

Advances in Mathematics: Scientific Journal 9 (2020), no.5, 2573-2582

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.5.20

ON ir-CLOSED SETS IN TOPOLOGICAL SPACES

K. BALA DEEPA ARASI¹, J. ANUF SARUMATHI², V. MAHESWARI³, AND Y. KAYATHIRI⁴

ABSTRACT. The aim of this paper is to introduce the concept of ir- closed sets in topological spaces. A subset A of a topological space X is called an ir- closed set if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is i- open in X. Also we investigate their properties and study the relationship with other existing generalized closed sets.

1. Introduction

In 1970, Levine [3] introduced the concept of generalized closed sets as a weaker form of closed sets in topological spaces. Mohammed and Askander in 2012 [1] introduced the concept of i- open sets. Regular open sets have been introduced and investigated by Stone [4].

In this paper, we introduce ir- closed set in topological space and investigate the relationship with other known classes of closed sets. Also we discuss their properties and characterize the ir- closed set.

2. Preliminaries

In this section, we recollect some basic preliminaries for some of the relevant open and closed sets in topological spaces.

Definition 2.1. A subset A of a topological space X is called a

 $^{^1}$ corresponding author 2010 Mathematics Subject Classification. 54A05, 54A10. Key words and phrases. ir- closed, i- open, r- closure.

- (i) regular closed (briefly r- closed) if A = cl(int(A))
- (ii) pre-closed if $cl(int(A)) \subseteq A$
- (iii) semi-open if $A \subseteq cl(int(A))$
- (iv) α open if $A \subseteq int(cl(int(A)))$
- (v) semi-preclosed if $int(cl(int(A))) \subseteq A$.

Proposition 2.1. Every regular open set is open in X.

Definition 2.2. A subset A of a topological space X is called an i- open set if there exists an open set $G \in \tau(X)$ such that $G \neq \emptyset, X$ and $A \subseteq cl(A \cap G)$. The complement of an i- open set is an i- closed set.

Proposition 2.2. Every open set in a topological space is i- open, but the converse is not true [1].

Proposition 2.3. Every semi-open set is i- open [1].

We now recall the definitions of some of the generalized closed sets in a topological space.

Definition 2.3. A subset A of a topological space X is called a

- (1) Regular generalised closed set (briefly rg- closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .
- (2) Generalised preregular closed set (briefly gpr- closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .
- (3) Regular weakly generalised closed set (briefly rwg- closed) if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) .
- (4) Weakly generalised closed set (briefly wg- closed) if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (5) Generalised pre closed set (briefly gp- closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (6) Generalised closed set (briefly g- closed set) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X. The complement of a g- closed set is g- open set.
- (7) Semi-generalised closed set (briefly sg- closed set) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- (8) Generalised semi-closed set (briefly gs- closed set) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (9) Generalised semi-preclosed set (briefly gsp- closed set) if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

- (10) \hat{g} closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- (11) α generalised closed set (briefly αg closed set) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (12) Generalised α closed set (briefly $g\alpha$ closed set) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α open in X.
- (13) $sb\hat{g}$ closed set [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $b\hat{g}$ open in X.
- (14) g^* closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g- open in X.
- (15) b^* closed set if $int(cl(A)) \subseteq U$ whenever $A \subseteq U$ and U is b- open in X.
- (16) $r\hat{g}$ closed set if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} open in (X, τ) .

3. ir- Closed sets in topological spaces

We introduce and study the notion of ir- closed sets and obtain some of its basic properties.

Definition 3.1. A subset A of a topological space X is called an ir-closed set if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is i- open in X. The complement of an ir-closed set is ir- open set.

Example 1. Let
$$X = \{a, b, c\}$$
 and $\tau = \{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}\}$.
 Then r - closed = $\{\emptyset, X, \{a, b\}, \{c\}\}$; ir - closed set = $\{\emptyset, X, \{c\}, \{a, b\}, \{a, c\}\}$.
 Here $A = \{a, c\}$ is ir - closed set but not r - closed.

Proposition 3.1. *Every regular open is i- open.*

Proof. Since every regular open is open and every open is i- open implies every regular open is i- open.

Theorem 3.1. Every ir- closed set is rg- closed set.

Proof. Let A be an ir- closed set in (X, τ) . Let $A \subseteq U$ and U is regular open. Since every regular open is i- open, U is i- open. Since every regular closed set is closed, $cl(A) \subseteq rcl(A) \subseteq U$ where U is regular open.

Therefore *A* is rg- closed set in (X, τ) .

The converse need not be true.

Example 2. Let
$$X = \{a, b, c\}$$
 and $\tau = \{\emptyset, X, \{a, b\}\}$.
Then rg -closed set $= \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$.

```
ir- closed set = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}.
```

Here the sets $\{a\}, \{b\}, \{a, b\}$ are rg- closed set but not ir- closed set.

Theorem 3.2. Every ir- closed set is gpr- closed set.

Proof. Let A be an ir- closed set in (X,τ) . Let $A\subseteq U$ and U is regular open. Since every regular open is i- open, U is i- open. Since every preclosed set is closed and regular closed set is closed, $pcl(A)\subseteq cl(A)\subseteq rcl(A)\subseteq U$ where U is regular open.

Therefore A is qpr- closed set in (X, τ) .

The converse need not be true.

Example 3. Let
$$X = \{a, b, c\}$$
 and $\tau = \{\emptyset, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}\}\}$.
 Then gpr - closed $set = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\}$.
 ir - closed $set = \{\emptyset, X, \{c\}, \{a, b\}, \{a, c\}\}$.
 Here the $sets \{a\}, \{b\}, \{b, c\}$ are gpr - closed set but not ir - closed set .

Theorem 3.3. Every ir- closed set is rwg- closed set.

Proof. Let A be an ir- closed set in (X, τ) . Let $A \subseteq U$ and U is regular open. Since every regular open is i- open, U is i- open, $cl(int(A)) \subseteq cl(A) \subseteq rcl(A) \subseteq U$ where U is regular open. Therefore A is rwq- closed set in (X, τ) .

The converse need not be true.

Example 4. Let
$$X = \{a, b, c\}$$
 and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}.$ Then rwg - closed set $= \{\emptyset, X, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$ ir - closed set $= \{\emptyset, X, \{a, c\}, \{b, c\}\}.$ Here the sets $\{c\}, \{a, b\}$ are rwg - closed set but not ir - closed set.

Theorem 3.4. Every ir- closed set is wg- closed set.

Proof. Let A be an ir- closed set in (X, τ) . Let $A \subseteq U$ and U is open.

Since every open is *i*- open, U is *i*- open, $cl(int(A)) \subseteq cl(A) \subseteq rcl(A) \subseteq U$ where U is open. Therefore A is wg- closed set in (X, τ) .

The converse need not be true.

Example 5. Let
$$X = \{a, b, c\}$$
 and $\tau = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}$.
 Then wg - closed set $= \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$;
 ir - closed set $= \{\emptyset, X, \{a, b\}\}$.
 Here the sets $\{a\}, \{b\}$ are wg - closed set but not ir - closed set.

Theorem 3.5. Every ir- closed set is g- closed set.

Proof. Let A be an ir- closed set in (X, τ) . Let $A \subseteq U$ and U is open.

Since every open is i- open, U is i- open, $cl(A) \subseteq rcl(A) \subseteq U$ where U is open. Therefore A is g- closed set in (X, τ) .

The converse need not be true.

Example 6. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}.$

Then g-closed set = $\{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}\$;

ir- closed set = $\{\emptyset, X, \{a, c\}, \{b, c\}\}$.

Here the set $\{c\}$ is g-closed set but not ir-closed set.

Theorem 3.6. Every ir- closed set is qs- closed set.

Proof. Let A be an ir- closed set in (X, τ) . Let $A \subseteq U$ and U is open.

Since every open is *i*- open, U is *i*- open, $scl(A) \subseteq cl(A) \subseteq rcl(A) \subseteq U$ where U is regular open. Therefore A is gs- closed set in (X, τ) .

The converse need not be true.

Example 7. *Let* $X = \{a, b, c\}$ *and* $\tau = \{\emptyset, X, \{c\}\}.$

Then gs-closed set = $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}\};$

ir- closed $set = {\emptyset, X, {a, b}}.$

Here the sets $\{a\}, \{b\}, \{a, c\}, \{b, c\}$ are gs- closed set but not ir- closed set.

Theorem 3.7. Every ir- closed set is αg - closed set.

Proof. Let A be an ir- closed set in (X,τ) . Let $A\subseteq U$ and U is open.

Since every open is i- open, U is i- open. Since every closed is α - closed and every regular closed is closed, $\alpha cl(A) \subseteq cl(A) \subseteq rcl(A) \subseteq U$ where U is open. Therefore A is αg - closed set in (X, τ) .

The converse need not be true.

Example 8. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{c\}, \{b, c\}\}.$

Then αg -closed set = $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\}$;

ir- closed $set = {\emptyset, X}.$

Here the sets $\{a\},\{b\},\{a,b\},\{a,c\}$ are αg - closed set but not ir- closed set.

Theorem 3.8. Every ir- closed set is gp- closed set.

Proof. Let A be an ir- closed set in (X, τ) . Let $A \subseteq U$ and U is open.

Since every open is *i*- open, U is *i*- open, $pcl(A) \subseteq cl(A) \subseteq rcl(A) \subseteq U$ where U is open. Therefore A is gp- closed set in (X, τ) .

The converse need not be true.

Example 9. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a, b\}\}.$

Then gp- $closed\ set = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}\};$ ir- $closed\ set = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}.$

Here the sets $\{a\}, \{b\}$ are gp-closed set but not ir-closed set.

Theorem 3.9. Every ir- closed set is sg- closed set.

Proof. Let A be an ir- closed set in (X, τ) . Let $A \subseteq U$ and U is semi-open.

Since every semi-open is i- open, U is i- open. Since every closed is semi-closed and every regular closed is closed, $scl(A) \subseteq cl(A) \subseteq rcl(A) \subseteq U$ where U is semi-open. Therefore A is sg- closed set in (X, τ) .

The converse need not be true.

Example 10. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}.$

Then sg-closed set = $\{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\};$

ir- closed set = $\{\emptyset, X, \{a, c\}, \{b, c\}\}$.

Here the sets $\{a\}, \{b\}, \{c\}$ are sg-closed set but not ir-closed set.

Theorem 3.10. Every ir- closed set is \hat{g} - closed set.

Proof. Let A be an ir- closed set in (X,τ) . Let $A\subseteq U$ and U is semi-open.

Since every semi-open is i- open, U is i- open, $cl(A) \subseteq rcl(A) \subseteq U$ where U is semi-open. Therefore A is \hat{g} - closed set in (X, τ) .

The converse need not be true.

Example 11. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}.$

Then $\hat{\mathfrak{g}}$ - closed set = $\{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\};$

 $\textit{ir-closed set} = \{\emptyset, X, \{a, c\}, \{b, c\}\}.$

Here the set $\{c\}$ is \hat{g} -closed set but not ir-closed set.

Theorem 3.11. Every ir- closed set is gsp- closed set.

Proof. Let A be an ir- closed set in (X,τ) . Let $A\subseteq U$ and U is open.

Since every open is i- open, U is i- open. Since every closed is semi pre-closed and every regular closed is closed, $spcl(A) \subseteq cl(A) \subseteq rcl(A) \subseteq U$ where U is open. Therefore A is gsp- closed set in (X, τ) .

The converse need not be true.

Example 12. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{c\}\}.$

Then gsp- $closed\ set = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}\};$ ir- $closed\ set = \{\emptyset, X, \{a, b\}\}.$

Here the sets $\{a\}, \{b\}, \{a, c\}, \{b, c\}$ are gsp-closed set but not ir-closed set.

Remark 3.1. The following diagram shows the relationship of *ir*-closed sets with other known existing sets.

Theorem 3.12. *Union of two ir- closed set is ir- closed set.*

Proof. Let A and B be two ir- closed sets.

Let G be any i- open set in (X, τ) , such that $A \cup B \subseteq G$.

Then $A \subseteq G$ and $B \subseteq G$. Since A and B are ir- closed set, $rcl(A) \subseteq G$ and $rcl(B) \subseteq G$.

Therefore $rcl(A) \cup rcl(B) = rcl(A \cup B) \subseteq G$.

Hence $A \cup B$ is ir- closed set.

Result 1. The intersection of ir- closed sets need not be ir- closed set.

Example 13. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{c\}, \{a, b\}\}.$

Then ir- closed set= $\{\emptyset, X, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$

Let $A = \{a, b\}$ and $B = \{a, c\}$ where $A \cap B = \{a\}$ which is not an *ir*-closed set.

Remark 3.2. g^* - closed set and ir- closed sets are independent of each other.

Example 14.

(i) Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{c\}, \{a, b\}\}.$ Then g^* - closed set $= \{\emptyset, X, \{c\}, \{a, b\}\}.$ ir- closed set $= \{\emptyset, X, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$ The sets $\{a, c\}, \{b, c\}$ are ir- closed set but not g^* - closed set.

(ii) Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{c\}, \{b, c\}\}.$ Then g^* - closed set $= \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}.$ ir- closed set $= \{\emptyset, X\}.$ The sets $\{a\}, \{a, b\}, \{a, c\}$ are g^* - closed set but not ir- closed set.

Remark 3.3. $g\alpha$ - closed set and ir- closed sets are independent of each other.

Example 15.

(i) Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{c\}\}$. Then $g\alpha$ - closed set= $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. ir- closed set = $\{\emptyset, X, \{a, b\}\}$. The sets $\{a\}, \{b\}$ are $g\alpha$ - closed set but not ir- closed.

(ii) Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. Then $g\alpha$ - closed set= $\{\emptyset, X, \{c\}\}$. ir- closed set = $\{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}$. The sets $\{a, c\}, \{b, c\}$ are ir- closed set but not $g\alpha$ - closed set.

Remark 3.4. α - closed set and ir- closed sets are independent of each other.

Example 16.

(i) Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{c\}\}$. Then α - closed set= $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$. ir- closed set = $\{\emptyset, X, \{a, b\}\}$. The sets $\{a\}, \{b\}$ are α - closed set but not ir- closed.

(ii) Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. Then α - closed set= $\{\emptyset, X, \{c\}\}$. ir- closed set = $\{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}$. The sets $\{a, c\}, \{b, c\}$ are ir- closed set but not α - closed set.

Remark 3.5. b^* - closed set and ir- closed sets are independent of each other.

Example 17.

```
(i) Let X=\{a,b,c\} and \tau=\{\emptyset,X,\{c\}\}.
 Then b^*- closed set= \{\emptyset,X,\{a\},\{b\},\{a,b\}\}.
 ir- closed set = \{\emptyset,X,\{a,b\}\}.
 The sets \{a\},\{b\} are b^*- closed set but not ir- closed set.
```

(ii) Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. Then b^* - closed set= $\{\emptyset, X, \{c\}\}$. ir- closed set = $\{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}$. The sets $\{a, c\}, \{b, c\}$ are ir- closed set but not b^* - closed set.

Remark 3.6. $r\hat{g}$ - closed set and ir- closed sets are independent of each other.

Example 18.

Remark 3.7. $sb\hat{g}$ - closed set and ir- closed sets are independent of each other.

Example 19.

```
(i) Let X = {a,b,c} and τ = {∅, X, {c}}.

Then sbĝ-closed set= {∅, X, {a}, {b}, {a,b}};

ir-closed set = {∅, X, {a,b}}.

The sets {a}, {b} are sbĝ-closed set but not ir-closed
(ii) Let X = {a,b,c} and τ = {∅, X, {a,b}}.

Then sbĝ-closed set= {∅, X, {c}}.

ir-closed set = {∅, X, {c}}.

The sets {a,c}, {b,c} are ir-closed set but not sbĝ-closed set.
```

Remark 3.8. The following diagram shows the independence of ir- closed sets with other known existing sets.

Theorem 3.13. If A is i- open and ir- closed set in (X, τ) then A is semi-closed.

Proof. Since A is i- open and ir- closed we have $int(cl(A)) \subseteq rcl(A) \subseteq A$. Therefore A is semi-closed.

REFERENCES

- [1] A. A. MOHAMMED, S. W. ASKANDAR: *On i-open sets*, UAE Math Day Conference, American Univ. of Sharjah, April 14, 2012.
- [2] K. B. ARASI, S. N. KRISHNAN: *On sbĝ-closed sets in topological spaces*, International Journal of Mathematical Archive, **6**(10) (2015), 115–121.
- [3] N. LEVINE: Generalised closed sets in topology, RendCire. Math. Palermo., 19(2) (1970), 89–96.
- [4] M. STONE: Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375–481.

 $^{1,2,3,4}{\rm PG}$ and Research Department of Mathematics, A.P.C Mahalaxmi College for Women, Thoothukudi.

E-mail address: 1baladeepa85@gmail.com

 $\it E\text{-}mail\ address:\ ^2$ anuf sarumathi 960g mail.com

E-mail address: 3mahiraj2005@gmail.com

 $\it E\text{-}mail\ address:\ ^4$ kayathiri906@gmail.com