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DECOMPOSITION OF NANO α - CONTINUITY AND
NANO G̈α - CONTINUITY

S. M. SANDHYA1, S. JEYASHRI, S. GANESAN, AND C. ALEXANDER

ABSTRACT. The main purpose of this paper is to introduce the concepts of Nη]-
sets, Nη]]-sets, Nη]-continuity and Nη]]-continuity and to obtain decomposition
of Nano α-continuity and Ng̈α-continuity in nano topological spaces.

1. INTRODUCTION

Jayalakshmi and Janaki [8] introduced and studied the notions of Nt-sets, NA-
sets and NB-sets in nano topological spaces. Recently, Ganesan [7] introduced
and studied the notions of NαB-sets, Nη-sets and Nηζ-sets in Nano topological
spaces, to obtain a decomposition of nano continuity. In this paper, we introduce
the notions of Nη]-sets, Nη]]-sets, Nη]-continuity and Nη]]-continuity and obtain
decomposition of Nano α-continuity and Ng̈α-continuity. Moreover the study
of Nη]-sets, Nη]]-sets led to some decomposition of nano continuity which is
extensively developed and used in computer science and digital topology.
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2. PRELIMINARIES

Definition 2.1. [9] Let U be a non-empty finite set of objects, called the universe,
and R be an equivalence relation on U named as the indiscernibility relation. Ele-
ments belonging to the same equivalence class are said to be indiscernible one with
another. The pair (U,R) is said to be the approximation space. Let X ⊆ U .

(1) The lower approximation of X with respect to R is the set of all objects,
which can be for certain classified as X with respect to R and it is denoted
by LR(X). That is, LR(X) =

⋃
xε U {R(X) : R(X) ⊆ X} where R(x)

denotes the equivalence class determined by X.
(2) The upper approximation of X with respect to R is the set of all objects,

which can be possibly classified as X with respect to R4 and it is denoted
by UR(X). That is, UR(X) =

⋃
xεU{R(X) : R(X) ∩X 6= ∅}.

(3) The boundary region of X with respect to R is the set of all objects, which
can be neither in nor as not-X with respect to R and it is denoted by
BR(X). That is, BR(X) = UR(X)− LR(X).

Proposition 2.1. [9] If (U,R) is an approximation space and X, Y ⊆ U , then:

(1) LR(X) ⊆ X ⊆ UR(X).
(2) LR(∅) = UR(∅) = ∅ , LR(U) = UR(U) = U.
(3) UR(X ∪ Y) = UR(X) ∪ UR(Y).
(4) UR( X ∩ Y) ⊆ UR(X) ∩ UR(Y).
(5) LR(X ∪ Y) ⊇ LR(X) ∪ LR(Y).
(6) LR( X ∩ Y) = LR(X) ∩ LR(Y).
(7) LR(X) ⊆ LR(Y) and UR(X) ⊆ UR(Y) whenever X ⊆ Y .
(8) UR(Xc ) = [LR((X)]c and LR(Xc) = [UR(X)]c.
(9) UR (UR (X)) = LR (UR (X)) = UR (X).

(10) LR (LR (X )) = UR(LR (X))=LR (X) .

Definition 2.2. [9] Let U be an universe, R be an equivalence relation on U and
τUR(X) = {U, φ, LR(X), UR(X), BR(X)}, where X ⊆ U . Then by Property 2.1,
τUR(X) satisfies the following axioms:

(1) U , ∅ ε τUR(X);
(2) the union of the elements of any sub-collection of τUR(X) is in τUR(X);
(3) the intersection of the elements of any finite sub collection of τUR(X) is in

τUR(X).
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Then τUR(X) is called the Nano topology on U with respect to X. The space (U,
τUR(X)) is the Nano topological space. The elements of are called Nano open sets.

Definition 2.3. [9] If (U, τUR(X)) is the Nano topological space with respect to X
where X ⊆ U and if M ⊆ U , then:

(1) The Nano interior of the set M is defined as the union of all Nano open
subsets contained inM and it is denoted byNInte(M). That is, NInte(M)

is the largest Nano open subset of M .
(2) The Nano closure of the set M is defined as the intersection of all Nano

closed sets containing M and it is denoted by NClo(M). That is, NClo(M)

is the smallest Nano closed set containing M .

Definition 2.4. A subset M of a space (U, τUR(X)) is called:

(1) Nano α-open set [9] if M ⊆ Ninte(Ncl(Nint(M))).
(2) Nano semi-open set [9] if M ⊆ Ncl(Nint(M)).
(3) Nano pre-open set [9] if M ⊆ Nint(Ncl(M)).
(4) Nano regular-open set [9] if M = Nint(Ncl(M)).

The complements of the above mentioned Nano open sets are called their respective
Nano closed sets.

The Nano α-closure [5] (resp. Nano semi-closure [2, 3], Nano pre-closure [1])
of a subset M of U , denoted by Nαcl(M) (resp.Nscl(M), Npcl(M)) is defined to be
the intersection of all Nano α-closed (resp. Nano semi-closed, Nano pre closed) sets
of (U, τUR(X)) containing M .

Definition 2.5. A subset M of a space (U, τUR(X)) is called:

(1) a Nt-set [8] if Nint(Ncl(M)) = Nint(M).
(2) an NA-set [8] if M = S∩G where S is Nano open and G is a Nano regular

closed set.
(3) a NB-set [8] if M = S ∩G where S is Nano open and G is a Nt-set.
(4) a Nano locally closed set [4] if M = S ∩G where S is Nano open and G is

Nano closed.
(5) an NαB-set [7] if M = S ∩G where S is Nano α-open and G is a Nt-set.
(6) an Nη-set [7] if M = S ∩ G where S is Nano open and G is an Nano

α-closed set.
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The collection of Nt-sets (resp. NA-sets, NB-sets, locally closed sets, NαB-set, Nη-set)
in U is denoted by Nt(U) (resp. NA(U), NB(U), NLC(U), NαB(U), Nη(U)).

Definition 2.6. A subset M of a space (U, τUR(X)) is called

(1) a Nano semi generalized closed (briefly Nsg-closed) set [2] if Nscl(M) ⊆ T
whenever M ⊆ T and T is Nano semi-open in (U, τUR(X)).

(2) Nano g̈α-closed (briefly Ng̈α-closed) set [5] if Nαcl(M) ⊆ T whenever M ⊆
T and T is Nsg-open in (U, τUR(X)). The complement of Ng̈α-closed set is
called Ng̈α-open set.

(3) Nano g̈p-closed (briefly Ng̈p-closed) set [5] if Npcl(M) ⊆ T whenever M ⊆
T and T is Nsg-open in (U, τUR(X)). The complement of Ng̈p-closed set is
called Ng̈p-open set.

The collection of all Ng̈α-closed (resp. Ng̈p-closed) sets is denoted by:

Ng̈αc((τUR(X))(resp.Ng̈pc((τUR(X)))

Proposition 2.2. [6] In a space U , the following statements hold:

(1) Every Nano α-open set is Ng̈α-open but not conversely.
(2) Every Ng̈α-open set is Ng̈p-open but not conversely.
(3) Every Ng̈α-continuous map is Ng̈p-continuous but not conversely.

Theorem 2.1. (1) Every Nano closed is Nt-set but not conversely [8].
(2) Every Nano α-closed set is Nano semi-closed but not conversely [11].
(3) Every Nt-set is NB-set but not conversely [8].

Theorem 2.2. [8] In a space U , the following statements hold:

(1) M is Nt-set if and only if it is Nano semi closed.
(2) If M and N are two Nt-sets, then M ∩N is a Nt-set.

3. Nη]-SETS AND Nη]]-SETS

In this section we introduce and study the notions of Nη]-sets and Nη]]-sets in
nano topological spaces.

Definition 3.1. A subset M of a space U is called:

(1) an Nη]-set if M = S ∩ G where S is Nsg-open and G is Nano α-closed in
U .
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(2) an Nη]]-set if M = S ∩G where S is Ng̈α-open and G is a Nt-set in U .

The collection of all Nη]-sets (resp. Nη]]-sets) in U will be denoted by Nη](U) (resp.
Nη]](U))

Proposition 3.1. Every Nη-set is Nη]-set but not conversely.

Proof. Let A be Nη-set. Then A = S∩G, where S is Nano open and G is Nano α-
closed set. Since every Nano open set is Nsg-open set, S is Nsg-open set. Hence
A is Nη]-set. �

Example 1. Let U = {1, 2, 3, 4} with U/R = {{3}, {4}, {1, 2}} and X = {2}. The
Nano topology τUR(X) = {∅, {1, 2}, U}. Then Nη]-sets are ∅, U , {1}, {2}, {3},
{4}, {1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 4} and Nη-set are ∅, U , {3}, {4}, {1, 2}, {3, 4}.
It is clear that {1, 2, 3} is Nη]-set but it is not Nη-set.

Proposition 3.2. Every NαB-set is Nη]]-set but not conversely.

Proof. Let A be NαB-set. Then A = S ∩G, where S is Nano α-open and G is Nt
set. Since every Nano α-open set is Ng̈α-open set, S is Ng̈α-open set. Hence A is
Nη]]-set. �

Example 2. Let U and τUR(X) as in the Example 1. Then Nη]]-set are ∅, U,
{1}, {2}, {3}, {4}, {1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 4} and NαB-set are φ, U, {3},
{4}, {1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 4} . It is clear that {2} is Nη]]-set but it is not
NαB-set.

Proposition 3.3. Every Ng̈α-open set is Nη]]-set but not conversely.

Proof. It follows form Definition 2.6 (2) and Definition 3.1 (2). �

Example 3. Let U and τUR(X) as in the Example 2. Then Ng̈α-open set are ∅,
U, {1}, {2}, {1, 2}, {1, 2, 3}, {1, 2, 4}. It is clear that {4} is Nη]]-set but it is not
Ng̈α-open set.

Remark 3.1.

(1) The notions of Nη]-sets and Ng̈α-closed sets are independent.
(2) The notions of Nη]]-sets and Ng̈p-closed sets are independent.

Example 4.
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(1) Let U and τUR(X) are as in the Example 1. Then Ng̈α-closed sets ∅, U ,
{3}, {4}, {3, 4}, {1, 3, 4}, {2, 3, 4}. The set {1, 3, 4} is Ng̈α-closed but not
an Nη]-set and also the set {1, 2, 3} is an Nη]-set but not a Ng̈α-closed in
(U, τUR(X)).

(2) Let U and τUR(X) as in the Example 2. Then Ng̈p-closed sets are ∅, U, {1},
{2}, {3}, {4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}. The
set {1, 3} is Ng̈p-closed but not an Nη]]-set and also the set {1, 2, 4} is an
Nη]]-set but not a Ng̈p-closed in (U, τUR(X)).

Remark 3.2. We have the following implications.

✲NA(U) NLC(U)

❄

NB(U) ✲

❄
Nη(U)

❄

NαB(U)

✲

✲ Nη♯♯(U)

Nη♯(U)

✻

Ng̈αo(U) ✲ Ng̈po(U)

where none of these implications is reversible as shown in [7].

Theorem 3.1. For a subset M of a space U , the following are equivalent:

(1) M is an Nη]-set.
(2) M = S ∩ Nαcl(M) for some Nsg-open set S.

Proof. (1) ⇒ (2) Since M is an Nη]-set, then M = S ∩ G, where S is Nsg-
open and G is Nano α-closed. So, M ⊂ S and M ⊂ G. Hence Nαcl(M) ⊂
Nαcl(G). Therefore M ⊂ S ∩ Nαcl(M) ⊂ S ∩ Nαcl(G) = S ∩ G = M . Thus,
M = S ∩Nαcl(M). .

(2) ⇒ (1) It is obvious because Nαcl(M) is Nano α-closed. (Since A is Nano
α-closed if and only if A = Nαcl(A)). �
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Remark 3.3. In a space U, the intersection of two Nη]-sets is an Nη]-set.

Remark 3.4. Union of two Nη]-sets need not be an Nη]-set as seen from the follow-
ing example.

Example 5. Let U and τUR(X) are as in the Example 1. The sets {1}, {3} are
Nη]]-sets in (U, τUR(X)) but their union {1, 3} is not an Nη]-set in (U, τUR(X)).

Theorem 3.2. For a subset M of a space U, the following are equivalent:

(1) M is Nano α-closed.
(2) M is an Nη]-set and Nano Ng̈α-closed.

Proof. (1)⇒ (2) This is obvious.
(2) ⇒ (1) Since M is an Nη]-set, then according to Theorem 3.1, M = S ∩

Nαcl(M) where S is Nsg-open in U . So, M ⊂ S and since M is Ng̈α-closed, then
Nαcl(M) ⊂ S. Therefore, Nαcl(M) ⊂ S ∩ Nαcl(M) = M . Hence, M is Nano
α-closed. �

Remark 3.5. In a space U, the intersection of two Nη]]-sets is an Nη]]-set.

Remark 3.6. Union of two Nη]]-sets need not be an Nη]]-set as seen from the
following example.

Example 6. Let U and τUR(X) are as in the Example 2. The sets {2}, {3, 4} are
Nη]]-sets in (U, τUR(X)) but their union {2, 3, 4} is not an Nη]]-set in (U, τUR(X)).

Theorem 3.3. For a subset M of a space U , the following are equivalent.

(1) M is Ng̈α-open.
(2) M is an Nη]]-set and Ng̈p-open.

Proof. Necessity: It follows from Remark 1.4 (3) and Definition 2.1 (2).
Sufficiency: Assume that M is Ng̈p-open and an Nη]]-set in U . Then M =

A ∩ B where A is Ng̈α-open and B is a Nt-set in U . Let F ⊂ M , where F is
Nsg-closed in U . Since M is Ng̈p-open in U , F ⊂ Npint(M) = M ∩ Nint(Ncl(M))
= (A ∩ B) ∩ Nint[Ncl(A ∩ B)] ⊂ A ∩ B ∩ Nint(Ncl(A)) ∩ Nint(Ncl(B)) = A ∩
B ∩ Nint(Ncl(A)) ∩ Nint(B), since B is a Nt-set. This implies, F ⊂ Nint(B). Note
that M is Ng̈α-open and that F⊂ A. So, F ⊂ Nαint(A). Therefore, F ⊂ Nαint(A)
∩ Nint(B) = Nαint(S). Hence S is Ng̈α-open. �
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4. Nη-CONTINUITY, Nη]-CONTINUITY AND Nη]]-CONTINUITY

Definition 4.1. A map f : (U, τUR(X))→ (L, τU ′R(Y )) is called:

(1) A-continuous [7] if f−1(V) is a NA-set in U for every Nano open set V of L.
(2) B-continuous [7] if f−1(V) is a NB-set in U for every Nano open set V of L.
(3) Nano α-continuous [10] if f−1(V) is a Nano α-open set in U for every Nano

open set V of L.
(4) Nano LC-continuous [4] if f−1(V) is a Nano locally closed set in U for every

Nano open set V of L.
(5) NαB-continuous [7] if f−1(V) is a NαB-set in U for every Nano open set V

of L.
(6) Nη-continuous [7] if f−1(V) is a Nη-set in U for every Nano open set V of L.
(7) Ng̈α-continuous [6] (resp. Ng̈p-continuous [6]) if f−1(V) is an Ng̈α-open

set (resp. Ng̈p-open set) in U for every Nano open set V of L.

Definition 4.2. A map f : (U, τUR(X))→ (L, τU ′R(Y )) is said to be Nη]-continuous
(resp. Nη]]-continuous) if f−1(V) is an Nη]-set (resp. an Nη]]-set) in U for every
Nano open subset V of L.

Definition 4.3. A map f : (U, τUR(X))→ (L, τU ′R(Y )) is said to be N]η]-continuous
if f−1(V) is an Nη]-set in U for every Nano closed subset V of L.

Remark 4.1. It is clear that, a map f : (U, τUR(X)) → (L, τU ′R(Y )) is Nano α-
continuous if and only if f−1(V) is an Nano α-closed set in U for every Nano closed
set V of L.

Proposition 4.1. Every Nη-continuous is Nη]-continuous but not conversely.

Proof. It is follows from Proposition 3.1. �

Example 7. Let U = {1, 2, 3}, with U/R = {{1}, {2, 3}} and X = {1}. Then
the Nano topology is τUR(X) = {∅, {1}, U}. Let L = {1, 2, 3} with L/R′ =

{{2}, {1, 3}, {3, 1}} and Y = {1, 3}. Then Nano topology is τU ′R(Y ) = {∅, {1, 3}, L}.
The Nη] -sets are ∅, U, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and Nη-sets are ∅, U ,
{1}, {2}, {3}, {2, 3}. Let f : (U, τUR(X)) → (L, τU ′R(Y )) be the identity map.
Then it is Nη]-continuous but not Nη-continuous, since f−1({1, 3}) = {1, 3} is not
Nη-set.

Proposition 4.2. Every NαB-continuous is Nη]]-continuous but not conversely.
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Proof. It is follows from Proposition 3.2. �

Example 8. Let U = {1, 2, 3}, with U/R = {{3}, {1, 2}, {2, 1}} and X = {1, 2}.
Then the Nano topology is τUR(X) = {∅, {1, 2}, U}. Let L = {1, 2, 3} with L/R′ =
{{1}, {2, 3}} and Y = {1}. Then Nano topology is τU ′R(Y ) = {∅, {1}, L}. The
Nη]]-sets are ∅, U, {1}, {2}, {3}, {1, 2} and NαB-sets are ∅, U, {3}, {1, 2}. Define
f : (U, τUR(X)) → (L, τU ′R(Y )) be the identity map. Then it is Nη]]-continuous
but not NαB-continuous, since f−1({1}) = {1} is not NαB-set.

Proposition 4.3. Every Ng̈α-continuous is Nη]]-continuous but not conversely.

Proof. It is follows from Proposition 3.3. �

Example 9. Let U, τUR(X) and f be as in the Example 8. Let L = {1, 2, 3}
with L/R′ = {{3}, {1, 2}} and Y = {3}. Then Nano topology is τU ′R(Y ) =

{∅, {3}, L}. The Ng̈α-open sets are ∅, U, {1}, {2}, {1, 2}. Define f : (U, τUR(X))→
(L, τU ′R(Y )) be the identity map. Then it isNη]]-continuous but notNg̈α-continuous,
since f−1({3}) = {3} is not Ng̈α-open set.

Remark 4.2. The following examples show that the concepts of

(1) Ng̈p-continuity and Nη]]-continuity are independent.
(2) Ng̈α-continuity and N]η]-continuity are independent.
(3) Nη]-continuity and N]η]-continuity are independent.

Example 10. Let U, τUR(X), L, τU ′R(Y ) and f as in the Example 9. Then Nη]]-sets
are ∅, U, {1}, {2}, {3}, {1, 2} and Ng̈p-open sets are ∅, U, {1}, {2}, {1, 2}, {1, 3},
{2, 3}. Define f : (U, τUR(X)) → (L, τU ′R(Y )) be the identity map. Then it is
Nη]]-continuous but not Ng̈p-continuous, since f−1({3})= {3} is not Ng̈p-open set.

Example 11. Let U = {1, 2, 3}, with U/R = {{2}, {1, 3}, {3, 1}} and X = {1, 3}.
Then the Nano topology is τUR(X) = {∅, {1, 3}, U}. Let L = {1, 2, 3} with
L/R′ = {{3}, {1, 2}, {2, 1}} and Y = {1, 2}. Then Nano topology is τU ′R(Y ) =

{∅, {1, 2}, L}. The Nη]]-sets are ∅, U, {1}, {2}, {3}, {1, 3} and Ng̈p-open sets are
∅, U , {1}, {3}, {1, 2}, {1, 3}, {2, 3}. Then Ng̈p-continuous but not Nη]]-continuous,
since f−1({1, 2}) = {1, 2} is not Nη]]-set.

Example 12. Let U = {1, 2, 3}, with U/R = {{1}, {2, 3}, {3, 2}} and X = {2, 3}.
Then the Nano topology is τUR(X) = {∅, {2, 3}, U}. Let L, τU ′R(Y ), and f as
in the Example 9. Then Ng̈α-open sets are ∅, U, {2}, {3}, {2, 3} and Nη]-sets are
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∅, U, {1}, {2}, {3}, {2, 3}. Then Ng̈α-continuous but not N ]η]-continuous, since
f−1({1, 2}) = {1, 2} is not N ]η]-set.

Example 13. Let U, τUR(X), and f as in the Example 9. Let L = {1, 2, 3} with
L/R′ = {{1}, {2, 3}, {3, 2}}andY = {2, 3}. Then Nano topology is τU ′R(Y ) =

{∅, {2, 3}, L}. The Nη]-sets are ∅, U, {1}, {2}, {3}, {1, 2} and Ng̈α-open sets are
∅, U, {1}, {2}, {1, 2}. ThenN ]η]-continuous but notNg̈α-continuous, since f−1({2, 3})
= {2, 3} is not Ng̈α-open set.

Example 14. Let U, τUR(X), L, τU ′R(Y ) and f be as in the Example 12. Then Nη]-
continuous but not N ]η]-continuous, since f−1({1, 2}) = {1, 2} is not N ]η]-set.

Example 15. Let U, τUR(X), L, τU ′R(Y ) and f as in the Example 11. Then Nη]-
sets are ∅, U, {1}, {2}, {3}, {1, 3}. Then N ]η]-continuous but not Nη]-continuous,
since f−1({1, 2}) = {1, 2} is not Nη]-set.

Remark 4.3. From the above discussions we obtain the following diagram where
A→ B represents A implies B, but not conversely.

✲NA-continuity NLC-continuity

❄

NB-continuity ✲

❄
Nη -continuity

❄

NαB-continuity

✲

✲ Nη♯♯-continuity

Nη♯-continuity

✻

Ng̈α-continuity ✲ Ng̈p-continuity

Theorem 4.1. For a map f : (U, τUR(X))→ (L, τU ′R(Y )), the following are equiv-
alent.

(1) f is Nano α-continuous.
(2) f is N]η]-continuous and Ng̈α-continuous.

Proof. According to Definition 4.1 (7), Definition 4.3, Remark 4.4 and Theorem
3.2, the proof is immediate. �
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Theorem 4.2. For a map f : (U, τUR(X))→ (L, τU ′R(Y )), the following are equiv-
alent.

(1) f is Ng̈α-continuous.
(2) f is Nη]]-continuous and Ng̈p-continuous.

Proof. According to Theorem 3.3, the proof is immediate. �

5. CONCLUSION

General topology plays vital role in many fields of applied sciences as well as
in all branches of mathematics. In reality it is used in data mining, computa-
tional topology for geometric design and molecular design, computer-aided de-
sign, computer-aided geometric design, digital topology, information systems,
particle physics and quantum physics etc. In this paper, we have defined and
studied the notions of Nη]-sets, Nη]]-sets, Nη]-continuous and Nη]]-continuous
map in nano topology and discussed their properties. Also we have discussed
the relationships between the other existing continuities. Finally, we have found
a decomposition of nano α-continuity and Ng̈α-continuity. In future, we plan to
extend this work in various nano topological fields.
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