguish this area of study from the other
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parts of algebra. Permutations were studied by Joseph-Louis Lagrange in his
1770 paper "Refexions sur la resolutions algebriquedes equations" devoted to
solutions of algebraic equations in which he introduced Lagrange reselvents.
Paolo Ruffini was the first person who developed the theory of permutation
groups in the context of solving algebraic equations, like his predecessors. His
goal was to establish the impossibility of an algebraic solution to a general alge-
braic equation of degree greater than four. The next step was taken by Evarsite
Galois in 1832, although his work remained unpublished until 1846, when he
considered for the first time the closure property of a group of permutations.
The theory of permutation groups received further far reaching development in
the hands of Augustin Cauchy and Camile Jordan, both through introduction of
new concepts and primarily, a great wealth of results about special classes of
permutation groups and even some general theorems. Permutation groups are
central to the study of geometric symmetries and to Galois Theory, the study of
finding solutions of polynomial equations.

Symmetric groups on infinite sets behave quite differently from symmetric
groups on finite sets, and are discussed in Scott 1987, Dixon & Mortimer 1996
and Cameron 1999. In Ring theory, a branch of abstract algebra, an ideal is a
special subset of a ring. Ring theory is an extension of Group theory. Ideals gen-
eralize certain subsets of the integers, such as the even number or the multiple
of 3. The concept of an order ideal in order theory is derived from the notion
of ideal in ring theory. Ideals were introduced by Marshall H. Stone, who de-
rived their name from the ring ideals of Abstract algebra. Ideals were proposed
by Richard Dedekind in 1876 in the third edition of his book Vorlesungen Uber
Zahlentheore (English: Lecturers on Number Theory). They were a generaliza-
tion of the concept of ideal numbers developed by Ernt Kummer. Later the con-
cept was expanded by David Hilbert and especially Emmy Noether. The notion
of ideal comes from a generalization of modular arithmetic. It is a refinement
(by Dedekind) of Kummer’s notion of ideal number, which arose from attempts
to prove Fermat’s Last Theorem (or some special cases). In Mathematical order
theory, an ideal is a special subset of a partially ordered set (poset). Although
this term historically was derived from the notion of a ring ideal of Abstract alge-
bra, it has subsequently been generalized to a different notion, [5,6]. Ideals are
of great importance for many constructions in order and Lattice theory. Cryptog-
raphy is an area of study with significant application of ring theory, [4]. Ideals
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play an important role in the development of ring theory similar to the role
played by normal subgroups in group theory, [2, 3, 7].

2. PRELIMINARIES

The following definitions are given in [1].

Definition 2.1. Let A be non empty set. A binary operation * on A is a function
x : A x A — A. The image of an ordered pair (a,b) € A x A under x is denoted
by a x b. A set A with a binary operation * defined on it is denoted by (A,x*). In
simple, a binary operation is a “way of putting two things together".

Definition 2.2. A non empty set G together with a binary operation * :GXG— G
is called a group if the following conditions are satisfied,
(i) * is associative, that is a * (b ¢) = (a *b) x ¢ for all a,b,c € G;
(ii) there exists an element e € G such that axe =e*xa = a forall a € G;
(iii) For any element a in G, there exists an element o' € G such that a *x o' =
a' x a = e, then d' is called the inverse of a.

Definition 2.3. Let G be a group, a subset H of G is called a subgroup of G if H
itself is a group under the operation induced by G.

Definition 2.4. A group G is said to be abelian if ab = ba for all a,b € G. A group
which is not abelian is called a non abelian.

Definition 2.5. Let A be finite set. A bijection from A to itself is called a permuta-
tion of A.

Definition 2.6. Let A be a finite set containing n elements. The set of all permu-
tations of A is clearly a group under the composition of functions. This group is
called the symmetric group of degree n and is denoted by S,,.

Definition 2.7. A non empty set R together with two binary operations, addition
denoted by '+’ and multiplication denoted by '. is called a ring if for all a,b, cinR.
The following conditions are satisfied,

(i) additive commutative, thatis a +b=0b+ a;
(ii) additive associative, that is (a +b) + ¢ =a + (b + ¢)
(iii) additive identity, that is there exists 0 in R such that a + 0 = 0;
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(iv) additive inverse, that is there exists —a in R such that a + (—a) = 0;
(v) multiplicative associative, thatis (a-b)-c=a- (b-c);
(vi) distributive thatisa-(b+c¢)=a-b+a-cand (b+c)a=b-a+c-a

If the multiplication is commutative then the ring is called commutative ring.

Definition 2.8. Let R be a ring. A non-empty subset of R is called a left ideal of R
if

@) abel=a-bel

(i) aelandre R=racl.
I is called a right ideal of R if

@D abel=a-bel
(i) aclandre R=arcl.

I is called an ideal of R if I is both a left ideal and a right ideal.

Definition 2.9. S, is a symmetric group. The elements of S, are

ke .

o . 12 12
The Inverse Composition is defined as in S,, e = ( L o ) = ( )

(ile)e(l)=1=e'(1)=1
e(2)=2=¢12) =2

Similarly, p;(1) =2 = p;1(2) = 1
pi2)=1=p'(1)=2

= (p)' =p1

3. MAIN RESULTS

Definition 3.1. Let us consider a symmetric group Ss.

1 2 1 2
The elements of S, are {( L 9 ) , ( 5 1 >} ={e,m}.

The Reverse Composition is defined as in Ss,

1 2 1 2
O = O )
e Ur D1 (12> R<21>
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The composition mapping is 1 — 1 — 2 here we define the reverse composition
mappingas 1 — 1 — 2 (ie.) 2 — 1.
Similarly, 2 -2 —1(ie) 1 — 2

1 2
O pr— p—
€ Ur D1 9 1 b1
1 2 1 2
and also p; Op e = O )
b1 Ure (1 9 R<2 1)

ie)l=-1—=22=2->1
252—>1=1—2.

12\
1 2] P1
It’s clearly Op is also a binary operation.

p1 Or e =

Definition 3.2. A binary operation O on Sy is said to be commutative if
e Opp1 =p1 Og eforall e,p; € So.

Definition 3.3. A symmetric group (S2,Og) is said to be Abelian if
e OR P1=p1 OR efor all e,p1 € SQ.

Definition 3.4. The symmetric group S, together with two binary operation O -
composition, and Op - reverse composition, is called S5 — ring (symmetric ring) if
staisfies the following conditions:

() (S9,0) is a symmetric group

(ii) (Ss,Og) is an Abelian group.

Definition 3.5. Let S; be a symmetric ring. A non empty subset of S5 is called a
left ideal of S5 if

@DepeS=ecop eSS

(i) ee Sandp, € S; =eOrp €S.
and S is called a right ideal of S5 if

@D epeS=cop e’

(ii) e Sand p; € S5 = p1 Ogre € S.

S is called an S;- ideal of S if S is both a left ideal and right ideal.

Verification:

) ()
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s-n-{(12) (1))

(Deopr=p1 €S
(i) e Opp1 =p1 Ore=p; € S.

Theorem 3.1. Let (Ss, 0) be a symmetric group with identity e. If S is an ideal of
S3 (symmetric) ring and e € S then S = S3.

Proof. Obviously S C 3.
Letp, € S5, sincee € S.
=copr=p €S
= 95,CS
=5=25; 4

Corollary 3.1. Let (S,, Or) be a symmetric group with identity e. If S is an ideal
of S5 (symmetric) ring and e € S then S = S;.

Proof. Obviously S C S3.
Letp; € S;. Since e € S.
=eOprpr=p1 €S
=5 CS
=5=25; U

Theorem 3.2. Let (S,, Or) be a symmetric group. Let e, p; € Sothen (e Ogpy)~t =
pit Ogetand () =e¢ (') =p1.

Proof. Let consider the elements of S, = {e,p1},

es={(12).(1)

Consider, ¢ Og p1 = p1 = 5
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(p1) ' Or(e)' =p1 Ore=p
= (e Orp1)™' = (p1)"' Or (e)™!

Hence the theorem. u
Remark 3.1.
(i) A symmetric group S, is said to be symmetric Abelian if ab = ba for all
a,be S, (n=2).

A symmetric group which is not Abelian is called a non Abelian group.
(ii) An element a € S, is called symmetric idempotent if a*> = a. Thus we
have shown that in a group S,,, The identity element is the only idempotent
element in S,,.

(iii) Let composition be a binary operation defined on S,,. An element e € S,, is
called a left identity if e o a = a for all a € S,, e is called a right identity if
aoe=aforalac€Ss,.

(iv) Let composition be a binary operation defined on S,. Let e € S, be an
identity element.

Let a € S,. An element o’ € S, is called a left inverse of a if a’ 0 a = e,
a' is called a right inverse of aif a 0 a’ = e.

Definition 3.6. We define a new operation on Ss, called as plus circle compo, which
is satisfying the following conditions:

First consider the elements of S;

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 23/)'\231)’\312)'\132)'\321)

1 2 3
21 3
Consider the identity mapping,

- {€7p17p27p37p47p5}

et’e=c¢

i.e. we are adding both the mapping are in the same, then,

e(l)4+°¢(1) = 1
e(2)+°%e(2) = 2,
e(3)+°e(3) = 3.

1+°1=1and24°2=2,3+°3=3].
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Lo 123) (123
e fr—
P 1 2 3 2 3 1.

In this case the summing elements are greater than the base element 3. There-
fore we subtract the base elements 1, 2, 3 in all mappings, i.e.

Similarly,

e()+°pi(1) = 142=3-1=2
e(2)+°p1(2) = 243=5-2=3
e(3)+°p(3) = 34+41=4-3=1

3 L1 23)_
3 23 1) v
3) o123
1 1 2 3

Therefore ¢ +° p; = (

1 2
1 2
1 2

Similarly, °
Y, 1+ < 9 3

pi(l)+e(l) = 241=3-1=2

p@2)+e2) = 3+2=5-2=3

m3)+e3) = 1+3=4-3=1
pt+°e = pr.

i.e. first we add the mapping element and eliminate the base values of the

o 123 (123
6:
b2 31 92 12 3

pa(1)+%e(l) = 14+3=4—-1=3
p2(2)+%e(2) = 24+1=3-2=1
p2(3)+°e(3) = 3+2=5-3=2

1 2 3
p2+’e = = pa.
<3 1 2)

identity element.
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Similarly, e +° 23 +° L2
’e -
Y e p 1 2 3 31 92

e(1)+°py(1) = 143=4—-1=3
@y+pxm = 24+41=3-2=1
e(3)+°p(3) = 34+2=5-3=2

1 2 3
p2+le = = P2.
<3 1 2)

= e+py = po.

And also we get,

ps+°e = Dps.
ps+°e = Dpa.
ps+°e = Dps.

And e +° p3 = p3, ps+°e = p4, ps +°€ = ps.
We do the operation in all cases, then we get a following table:

+°l e |p1|Dp2|P3|Pa|Ds
€ € | P1|P2|P3|Ps| D5

Pr|pr|p1| €| €e|e]e
b2 |P2| € |P2| €| €| €
pPs |pP3s| €| € |pP3| €| €
Py |Ps| €| €| € Py €
Ps |Ps| €| €| €| € |Ds

yop — 123 4o 12373 _ (since there are same mapping)
p1+°p = 9 3 1 2 3 1 D bpims

i.e. poy +°p2 = pa, 3 +°p3 = P3, P4 +°Pps = pa, P5 +°Ps = D5

oo (128 (123
prep=1 5 54 31 2

pi(1)+°pe(l) = 2+3=5-1=4-3=1
p1(2)+°pe(2) = 3+1=4-2=2
n3)+°p(3) = 1+2=3-3=3
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(here 3 is the base element of S3, so we again eliminate by 3 and we not
eliminate mapping fully in the third case)

p1+°pe = e
pe+°p1 = e

o, (123 (123
prebs = {9 34 1 3 2

pi(1)+°ps(1) = 2+1=3
p(2) +7p3(2) = 3+3=3
pi(3)+7p3(3) = 1+2=3

Here one mapping is same, then we get the identity element.
Therefore p; +° ps = e and also, p3 +°p; = ¢

oo (123 (1
D1 P4—231 3
o 123) (123

— =€
brps 2 3 1 2 1 3

N DN

_ W

N~
Il
4

= patipr=e

=pst°pr=e

o 01 _
P2tps = g o Tl 39 )7°
Lo 123) (123
= :6
R 13 2 31 92
Lo 123Y) (123
— = €
P27 Da 31 2 39 1
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Lo 123) (123
— = €

SR 392 1 31 2

Lo 123) (123
— = €

b2 s 31 92 2 1 3

Lo 123) (123
= = e

P37 Da 1 3 2 392 1

ps(1)+ops(1) =14+3=4—-1=3
p3(2) +°pa(2) =3+2=5—-2=3
p3s(3) +°pa(3) =2+1=3-3=3.
Here all the mappings got the same value therefore we choose the identity

mapping
=ps+t'ps = e

pa+ops =

(&
o (123) (123
Pstbs = {1 3 9 2 1 3

= 1+2=3-1=2
= 34+1=4-2=2
= 243=5-3=2

)
)
)
(123)
Tloq13)7°
= pst°pz=ce
123 12 3
)

pa(1)+°ps(1) = 3+42=5-1=4
pi(2)+°ps(2) = 2+1=3-2=1
pa(3)+°ps(3) = 143=4-3=1

Therefore p; +° ps =

Therefore p, +° ps = ¢
=ps+°pi=e
It is also a binary operation.
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Definition 3.7. If a symmetric group S; with the binary operation-plus circle
compo, satisfies the conditions for identity and inverse, then it is called symmet-
ric half group.

Definition 3.8. A symmetric group S3 together with two binary operations o, +°
composition and plus circle compo, respectively, is called S;-(symmetric) ring if
satisfies the following conditions:

(1) (Ss3,0) is a symmetric group

(ii) (Ss,+°) is a symmetric half group.

Definition 3.9. Let S} be a symmetric ring. A non empty subset of S5 is called a
left ideal of S if

@DepeS=cop eSS

(i) ee Sand p, € S5 = e+°p; € S.
and S is called a right ideal of S} if

@ epeS=ecop €S
(i) ee Sand p; € S; = p1 +°e € S.
S is called an S}- ideal of S} if S is both a left ideal and right ideal.

Verification:
Let S = e, p1,p2, S3 = €,D1, P2, D3, P4, D5

D eop=pes
(i) e+°pr=p1 +°e=p; €5.
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