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ON PAIRED-DOUBLE DOMINATION NUMBER OF GRAPHS

M. N. SREE VALLI1 AND V. ANUSUYA

ABSTRACT. A Paired-dominating set of a graph G is a dominating set of vertices
whose induced subgraph has a perfect matching and a double dominating set
is a dominating set that dominates every vertex of G at least twice. A Paired-
double dominating set of a graph G is a double dominating set of vertices whose
induced subgraph has a perfect matching. We show that for path and cycle, the
double domination number less than or equal to the paired double domination
number. Then we characterize the path and cycle having equal paired double
domination numbers and double domination number.

1. INTRODUCTION

Let G = (V,E) be a graph with vertex set V and edge set E. We begin
with some terminology. For a vertex v of a graph G, the open neighborhood of
a vertex v ∈ V is N(v) = {u ∈ V/ uv ∈ E} and the closed neighborhood is
N [v] = N(v) ∪ {v}.

A subset S ⊆ V is a dominating set of G, if for every vertex v ∈ V , |N [v]∩S| ≥
1. The domination number γ(G) is the minimum cardinality of a dominating set
of G. A subset S of V is a double dominating set of G if for every vertex v ∈
V, |N [v]∩S| ≥ 2, that is v is in S and has at least one neighbor in S or v is in V−S
and has at least two neighbors in S [2]. A set S is called paired−dominating set
if it dominates V and the induced subgraph 〈S〉 contains at least one perfect
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matching. A paired-dominating set S with matching M is a dominating set
S = {v1, v2, . . . , v2t−1, v2t} with independent edge set M = {e1, e2, . . . , et} where
each edge ei joins two elements of S, that is M is a perfect matching in the
induced subgraph 〈S〉. If vjvk = ei ∈ M , we say that vj and vk are paired in
S [5]. The double domination number γdd(G) is the minimum cardinality of a
double dominating set of G, and the paired − domination number γpr(G) is the
minimum cardinality of a paired-dominating set of G. See also [1] and [4].

A paired (respectively, double) dominating set of minimum cardinality is called
a γpr(G) set (respectively γdd(G) set). Clearly γ(G) ≤ γpr(G) and γ(G) ≤ γdd(G)

for any graph G without isolated vertices for more comprehensive treatment of
domination and for terminology not defined, here [3].

In this paper we use this idea to develop another new concept called paired-
double dominating set and Paired-double domination number of a graph. A set
S is called a paired-double dominating set if it is a double dominating set and the
induced subgraph 〈S〉 contains at least one perfect matching. The minimum car-
dinality taken over all paired-double dominating sets is called the paired-double
domination number and is denoted by γprdd. Any paired-double dominating set
with γprdd vertices is called a γprdd set of G.

Theorem 1.1. [5] For any non trivial tree γpr(T ) ≤ γdd(T ).

Observation 1.1. [5] For any graph G,

1) a support vertex is in every γpr(G) set and in every γdd(G) set.
2) a leaf is in every γdd(G) set.

Lemma 1.1. [5] If γpr(T ) = γdd(T ) for a tree T , then each support vertex of T is
adjacent to exactly one leaf.

2. MAIN RESULTS

Theorem 2.1. For any path Pn, γprdd(Pn) =


2 if n = 2

does not exist if n = 3

2
⌊
n
3

⌋
+ 2 otherwise
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Proof. The graph Pn contains n vertices and n − 1 edges. Let {v1, v2, . . . , vn−1,

vn} be the vertex set of Pn. Let S be the γdd set of Pn.
Case (i) n = 2.

The graph P2 contains 2 vertices and 1 edge. Then γdd(P2) = 2. Thus 〈S〉
contains one P2 graph and has a perfect matching. Hence γprdd(P2) = 2.
Case (ii) n = 3.

The P3 graph contains 3 vertices and 2 edges. Then S = {v1, v2, v3} is a γdd
set of P3. Further more 〈S〉 has one independent edge. Which does not cover
the set S. Thus 〈S〉 has no perfect matching. Hence γprdd(P3) does not exists.
Case (iii) if n ≥ 4.

Then n is of the form 3k or 3k + 1 or 3k + 2. The proof is mathematical
induction on the order k where k ∈ N.
Sub case(i) n = 3k.

As the result fails when k = 1, we prove the result from k = 2. When n =

6, k = 2. To prove that the result is true for n = 6. If k = 2, then S =

{v1, v2, v3, v4, v5, v6} is the γdd set of P6. It follows that 〈S〉 contains one P6 graph.
Thus 〈S〉 has a perfect matching. Hence γprdd(P6) = 6. Therefore the result is
true for k = 2. Now assume that the result is true for k = l − 1. We have
〈S〉 of P3(l−1) contains (l − 3)P2 graph and one P6 graph. That is |V 〈S〉| =
2(l − 3) + 6. To prove that the result is true for k = l. Let n = 3k, k = l, Then
S = {v1, v2, v3, v4, v5, v6, v8, v9, . . . , v3l−1, v3l}. It follows that 〈S〉 contains one P6

graph and (l−2)P2 graph. Hence γprdd(P3l) = γprdd(P3(l−1))+2 = 2
(
3l−9
3

)
+6+2 =

2l + 2 = 2k + 2 (since k = l). γprdd(Pn) = 2
(
3k
3

)
+ 2 = 2

⌊
n
3

⌋
+ 2.

Sub case(ii) n = 3k + 1 where k ∈ N.
When n = 4, k = 1. To prove that the result is true for k = 1. If n = 4, k = 1,

then S = {v1, v2, v3, v4} is the γdd set of P4. Here 〈S〉 contains one P4 graph.
Thus 〈S〉 has a perfect matching. Hence γprdd(P4) = 4. Therefore the result is
true for k = 1. Now assume that the result is true for k = l − 1. We have 〈S〉
of P3(l−1)+1 graph contains one P4 graph and (l − 2)P2 graph. That is |V 〈S〉| =
2(l−2)+4. To prove that the result is true for k = l. Let k = l, n = 3k+1 where
k ∈ N. Then S = {v1, v2, v3, v4, v6, v7, . . . , v3l, v3l+1} is the γdd set of P3l+1. It
follows that 〈S〉 contains one P4 graph and (l−1)P2 graph. Hence γprdd(P3l+1) =

γprdd(P3(l−1)+1) + 2 = 2(l − 2) + 4 + 2 = 2l − 4 + 4 + 2 = 2k + 2(since k = l)
= 2

(
3k
3

)
+ 2 = 2

⌊
3k+1
3

⌋
+ 2 = 2

⌊
n
3

⌋
+ 2.

Sub case(iii) n = 3k + 2 where k ∈ N.
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When k = 1, n = 5. To prove that the result is true for k = 1. If n =

5, k = 1, then S = {v1, v2, v4, v5} is the γdd set of P5. Here 〈S〉 contains one 2P2

graph. Thus 〈S〉 has a perfect matching. Hence γprdd(P5) = 4. Therefore the
result is true for k = 1. Now assume that the result is true for k = l − 1. We
have 〈S〉 of P3(l−1)+2 graph contains lP2 graph. That is |V 〈S〉| = 2(l). To prove
that the result is true for k = l. Let k = l, n = 3k + 2 where l ∈ N. Then
S = {v1, v2, v4, v5, v7, v8, . . . , v3l+1, v3l+2} is the γdd set of P3l+2. It follows that 〈S〉
contains (l + 1)P2 graph. Hence γprdd(P3l+2) = γprdd(P3(l−1)+2) + 2 = 2l + 2 =

2k + 2 = 2
(
3k
3

)
+ 2 = 2

⌊
3k+2
3

⌋
+ 2 = 2

⌊
n
3

⌋
+ 2. Thus from all the three cases we

get γprdd(Pn) = 2
⌊
n
3

⌋
when n ≥ 4. �

Result 2.1. Every support vertex incident with exactly one leaf and every support
and leaves vertices must in every γdd(G) and γprdd(G) set.

Theorem 2.2. For any path Pn, n 6= 3 γdd(Pn) ≤ γprdd(Pn).

Proof. Consider Pn let {v1, v2, v3, . . . , vn−1, vn} be the vertex set of Pn. The proof
has three cases:
Case (i) n ≡ 0(mod 3).

Take n = 3k where k ≥ 2. Let S = {v1, v2, v4, v5, v7, v8, . . . , v3k−4, v3k−2,

v3k−1, v3k} be the γdd set of P3k and M be the maximum matching of 〈S〉. Then
γdd(P3k) = |S| = 2(k − 1) + 3. Let B be the set of vertices incident to the edge
set M . Let A be the set of vertices of S that are not saturated by M . Then
A = S − B. Hence A has only one vertex. That is A has either v3k−2 or v3k. Let
A = {v3k}. We know that v3k is a leaf. By Result 2.2, every support and leaf
vertices must in every γdd(G) set and γprdd(G) set. Therefore vertex v3k must in
M . We conclude that, A contains only one vertex say v3k−2. Since S is a double
dominating set, v3k−2 has one neighbor in B and another neighbor in V − S.
Here B 6= S and B does not double dominate V and hence we add a vertex say
v3k−3 in S. We get, 〈S〉 contains one P6 graph and (k − 2)P2 graph. It follows
that 〈S〉 has a perfect matching. Here γdd(P3k) = |S| < |S| + 1 = γprdd(P3k).
Therefore γdd(P3k) < γprdd(P3k). Hence γdd(Pn) < γprdd(Pn).
Case (ii) n ≡ 1(mod 3).

Take n = 3k+1 where k ≥ 1. Let S = {v1, v2, v4, v5, v7, v8, . . . , v3k−4, v3k−2, v3k−1,

v3k, v3k+1} be the γdd set of P3k+1 and M be the maximum matching of 〈S〉. Let
B be the set of vertices incident to the edge set M . Now M is a perfect match-
ing. Thus B = S and B is a paired-double dominating set of P3k+1. Hence
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γdd(P3k+1) = |S| = γprdd(P3k+1). That is γdd(Pn) = γprdd(Pn).
Case (iii) n ≡ 2(mod 3).

Take n = 3k+2 where k ≥ 1. Let S = {v1, v2, v4, v5, v7, v8, . . . , v3k−2, v3k−1, v3k+1,

v3k+2} be the γdd set of P3k+1 and M be the maximum matching of 〈S〉. Let B
be the set of vertices incident to the edge set M . Now M is a perfect match-
ing. Thus B = S and B is a paired-double dominating set of P3k+2. Hence
γdd(P3k+2) = |S| = γprdd(P3k+2). That is γdd(Pn) = γprdd(Pn). Thus form all the
three cases, we get γdd(Pn) ≤ γprdd(Pn). �

Notation 2.1. Let L (T ) and S (T ) denote the set of leaves and support vertices
respectively of T .

Theorem 2.3. For any helm graph Hm, γprdd(Hm) = 2m = γdd(Hm).

Proof. The Hm graph contains 2m + 1 vertices and 3m edges. Let S be the γdd
set of Hm and {v1, v2, v3, . . . , v2m+1} be the vertex set of Hm. Every γdd(Hm) set
S contains all the leaves and support vertices of Hm. Thus 〈S〉 has a perfect
matching. Hence γdd(Hm) = |L (Hm)| + |S (Hm)| = m +m = 2m = γprdd(Hm).

�

Let Hm be a helm graph having centre w. Let Pn be any path with first vertex
v1. Consider a graph Hm ∪ Pn. Let D be a graph obtained from Hm ∪ Pn by
adding the edge wv1.

Theorem 2.4. Let D be the graph given in Figure 1. For any m if n ≡ 1(mod 3),
n ≡ 2 (mod 3) and γprdd(D) = γdd(D), then γprdd(Pn) = γdd(Pn) and γdd(D) =

γprdd(D) = γdd(Hm) + γdd(Pn) = γprdd(Hm) + γprdd(Pn).

Proof. Given n ≡ 1(mod 3), n ≡ 2(mod 3) and γprdd(D) = γdd(D). Then
from Theorem 2.3, γprdd(Pn) = γdd(Pn). It is straight forwarded to see that
γprdd(Hm) = γdd(Hm) = |S (Hm)|+ |L (Hm)| = 2|S (Hm)|.
Let S be the γdd(D) set.
Case (i) If w /∈ S, then γdd(Hm) + γdd(Pn) = γprdd(Hm) + γprdd(Pn) = γdd(D) =

γprdd(D). Therefore the result is true.
Case (ii) If w ∈ S, then γprdd(Hm) does not exists. Let S ′

= {S − w} ∪ {v2}
where v2 ∈ N [v1]− S. Then w /∈ S ′ where S ′ is the γdd set of D. Now the proof
is similar to Case (i). Hence the theorem. �

Theorem 2.5. For any cycle Cn, γprdd(Cn) = 2
⌈
n
3

⌉
.
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FIGURE 1

Proof. The graph Cn contains n vertices and n edges. Let {v1, v2, v3, . . . , vn−1,

vn} be the vertex set of Cn and S be the γdd set of Cn.
Case (i) n = 4.

The graph C4 contains 4 vertices and 4 edges. Then S = {v1, v2, v3, v4} is the
γdd set of C4. Thus 〈S〉 is same as the graph C4 and it has a perfect matching.
Hence γprdd(C4) = 4.
Case (ii) Let n ≥ 3, n 6= 4.

Then n is of the form 3k or 3k + 1 or 3k + 2. The proof is mathematical
induction on the order k where k ∈ N.
Sub case(i) n = 3k where k ≥ 1. When k = 1, n = 3. To prove that the
result is true for k = 1. If k = 1, then S = {v1, v2} is the γdd set of C3. It
follows that 〈S〉 contains one P2 graph. Thus 〈S〉 has a perfect matching. Hence
γprdd(C3) = 2. Therefore the result is true for k = 1. Now assume that the result
is true for k = l − 1. We have 〈S〉 of C3(l−1) contains (l − 1)P2 graph that is
|V 〈S〉| = 2(l − 1). To prove that the result is true for k = l. Let n = 3k, k = l.
Then S = {v1, v2, v4, v5, v7, v8, . . . , v3l−5, v3l−4, v3l−2, v3l−1} is the γdd set of C3k. It
follows that 〈S〉 contains lP2 graph. Thus 〈S〉 has a perfect matching. Hence
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γprdd(C3l) = γprdd(C3(l−1)) + 2 = 2
(
3l−3
3

)
+ 2 = 2

(
3k
3

)
(since k = l) = 2

⌈
n
3

⌉
.

Sub case(ii) n = 3k + 1 where k ∈ N, n 6= 4.
When k = 2, n = 7. To prove that the result is true for k = 2. If n = 7, k = 2,

then S = {v1, v2, v3, v4, v5, v6} is the γdd set of C7. It follows that 〈S〉 contains
one P6 graph. Thus 〈S〉 has a perfect matching. Hence γprdd(C7) = 6. Therefore
the result is true for k = 2. Now, assume that the result is true for k = l − 1.
We have 〈S〉 of C3(l−1)+1 contains one P6 graph and (l − 3)P2 graph. That is
|V 〈S〉| = 6 + 2(l − 3). To prove that the result is true for k = l. Let k = l, n =

3k + 1. Then S = {v1, v2, v3, v4, v5, v6, . . . , v3l−4, v3l−3, v3l−1, v3l} is the γdd set of
C3k+1. It follows that 〈S〉 contains one P6 graph and (l − 2)P2 graph. Hence
γprdd(C3l+1) = γprdd(C3(l−1)+1) + 2 = 2

(
3l−9
3

)
+ 6 + 2 = 2

(
3l
3

)
+ 2 = 2

(
3k
3

)
(since

k = l) = 2
⌈
3k+1
3

⌉
= 2

⌈
n
3

⌉
.

Sub case(iii) n = 3k + 2 where k ∈ N.
When k = 1, n = 5. To prove that the result is true for k = 1. If n = 5, k = 1,

then S = {v1, v2, v3, v4} is the γdd set of C5. Here 〈S〉 contains one P4 graph. Thus
〈S〉 has a perfect matching. Hence γprdd(C5) = 4. Therefore the result is true for
k = 1. Now assume that the result is true for k = l− 1. We have 〈S〉 of C3(l−1)+2

graph contains one P4 graph and (l−2)P2 graph. To prove that the result is true
k = l. Let k = l, n = 3k + 2 where k ∈ N. Then S = {v1, v2, v3, v4, . . . , v3l, v3l+1}.
It follows that 〈S〉 contains P4 graph and (l − 1)P2 graph. Hence γprdd(C3l+2) =

γprdd(C3(l−1)+2) + 2 = 2
(
3k−6
3

)
+ 4 + 2 = 2(l − 2) + 4 + 2 = 2l + 2 = 2(l + 1) =

2(k + 1) (since k = l) = 2
⌈
3k+2
3

⌉
= 2

⌈
n
3

⌉
. Hence from all the three cases we get

γprdd(G) = 2
⌈
n
3

⌉
. �

Theorem 2.6. If n = 3k + 2 where k ∈ N, then γprdd(Pn) = γprdd(Cn).

Proof. If n = 3k+2, then γprdd(Pn) = 2
⌊
n
3

⌋
+2 =

⌊
3k+2
3

⌋
+2 = 2k+2 = 2(k+1) =

2
⌈
3k+2
3

⌉
= 2

⌈
n
3

⌉
= γprdd(Cn). �

Theorem 2.7. For any cycle Cn, γdd(Cn) ≤ γprdd(Cn).

Proof. Consider Cn. Let {v1, v2, . . . , vn} be the vertex set of Cn. The proof has
three cases:
Case (i) n ≡ 0(mod 3).

Take n = 3k where k ≥ 1. Let S = {v1, v2, v4, v5, v7, v8 . . . , v3k−2, v3k−1} be
the γdd set of C3k and M be the maximum matching of 〈S〉. Let B be the set
of vertices incident to the edge set M . Now M is a perfect matching. Thus
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B = S and B is a paired-double dominating set of C3k. Hence γdd(C3k) = |S| =
γprdd(C3k). That is γdd(Cn) = γprdd(Cn).
Case (ii) n ≡ 1(mod 3).

Take n = 3k + 1 where k ≥ 1. Let S = {v1, v2, v4, v5, v7, v8 . . . , v3k−2, v3k−1,

v3k+1} be the γdd set of C3k+1 and M be the maximum matching of 〈S〉. Then
γdd(C3k+1) = |S|. Let B be the set of vertices incident to the edge set M . Let
A be the set of all vertices of S that are not saturated by M . Then A = S − B.
Hence A has only one vertex. That is A has either v3k+1 or v2.
Sub case(i) Let A = {v3k+1}. Then 〈S〉 has no perfect matching and B 6=
S.Thus we add either a vertex say v3k or v3 in S. We get 〈S〉 contains one P6

graph and (k − 2)P2 graph. It follows that 〈S〉 has a perfect matching. Here
γdd(C3k+1) = |S| < |S| + 1 = γprdd(C3k+1). Therefore γdd(C3k+1) < γprdd(C3k+1).
Hence γdd(Cn) < γprdd(Cn).
Sub case(ii) Let A = {v2}. Then the proof is similar to case(i).
Case (iii) n ≡ 2(mod 3).

Take n = 3k + 2 where k ≥ 1. Let S = {v1, v2, v4, v5, v7, v8 . . . , v3k−2, v3k−1,

v3k+1, v3k+2} be the γdd set of C3k+2 and M be the maximum matching of 〈S〉.
Let B be the set of vertices incident to the edge set M . Now M is a perfect
matching. Thus B = S and B is a paired-double dominating set of C3k+2. Hence
γdd(C3k+2) = |S| = γprdd(C3k+2). That is γdd(Cn) = γprdd(Cn). Hence from all the
three cases we get γdd(Cn) ≤ γprdd(Cn). �

Paired-double domination number for some standard graphs are given
below

1) For the complete bipartite graph of order p ≥ 4, γprdd(Km,n) = 4 (where
m,n ≥ 2 and m+ n = p).

2) For any complete graph of order p ≥ 4, γprdd(Kp) = 2.
3) For any wheel graph of order p ≥ 4, γprdd(Wp) = 2

⌈
p
4

⌉
.
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