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VAGUE ANTI HOMOMORPHISM OF A Γ-SEMIRINGS

Y. BHARGAVI1, S. RAGAMAYI, T. ESWARLAL, AND P. BINDU

ABSTRACT. In this paper, we introduce and study the concept of vague anti ho-
momorphism of a Γ-semiring and we study the properties of anti homomorphic
image and pre-image of a anti vague ideal of a Γ-semiring. Further we establish
that the inverse image of an anti right vague ideal of a Γ-semiring is an anti left
vague ideal of a Γ-semiring and the anti homomorphic image of an anti left
vague ideal of a Γ-semiring is a anti right vague ideal of a Γ-semiring.

1. INTRODUCTION

Semiring is an important algebraic tool in many areas of mathematics, for ex-
ample, coding and language theory, automata theory, combinatorics, functional
analysis and graph theory. M.K.Rao [11] introduced the concept of Γ-semiring
as a generalization of semiring as well as Γ-ring. The properties of an ideal in
semirings and Γ-semirings were somewhat different from the properties of the
usual ring ideals. Moreover the concept of Γ-semiring not only generalizes the
concept of semiring and Γ-ring but also the concept of ternary semiring. Zadeh,
L.A. [12] introduced the study of fuzzy sets in 1965. Mathematically a fuzzy set
on a set X is a mapping µ into [0,1] of real numbers; for x in X, µ(x) is called
the membership of x belonging to X. The membership function gives only an
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approximation for belonging but it does not give any information of not belong-
ing. To counter this problem, Gau, W.L. and Buehrer, D.J. [10] introduced the
concept of vague sets. A vague set A of a set X is a pair of functions (tA, fA),
where tA and fA are fuzzy sets on X satisfying tA(x) + fA(x) ≥ 1, ∀x ∈ X. A
fuzzy set tA of X can be identified with the pair (tA, 1 − tA). Thus the theory
of vague sets is a generalization of fuzzy sets. Later, Bhargavi, Y. and Eswarlal,
T. [1]- [9] developed vague sets on Γ-semirings. In this paper, the concept of
vague anti homomorphism of Γ-semirings has been introduced and we study the
properties of homomorphic, anti homomorphic image and pre-image of vague
ideal and anti vague ideal of a Γ-semiring.

2. PRELIMINARIES

In this section we recall some of the fundamental concepts and definitions,
which are necessary for this paper.

Definition 2.1. [11] Let E and Γ be two additive commutative semigroups. Then
R is called Γ-semiring if there exists a mapping R×Γ×R→ R image to be denoted
by aαb if it satisfies the following conditions: For all a, b, c ∈ R;α, β ∈ Γ.

(ΓSR1) aα(b+ c) = aαb+ aαc;

(ΓSR2) (a+ b)αc = aαc+ bαc;

(ΓSR3) a(α + β)b = aαb+ aβb;

(ΓSR4) aα(bβc) = (aαb)βc.

Definition 2.2. [10] A vague set A in the universe of discourse X is a pair (tA, fA),
where tA : X → [0, 1], fA : X → [0, 1] are mappings such that tA(x) + fA(x) ≤ 1,
for all x ∈ X. The functions tA and fA are called true membership function and
false membership function respectively.

Definition 2.3. [10] The interval [tA(x), 1 − fA(x)] is called the vague value of x
in A and it is denoted by VA(x) i.e., VA(x) = [tA(x), 1− fA(x)].

Definition 2.4. Let f be a mapping from a set X into a set Y . Let A be a vague
set in X with vague value VA. Then the anti image f(A) of A is the vague set in Y
defined by

Vf(A)(y) =

{
inf

z∈f−1(y)
VA(z) if f−1(y) 6= φ

[0, 0] otherwise
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for all y ∈ Y , where f−1(y) = {x/f(x) = y}.

Definition 2.5. Let B be a vague set in Y . Then the inverse image of B, f−1(B) is
the vague set in X by Vf−1(B)(x) = VB(f(x)), for all x ∈ X.

Definition 2.6. A vague set A of a Γ-semiring R is said to have the Sup. property
if for any subset S of R, there exists y ∈ S such that VA(y) = sup

x∈S
VA(x).

Definition 2.7. Let R and S be two Γ-semirings. Then f : R → S is called a
homomorphism if f(x + y) = f(x) + f(y) and f(xγy) = f(x)γf(y), ∀x, y ∈ R;

γ ∈ Γ.

Definition 2.8. [2] A vague set A = (tA, fA) of a Γ-semiring R is said to be
left (resp. right) vague ideal of R if it satisfies the following conditions: For all
x, y ∈ R; γ ∈ Γ,

(VI1) VA(x+ y) ≥ min{VA(x), VA(y)};
(VI2) VA(xγy) ≥ VA(y) (resp. VA(xγy) ≥ Vψ(x)).

If A is both left and right vague ideals of R, then A is called vague ideal of R.

Definition 2.9. [9] A vague set A = (tA, fA) of a Γ-semiring R is said to be anti
left (resp. right) vague ideal of R if it satisfies the following conditions: For all
x, y ∈ R; γ ∈ Γ,

(VI1) VA(x+ y) ≤ max{VA(x), VA(y)};
(VI2) VA(xγy) ≤ VA(y) (resp. VA(xγy) ≤ Vψ(x)).

If A is both anti left and anti right vague ideals of R, then A is called vague ideal
of R.

3. VAGUE ANTI HOMOMORPHISM OF A Γ-SEMIRING

In this section, we study the concept of anti homomorphism of a Γ-semiring
and we prove that the anti homomorphic image and anti pre-image of an anti
vague ideal of a Γ-semiring is also an anti vagae ideal of a Γ-semiring.

Theorem 3.1. Let R and S be Γ-semirings and f : R → S be an onto homomor-
phism. If A = (tA, fA) is a f -invariant anti left(resp. right) vague ideal of R, then
the anti homomorphic image f(A) of A is a anti left(resp. right) vague ideal of S.
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Proof. Suppose A is a anti left vague ideal of R. Let x, y ∈ S; γ ∈ Γ. This implies
there exists a, b ∈ R such that x = f(a) and y = f(b). Now, x = f(a) that implies
f−1(x) = a. Let t ∈ f−1(x). Then f(t) = x = f(a). Since A is f -invariant,
we have VA(t) = VA(a). Now, Vf(A)(x) = inf

t∈f−1(x)
VA(t) = VA(a). Therefore

Vf(A)(x) = VA(a).
Similarly Vf(A)(y) = VA(b). We have, x + y = f(a + b). Now, Vf(A)(x + y) =

VA(a + b) ≤ max{VA(a), VA(b)} = max{Vf(A)(x), Vf(A)(y)}. Also, Vf(A)(xγy) =

VA(aγb) ≤ VA(b) = Vf(A)(y). Thus f(A) is a anti left vague ideal of S. Similarly
we can prove for right vague ideals also. �

Theorem 3.2. Let R and S be Γ-semirings and f : R → S be an onto homomor-
phism. If B is a anti left(resp. right) vague ideal of S, then the anti pre-image
f−1(B) of B is a anti left(resp. right) vague ideal of R.

Proof. Suppose B is a anti left vague ideal of S. Let x, y ∈ R; γ ∈ Γ. Now,
Vf−1(B)(x + y) = VB(f(x + y)) = VB(f(x) + f(y)) ≤ max{VB(f(x)), VB(f(y))} =

max{Vf−1(B)(x), Vf−1(B)(y)}. Also, Vf−1(B)(xγy) = VB(f(xγy)) = VB(f(x)γf(y)) ≤
VB(f(y)) = Vf−1(B)(y). Hence f−1(B) is a anti left vague ideal of R. Similarly
we can prove for right vague ideals. �

Definition 3.1. Let R and S be two Γ-semirings. Then f : R→ S is called an anti
homomorpiosm if f(x + y) = f(x) + f(y) and f(xγy) = f(y)γf(x), ∀x, y ∈ R;

γ ∈ Γ.

Theorem 3.3. Let R and S be Γ-semirings and f : R → S be an onto anti homo-
morphism. If A is a left vague ideal of R with Sup. property, then the homomorphic
image f(A) of A is a right vague ideal of S.

Proof. Suppose A is a left vague ideal of R. Let x, y ∈ S; γ ∈ Γ. If either
f−1(x) or f−1(y) is empty, then the result is trivially satisfied. Suppose neither
f−1(x) nor f−1(y) is non-empty. Let p ∈ f−1(x) and q ∈ f−1(y) be such that
VA(p) = supVA(a) where a ∈ f−1(x) and VA(q) = supVA(b) where b ∈ f−1(y).

Now:
1. Vf(A)(x + y) = sup

z∈f−1(x+y)

VA(z) ≥ VA(z), z ∈ f−1(x + y) = VA(p + q) ≥

min{VA(p), VA(q)} = min{Vf(A)(x), Vf(A)(y)}.
2. Vf(A)(xγy) = sup

z∈f−1(xγy)

VA(z) ≥ VA(z), z ∈ f−1(xγy) = VA(qγp), γ ∈ Γ ≥

VA(p) = Vf(A)(x).
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Thus f(A) is a anti right vague ideal of S. �

Theorem 3.4. Let R and S be Γ-semirings and f : R → S be an anti homomor-
phism. If A is a right vague ideal of R, then the homomorphic image f(A) of A is
a left vague ideal of R.

Proof. Proof is similar to the above theorem. �

Theorem 3.5. Let R and S be Γ-semirings and f : R → S be an onto anti homo-
morphism. If B is a left vague ideal of S, then the pre-image f−1(B) of B is a right
vague ideal of R.

Proof. Suppose B is a left vague ideal of S. Let x, y ∈ R; γ ∈ Γ. Now, Vf−1(B)(x+

y) = VB(f(x + y)) = VB(f(x) + f(y)) ≥ min{VB(f(x)), Vf (B(y))} =

min{Vf−1(B)(x), Vf−1(B)(y)}. Also, Vf−1(B)(xγy) = VB(f(xγy)) = VB(f(y)γf(x))

≥ VB(f(y)) = Vf−1(B)(y). Hence f−1(B) is a right vague ideal of R. �

Theorem 3.6. Let R and S be Γ-semirings and f : R → S be an onto anti homo-
morphism. If B is a right vague ideal of S, then the pre-image f−1(B) of B is a left
vague ideal of R.

Proof. Proof is similar to the above theorem. �

Theorem 3.7. Let R and S be Γ-semirings and f : R → S be an onto anti homo-
morphism. If A is a f -infariant anti left vague ideal of R, then the anti homomor-
phic image f(A) of A is an anti right vague ideal of S.

Proof. Suopose A is a left vague ideal of R. Let x, y ∈ S; γ ∈ Γ. That implies
there exists a, b ∈ R such that x = f(a) and t = f(b). Now, x = f(a) implies
f−1(x) = a. Let t ∈ f−1(x). Then f(t) = x = f(a). Since A is f -invariant,
we have VA(t) = VA(a). Now, Vf(A)(x) = inf

t∈f−1(x)
VA(t) = VA(a). Therefore

Vf(A)(A) = VA(a).
Similarly Vf(A)(y) = VA(b). We have, x + y = f(a + b). Now, Vf(A)(x + y) =

VA(a + b) ≤ max{VA(a), VA(b)} = max{Vf(A)(x), Vf(A)(y)}. Also, VV (A)(xγy) =

fA(bγa) ≤ VA(a) = Vf(A)(x). Thus f(A) is a anti right vague ideal of S. �

Theorem 3.8. Let R and S be Γ-semirings and f : R → S be an onto anti homo-
morphism. If B is a left vague ideal of S, then the pre-image f−1(B) of B is a right
vague ideal of R.
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Proof. Suppose B is left vague ideal of S. Let x, y ∈ R; γ ∈ Γ. Now, Vf−1(B)(x +

y) = VB(f(x + y)) = VB(f(x) + f(y)) ≥ min{VB(f(x)), VB(f(y))} =

min{Vf−1(B)(x), Vf−1(B)(y)}. Also, Vf−1(B)(xγy) = VB(f(xγy)) = VB(f(y)γf(x))

≥ VB(f(y)) = Vf−1(B)(y). Hecne f−1(B) is a right vague ideal of R. �

Definition 3.2. Let A = (tA, fA) and B = (tB, fB) be anti vague ideals of R.
If there exists φ ∈ Aut(R) such that VA(x) = VB(φ(x)), ∀x ∈ R. i.e., tA(x) =

tB(φ(x)) and fA(x) = fB(φ(x)), then we say that A and B are homologous anti
vague ideals of R. If A and B are homologous, then B amd A are also homologous.

Theorem 3.9. Let B = (tB, fB) be anti vague ideal ofR and φ ∈ Aut(R). If
A = (tA, fA) is a vague set of R such that VA(x) = VB(φ(x)), ∀x ∈ R, then A and
B are homologous anti vague ideals of R.

Proof. To prove A and B are homologous, it is enough to prove that A is an anti
vague ideal of R. Let x, y ∈ R; γ ∈ Γ.
1. VA(x + y) = VB(φ(x + y)) = VB(φ(x) + φ(y)) ≤ max{VB(φ(x)), VB(φ(y))} =

max{VA(x), VA(y)}.
2. VA(xγy) = VB(φ(xγy)) = VB(φ(x)γφ(y)) ≤ VB(φ(x)) = VA(x).

Therefore A is an anti vague ideal of R. Hence A and B are homologous anti
vague ideals of R. �

Theorem 3.10. Let A = (tA, fA) be an anti vague ideal of R and let f : R → R

be an onto anti homomorphism. Then the vague set Af = (tAf , fAf ) defined by
VAf (x) = VA(f(x)), ∀x ∈ R is an anti vague ideal of R.

Proof. Let x, y ∈ R; γ ∈ Γ.
1. VAf (x + y) = VA(f(x + y)) = VA(f(x) + f(y)) ≤ max{VA(f(x)), VA(f(y))} =

max{VAf (x), VAf (y)}.
2. VAf (xγy) = VA(f(xγy)) = VA(f(y)γf(x)) ≤ VA(f(x)) = VAf (x).

Hence Af is an anti vague ideal of R. �
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