

Advances in Mathematics: Scientific Journal 9 (2020), no.6, 3307-3314

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.6.10 Spec. Issue on RDESTM-2020

VAGUE ANTI HOMOMORPHISM OF A Γ -SEMIRINGS

Y. BHARGAVI¹, S. RAGAMAYI, T. ESWARLAL, AND P. BINDU

ABSTRACT. In this paper, we introduce and study the concept of vague anti homomorphism of a Γ -semiring and we study the properties of anti homomorphic image and pre-image of a anti vague ideal of a Γ -semiring. Further we establish that the inverse image of an anti right vague ideal of a Γ -semiring is an anti left vague ideal of a Γ -semiring and the anti homomorphic image of an anti left vague ideal of a Γ -semiring is a anti right vague ideal of a Γ -semiring.

1. Introduction

Semiring is an important algebraic tool in many areas of mathematics, for example, coding and language theory, automata theory, combinatorics, functional analysis and graph theory. M.K.Rao [11] introduced the concept of Γ -semiring as a generalization of semiring as well as Γ -ring. The properties of an ideal in semirings and Γ -semirings were somewhat different from the properties of the usual ring ideals. Moreover the concept of Γ -semiring not only generalizes the concept of semiring and Γ -ring but also the concept of ternary semiring. Zadeh, L.A. [12] introduced the study of fuzzy sets in 1965. Mathematically a fuzzy set on a set X is a mapping μ into [0,1] of real numbers; for x in X, $\mu(x)$ is called the membership of x belonging to X. The membership function gives only an

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 08A72, 20N25, 03E72.

Key words and phrases. Vague set, vague ideal, anti vague ideal, homomorphism and anti homomorphism of a Γ -semiring.

approximation for belonging but it does not give any information of not belonging. To counter this problem, Gau, W.L. and Buehrer, D.J. [10] introduced the concept of vague sets. A vague set A of a set X is a pair of functions (t_A, f_A) , where t_A and f_A are fuzzy sets on X satisfying $t_A(x) + f_A(x) \geq 1$, $\forall x \in X$. A fuzzy set t_A of X can be identified with the pair $(t_A, 1 - t_A)$. Thus the theory of vague sets is a generalization of fuzzy sets. Later, Bhargavi, Y. and Eswarlal, T. [1]- [9] developed vague sets on Γ -semirings. In this paper, the concept of vague anti homomorphism of Γ -semirings has been introduced and we study the properties of homomorphic, anti homomorphic image and pre-image of vague ideal and anti vague ideal of a Γ -semiring.

2. Preliminaries

In this section we recall some of the fundamental concepts and definitions, which are necessary for this paper.

Definition 2.1. [11] Let E and Γ be two additive commutative semigroups. Then R is called Γ -semiring if there exists a mapping $R \times \Gamma \times R \to R$ image to be denoted by $a\alpha b$ if it satisfies the following conditions: For all $a, b, c \in R$; $\alpha, \beta \in \Gamma$.

(\(\Gamma SR1\))
$$a\alpha(b+c) = a\alpha b + a\alpha c;$$

(\(\Gamma SR2\)) $(a+b)\alpha c = a\alpha c + b\alpha c;$
(\(\Gamma SR3\)) $a(\alpha+\beta)b = a\alpha b + a\beta b;$
(\(\Gamma SR4\)) $a\alpha(b\beta c) = (a\alpha b)\beta c.$

Definition 2.2. [10] A vague set A in the universe of discourse X is a pair (t_A, f_A) , where $t_A : X \to [0, 1]$, $f_A : X \to [0, 1]$ are mappings such that $t_A(x) + f_A(x) \le 1$, for all $x \in X$. The functions t_A and f_A are called true membership function and false membership function respectively.

Definition 2.3. [10] The interval $[t_A(x), 1 - f_A(x)]$ is called the vague value of x in A and it is denoted by $V_A(x)$ i.e., $V_A(x) = [t_A(x), 1 - f_A(x)]$.

Definition 2.4. Let f be a mapping from a set X into a set Y. Let A be a vague set in X with vague value V_A . Then the anti image f(A) of A is the vague set in Y defined by

$$V_{f(A)}(y) = \begin{cases} \inf_{z \in f^{-1}(y)} V_A(z) & \text{if } f^{-1}(y) \neq \phi \\ [0, 0] & \text{otherwise} \end{cases}$$

for all $y \in Y$, where $f^{-1}(y) = \{x/f(x) = y\}$.

Definition 2.5. Let B be a vague set in Y. Then the inverse image of B, $f^{-1}(B)$ is the vague set in X by $V_{f^{-1}(B)}(x) = V_B(f(x))$, for all $x \in X$.

Definition 2.6. A vague set A of a Γ -semiring R is said to have the Sup. property if for any subset S of R, there exists $y \in S$ such that $V_A(y) = \sup_{x \in S} V_A(x)$.

Definition 2.7. Let R and S be two Γ -semirings. Then $f: R \to S$ is called a homomorphism if f(x+y) = f(x) + f(y) and $f(x\gamma y) = f(x)\gamma f(y)$, $\forall x,y \in R$; $\gamma \in \Gamma$.

Definition 2.8. [2] A vague set $A = (t_A, f_A)$ of a Γ -semiring R is said to be left (resp. right) vague ideal of R if it satisfies the following conditions: For all $x, y \in R$; $\gamma \in \Gamma$,

(VI1)
$$V_A(x+y) \ge \min\{V_A(x), V_A(y)\};$$

(VI2) $V_A(x\gamma y) \ge V_A(y)$ (resp. $V_A(x\gamma y) \ge V_{\psi}(x)$).

If A is both left and right vague ideals of R, then A is called vague ideal of R.

Definition 2.9. [9] A vague set $A = (t_A, f_A)$ of a Γ -semiring R is said to be anti left (resp. right) vague ideal of R if it satisfies the following conditions: For all $x, y \in R$; $\gamma \in \Gamma$,

(VI1)
$$V_A(x+y) \le \max\{V_A(x), V_A(y)\};$$

(VI2) $V_A(x\gamma y) \le V_A(y)$ (resp. $V_A(x\gamma y) \le V_{\psi}(x)$).

If A is both anti left and anti right vague ideals of R, then A is called vague ideal of R.

3. Vague Anti Homomorphism of a Γ -Semiring

In this section, we study the concept of anti homomorphism of a Γ -semiring and we prove that the anti homomorphic image and anti pre-image of an anti vague ideal of a Γ -semiring is also an anti vagae ideal of a Γ -semiring.

Theorem 3.1. Let R and S be Γ -semirings and $f: R \to S$ be an onto homomorphism. If $A = (t_A, f_A)$ is a f-invariant anti left(resp. right) vague ideal of R, then the anti homomorphic image f(A) of A is a anti left(resp. right) vague ideal of S.

Proof. Suppose A is a anti left vague ideal of R. Let $x, y \in S$; $\gamma \in \Gamma$. This implies there exists $a, b \in R$ such that x = f(a) and y = f(b). Now, x = f(a) that implies $f^{-1}(x) = a$. Let $t \in f^{-1}(x)$. Then f(t) = x = f(a). Since A is f-invariant, we have $V_A(t) = V_A(a)$. Now, $V_{f(A)}(x) = \inf_{t \in f^{-1}(x)} V_A(t) = V_A(a)$. Therefore $V_{f(A)}(x) = V_A(a)$.

Similarly $V_{f(A)}(y) = V_A(b)$. We have, x + y = f(a + b). Now, $V_{f(A)}(x + y) = V_A(a + b) \le \max\{V_A(a), V_A(b)\} = \max\{V_{f(A)}(x), V_{f(A)}(y)\}$. Also, $V_{f(A)}(x\gamma y) = V_A(a\gamma b) \le V_A(b) = V_{f(A)}(y)$. Thus f(A) is a anti left vague ideal of S. Similarly we can prove for right vague ideals also. \Box

Theorem 3.2. Let R and S be Γ -semirings and $f: R \to S$ be an onto homomorphism. If B is a anti left(resp. right) vague ideal of S, then the anti pre-image $f^{-1}(B)$ of B is a anti left(resp. right) vague ideal of R.

Proof. Suppose B is a anti left vague ideal of S. Let $x,y \in R$; $\gamma \in \Gamma$. Now, $V_{f^{-1}(B)}(x+y) = V_B(f(x+y)) = V_B(f(x)+f(y)) \leq \max\{V_B(f(x)),V_B(f(y))\} = \max\{V_{f^{-1}(B)}(x),V_{f^{-1}(B)}(y)\}$. Also, $V_{f^{-1}(B)}(x\gamma y) = V_B(f(x\gamma y)) = V_B(f(x)\gamma f(y)) \leq V_B(f(y)) = V_{f^{-1}(B)}(y)$. Hence $f^{-1}(B)$ is a anti left vague ideal of R. Similarly we can prove for right vague ideals. \square

Definition 3.1. Let R and S be two Γ -semirings. Then $f: R \to S$ is called an anti homomorpiosm if f(x+y) = f(x) + f(y) and $f(x\gamma y) = f(y)\gamma f(x)$, $\forall x,y \in R$; $\gamma \in \Gamma$.

Theorem 3.3. Let R and S be Γ -semirings and $f: R \to S$ be an onto anti homomorphism. If A is a left vague ideal of R with Sup. property, then the homomorphic image f(A) of A is a right vague ideal of S.

Proof. Suppose A is a left vague ideal of R. Let $x,y \in S$; $\gamma \in \Gamma$. If either $f^{-1}(x)$ or $f^{-1}(y)$ is empty, then the result is trivially satisfied. Suppose neither $f^{-1}(x)$ nor $f^{-1}(y)$ is non-empty. Let $p \in f^{-1}(x)$ and $q \in f^{-1}(y)$ be such that $V_A(p) = \sup V_A(a)$ where $a \in f^{-1}(x)$ and $V_A(q) = \sup V_A(b)$ where $b \in f^{-1}(y)$. Now:

- 1. $V_{f(A)}(x+y) = \sup_{z \in f^{-1}(x+y)} V_A(z) \ge V_A(z), z \in f^{-1}(x+y) = V_A(p+q) \ge \min\{V_A(p), V_A(q)\} = \min\{V_{f(A)}(x), V_{f(A)}(y)\}.$
- 2. $V_{f(A)}(x\gamma y) = \sup_{z \in f^{-1}(x\gamma y)} V_A(z) \ge V_A(z), z \in f^{-1}(x\gamma y) = V_A(q\gamma p), \gamma \in \Gamma \ge V_A(p) = V_{f(A)}(x).$

Thus f(A) is a anti right vague ideal of S.

Theorem 3.4. Let R and S be Γ -semirings and $f: R \to S$ be an anti homomorphism. If A is a right vague ideal of R, then the homomorphic image f(A) of A is a left vague ideal of R.

Proof. Proof is similar to the above theorem.

Theorem 3.5. Let R and S be Γ -semirings and $f: R \to S$ be an onto anti homomorphism. If B is a left vague ideal of S, then the pre-image $f^{-1}(B)$ of B is a right vague ideal of R.

Proof. Suppose *B* is a left vague ideal of *S*. Let $x, y \in R$; $\gamma \in \Gamma$. Now, $V_{f-1(B)}(x + y) = V_B(f(x + y)) = V_B(f(x) + f(y)) ≥ min{V_B(f(x)), V_f(B(y))} = min{V_{f-1(B)}(x), V_{f-1(B)}(y)}. Also, <math>V_{f-1(B)}(x\gamma y) = V_B(f(x\gamma y)) = V_B(f(y)\gamma f(x))$ ≥ $V_B(f(y)) = V_{f-1(B)}(y)$. Hence $f^{-1}(B)$ is a right vague ideal of *R*. □

Theorem 3.6. Let R and S be Γ -semirings and $f: R \to S$ be an onto anti homomorphism. If B is a right vague ideal of S, then the pre-image $f^{-1}(B)$ of B is a left vague ideal of R.

Proof. Proof is similar to the above theorem.

Theorem 3.7. Let R and S be Γ -semirings and $f: R \to S$ be an onto anti homomorphism. If A is a f-infariant anti left vague ideal of R, then the anti homomorphic image f(A) of A is an anti right vague ideal of S.

Proof. Suopose A is a left vague ideal of R. Let $x, y \in S$; $\gamma \in \Gamma$. That implies there exists $a, b \in R$ such that x = f(a) and t = f(b). Now, x = f(a) implies $f^{-1}(x) = a$. Let $t \in f^{-1}(x)$. Then f(t) = x = f(a). Since A is f-invariant, we have $V_A(t) = V_A(a)$. Now, $V_{f(A)}(x) = \inf_{t \in f^{-1}(x)} V_A(t) = V_A(a)$. Therefore $V_{f(A)}(A) = V_A(a)$.

Similarly $V_{f(A)}(y) = V_A(b)$. We have, x + y = f(a + b). Now, $V_{f(A)}(x + y) = V_A(a + b) \le \max\{V_A(a), V_A(b)\} = \max\{V_{f(A)}(x), V_{f(A)}(y)\}$. Also, $V_{V(A)}(x\gamma y) = f_A(b\gamma a) \le V_A(a) = V_{f(A)}(x)$. Thus f(A) is a anti right vague ideal of S.

Theorem 3.8. Let R and S be Γ -semirings and $f: R \to S$ be an onto anti homomorphism. If B is a left vague ideal of S, then the pre-image $f^{-1}(B)$ of B is a right vague ideal of R.

Proof. Suppose *B* is left vague ideal of *S*. Let x, y ∈ R; γ ∈ Γ. Now, $V_{f-1(B)}(x + y) = V_B(f(x + y)) = V_B(f(x) + f(y)) ≥ min{<math>V_B(f(x)), V_B(f(y))$ } = min{ $V_{f-1(B)}(x), V_{f-1(B)}(y)$ }. Also, $V_{f-1(B)}(xγy) = V_B(f(xγy)) = V_B(f(y)γf(x))$ ≥ $V_B(f(y)) = V_{f-1(B)}(y)$. Hecne $f^{-1}(B)$ is a right vague ideal of *R*. □

Definition 3.2. Let $A = (t_A, f_A)$ and $B = (t_B, f_B)$ be anti vague ideals of R. If there exists $\phi \in Aut(R)$ such that $V_A(x) = V_B(\phi(x))$, $\forall x \in R$. i.e., $t_A(x) = t_B(\phi(x))$ and $f_A(x) = f_B(\phi(x))$, then we say that A and B are homologous anti vague ideals of R. If A and B are homologous, then B amd A are also homologous.

Theorem 3.9. Let $B=(t_B,f_B)$ be anti vague ideal of R and $\phi \in Aut(R)$. If $A=(t_A,f_A)$ is a vague set of R such that $V_A(x)=V_B(\phi(x))$, $\forall x \in R$, then A and B are homologous anti vague ideals of R.

Proof. To prove A and B are homologous, it is enough to prove that A is an anti vague ideal of R. Let $x, y \in R$; $\gamma \in \Gamma$.

- 1. $V_A(x+y) = V_B(\phi(x+y)) = V_B(\phi(x)+\phi(y)) \le \max\{V_B(\phi(x)), V_B(\phi(y))\} = \max\{V_A(x), V_A(y)\}.$
- 2. $V_A(x\gamma y) = V_B(\phi(x\gamma y)) = V_B(\phi(x)\gamma\phi(y)) \le V_B(\phi(x)) = V_A(x)$.

Therefore A is an anti vague ideal of R. Hence A and B are homologous anti vague ideals of R.

Theorem 3.10. Let $A = (t_A, f_A)$ be an anti-vague ideal of R and let $f : R \to R$ be an onto anti-homomorphism. Then the vague set $A^f = (t_{A^f}, f_{A^f})$ defined by $V_{A^f}(x) = V_A(f(x))$, $\forall x \in R$ is an anti-vague ideal of R.

Proof. Let $x, y \in R$; $\gamma \in \Gamma$.

- 1. $V_{Af}(x+y) = V_A(f(x+y)) = V_A(f(x)+f(y)) \le \max\{V_A(f(x)), V_A(f(y))\} = \max\{V_{Af}(x), V_{Af}(y)\}.$
- 2. $V_{Af}(x\gamma y) = V_A(f(x\gamma y)) = V_A(f(y)\gamma f(x)) \le V_A(f(x)) = V_{Af}(x)$. Hence A^f is an anti vague ideal of R.

ACKNOWLEDGMENTS

The authors are grateful to Prof. K. L. N. Swamy for his valuable suggestions and discussions on this work.

REFERENCES

- [1] Y. BHARGAVI, T. ESWARLAL: *Vague* Γ-semirings, Global Journal of Pure and Applied Mathematics, **11**(1) (2015), 117–127.
- [2] Y. BHARGAVI, T. ESWARLAL: *Vague ideals and normal vague ideals in* Γ -semirings, International Journal of Innovative Research and Development, **4**(3) (2015), 1–8.
- [3] Y. BHARGAVI, T. ESWARLAL: *Fuzzy* Γ-semirings, International Journal of Pure and Applied Mathematics, **98**(3) (2015), 339–349.
- [4] Y. BHARGAVI, T. ESWARLAL: *Vague Prime Ideals in* Γ-*Semirings*, International Journal of Applied Engineering Research, **10**(9) (2015), 21793–21811.
- [5] Y. BHARGAVI, T. ESWARLAL: *Vague magnified translation in* Γ -semirings, International Journal of Pure and Applied Mathematics, **106**(2) (2016), 453–460.
- [6] Y. BHARGAVI, T. ESWARLAL: *Vague semiprime ideals of a* Γ -semirings, Afrika Matematika, **29**(3-4) (2018), 425–434.
- [7] Y. BHARGAVI: *Vague filters of a* Γ -*semiring*, International Journal of Mechanical and Production Engineering Research and Development, **8** (2018), 421–428.
- [8] Y. Bhargavi: A study on translational invariant vague set of a Γ -semiring, Afrika Matematika, DOI.10.1007/s13370-020-00794-1.
- [9] Y. Bhargavi: Anti Vague Ideals of a Γ -semirings (Communicated).
- [10] W. L. GAU, D. J. BUEHRER: *Vague sets*, IEEE Transactions on Systems, Man and Cybernetics, **23**(2) (1993), 610–613.
- [11] M. K. RAO: Γ-semiring I, Southeast Asian Bulletin of Mathematics, 19 (1995), 49–54.
- [12] L. A. ZADEH: Fuzzy sets, Information and Control, 8 (1965), 338–353.

DEPARTMENT OF MATHEMATICS
KONERU LAKSHMAIAH EDUCATION FOUNDATION
VADDESWARAM, GUNTUR
ANDHRA PRADESH, INDIA-522502
E-mail address: yellabhargavi@gmail.com

DEPARTMENT OF MATHEMATICS
KONERU LAKSHMAIAH EDUCATION FOUNDATION
VADDESWARAM, GUNTUR
ANDHRA PRADESH, INDIA-522502

E-mail address: sistla.raaga1230@gmail.com

DEPARTMENT OF MATHEMATICS

KONERU LAKSHMAIAH EDUCATION FOUNDATION VADDESWARAM, GUNTUR ANDHRA PRADESH, INDIA-522502 *E-mail address*: eswarlal@kluniversity.in

DEPARTMENT OF MATHEMATICS
KONERU LAKSHMAIAH EDUCATION FOUNDATION
VADDESWARAM, GUNTUR
ANDHRA PRADESH, INDIA-522502

E-mail address: eswarlal@kluniversity.in