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MULTIOBJECTIVE STOCHASTIC INTERVAL TRANSPORTATION PROBLEM
INVOLVING GENERAL FORM OF DISTRIBUTIONS

UMMEY HABIBA AND ABDUL QUDDOOS1

ABSTRACT. This paper discusses a multiobjective stochastic transportation prob-
lem with interval cost coefficients, in which the supply and demand parameters
are probabilistic in nature. These random parameters are assumed to follow
any of two general classes of distributions. The multiobjective stochastic in-
terval transportation problem (MOSITP) is converted into an equivalent mul-
tiobjective crisp problem and fuzzy programming technique has been used to
obtain the pareto optimal solution of the transformed crisp problem. A numer-
ical example is also presented to demonstrate the application of the proposed
model.

1. INTRODUCTION

All the parameters involved in classical transportation problem are precisely
known in advance but in many practical situations it is not always possible to
know the precise value of these parameters due to uncertainty of real life. This
introduces the some uncertainty in the transportation problem which can be
dealt by any of three ways (i) fuzzy (ii) interval and (iii) stochastic. In litera-
ture several papers are available where demand and supply parameters follow
a specific distribution see [1]- [5]. Quddoos et al. [6] proposed a multichoice
stochastic transportation problem where they considered supply and demand
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parameters to follow general classes of distributions. All the work [1]- [5] can
be deduced from [6]. Das et al. [7] developed the method to solve interval
transportation problem where all the parameters are represented by interval
numbers while Roy et al. [9] proposed a multiobjective transportation model
where the cost coefficients are assumed to be in the form of interval numbers
and demand and supply are assumed to follow log normal distribution.

In this paper, we have developed the frame work for MOSITP in which the
supply and demand parameters are assumed to follow any of the two general
classes of distributions [10]. The use of general form of distribution enables a
decision maker to consider any specific distribution provided in Table 4. The
MOSITP has been converted into an equivalent crisp model and solved using
fuzzy programming technique [8]. For illustration purpose a numerical example
is considered and solved using Lingo 13.0.

2. MATHEMATICAL MODEL

2.1. Mathematical model of MOSITP. The mathematical model of MOSITP
with k interval valued objective functions may be written as follows: Model-I

MinimizeZk =
m∑
i=1

n∑
j=1

[ckLij, c
k
Rij]xij, k = 1, 2, . . . , K(2.1)

Subject to;

Pr
[ n∑
j=1

xij ≤ ai

]
≥ 1− αi, i = 1, 2, . . . ,m(2.2)

Pr
[ m∑
i=1

xij ≥ bj

]
≥ 1− βj, j = 1, 2, . . . , n(2.3)

xij ≥ 0 ∀ i and j(2.4)

where, 0 < αi < 1 and 0 < βj < 1 ∀ i and j are aspiration level and [ckLij, c
k
Rij],

is the interval cost of the kth objective functions and ai and bj follow any of two
general classes of distributions.

2.2. Construction of crisp constraints. Let us consider the probabilistic con-
straints (2.2) and (2.3) of the model-I where ai and bj follow any of two general
classes of distributions. The constraints (2.2) and (2.3) can be transformed into
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deterministic constraints (2.5) and (2.6) using Quddoos et al. [6].{[
pih
( n∑
j=1

xij

)
+ qi

]ri}
or
{
1− epih

(∑n
j=1 xij

)}
≥ 1− αi(2.5)

{
e−p

′
jg
(∑m

i=1 xij

)}
or
{
1−

[
p′jg
( m∑
i=1

xij

)
+ q′j

]r′j}
≥ 1− βj(2.6)

2.3. Construction of crisp objective function. The kth interval objective func-
tion equation (2.1) of the model-I can be converted into two crisp objective
functions using the method proposed by Das et al. [7] which is based on min-
imizing the expected value and right limit of the interval. The equivalent crisp
objective function can be given as follows:

Minimize zc =
m∑
i=1

n∑
j=1

ccijxij and Minimize zR =
m∑
i=1

n∑
j=1

cRijxij(2.7)

where, cc =

(
cR + cL

2

)
and cR are the center and right-limit of the interval

respectively.

2.4. Equivalent crisp model. Using equations (2.4), (2.5)-(2.6) and (2.7), the
equivalent crisp problem of MOSITP can be written as follows: Model-II

Minimize zc =
m∑
i=1

n∑
j=1

ccijxij, and Minimize zR =
m∑
i=1

n∑
j=1

cRijxij

Subject to;{[
pih
( n∑
j=1

xij

)
+ qi

]ri}
or
{
1− epih

(∑n
j=1 xij

)}
≥ 1− αi,

{
e−p

′
jg
(∑m

i=1 xij

)}
or
{
1−

[
p′jg
( m∑
i=1

xij

)
+ q′j

]r′j}
≥ 1− βj,

xij ≥ 0 ∀ i and j, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

3. NUMERICAL ILLUSTRATION

Let us consider the transportation problem where the supply parameters ai,
i = 1, 2, 3 follow Burr-XII distribution and demand parameters bj, j = 1, 2, 3, 4
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follow extreme value distribution. The data are given in Table 1, Table 2 and
Table 3.

[c1Lij, c
1
Rij] [c2Lij, c

2
Rij]

[10,12] [15,16] [21,24] [21,25] [9,11] [16,17] [21,24] [16,18]
[15,25] [10,20] [9,11] [18,19] [9,13] [14,19] [16,18] [19,20]
[20,26] [10,17] [20,25] [15,20] [9,17] [20,26] [25,27] [28,29]

TABLE 1. Unit interval transportation cost

ai αi ki θi δi

a1 0.01 0.002 0.73 0.7757

a2 0.02 0.004 0.76 0.8013

a3 0.03 0.006 0.79 0.8267

TABLE 2. Specified proba-
bility levels and shape pa-
rameters of ai

bj β
′
j γ

′
j δ

′
j

b1 0.04 600 5

b2 0.05 500 4

b3 0.06 400 3

b4 0.07 300 2

TABLE 3. Specified proba-
bility levels, location and
scale parameters of bj

Minimize Z1 =
3∑
i=1

4∑
j=1

[c1Lij, c
1
Rij]xij,

Minimize Z2 =
3∑
i=1

4∑
j=1

[c2Lij, c
2
Rij]xij

Subject to;

4∑
j=1

x1j ≤ 967.544404,
4∑
j=1

x2j ≤ 762.934875,
4∑
j=1

x3j ≤ 612.817850

3∑
i=1

xi1 ≥ 615.992671,
3∑
i=1

xi2 ≥ 511.880781,
3∑
i=1

xi3 ≥ 408.347897
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3∑
i=1

xi4 ≥ 305.246388, xij ≥ 0, i = 1, 2, 3, j = 1, 2, 3, 4

minimize z1R =
3∑
i=1

4∑
j=1

c1Rijxij,minimize z1c =
3∑
i=1

4∑
j=1

c1cijxij

minimize z2R =
3∑
i=1

4∑
j=1

c2Rijxij,minimize z2c =
3∑
i=1

4∑
j=1

c2cijxij

where,

c1R =

12 16 24 25

25 20 11 19

26 17 25 20

 , c1c =

11 15.5 22.5 23

20 15 10 18.5

23 13.5 22.5 17.5



c2R =

11 17 24 18

13 19 18 20

17 26 27 29

 , c2c =

10 16.5 22.5 17

11 16.5 17 19.5

13 23 26 28.5


Using fuzzy programming technique, the pareto optimal solution of the problem
is obtained as: x11 = 615.99, x12 = 241.40, x14 = 110.14 , x22 = 159.48, x23 =

408.34, x24 = 195.09, x32 = 110.98, Z1 = [21975.32, 27265.83],
Z2 = [25841.42, 30004.25]

F(y) = 1− [ph(y) + q]r,y ∈ (ξ, φ)

Distribution p q r h(y) F(y)

Exponential 1 0 θ
k

e−ky 1− e−yθ

Weibull 1 0 δ−γ

k
e−k(y)

γ
1− [e−y

γδ−γ ]

Cauchy − 1
π

1
2

1 tan−1(y−l
s
) 1

2
+ 1

π
tan−1(y−l

s
)

Pareto d−k 0 − θ
k

yk 1− (d−kyk)
−θ
k

Burr-XII θ 1 −k yδ 1− (θyδ + 1)−k

F(y) = e−ph(y)p 6= 0,y ∈ (ξ, φ)

Distribution p − − h(y) F(y)

Extreme Value 1 − − e− (y−γ)
δ

ee
−(y−γ)

δ

Power Function −θ − − ln(
y
d
) eθln(

y
d
)

TABLE 4. Deduction Table
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4. COMPARISON AND CONCLUSION

The aim of this paper is to present a MOSITP with interval cost and random
supply and demand parameters which are assumed to follow general classes of
distributions. The advantage of using general classes of distributions is much
higher than any specific distribution. The Model-II can generate different mod-
els for different distributions by setting values of parameters as provided in Ta-
ble 4. Thus a single model (Model-II) can generate an equivalent crisp model
corresponding to every distribution like Exponential, Weibull, Cauchy, Pareto,
Burr-XII, Extreme Value, Power Function.
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