

Advances in Mathematics: Scientific Journal 9 (2020), no.6, 4271-4276

ISSN: 1857-8365 (printed); 1857-8438 (electronic)

https://doi.org/10.37418/amsj.9.6.109 Spec. Issue on ICIGA-2020

SIGNED DOMINATION NUMBER OF n-STAR GRAPH

B. SHEKINAHHENRY¹ AND Y. S. IRINE SHEELA

ABSTRACT. The n-star graph S_n is a simple graph whose vertex set is the set of all n! permutations of $\{1,2,\ldots,n\}$ and two vertices α and β are adjacent if and only if $\alpha(1) \neq \beta(1)$ and $\alpha(i) \neq \beta(i)$ for exactly one i, $i \neq 1$. In this paper we find the signed domination number γ_s of S_n . We also determine the lower bound of the signed domination number γ_s , for the complement of S_n , the lower bound of the sum and product of the signed domination number of n-star graph S_n and its complement.

1. Introduction

By a graph we mean a finite, undirected, connected graph without loops or multiple edges. Terms not defined here are used in the sense of Haynes et. al. [4] and Harary [3]. The n-star graph S_n is first introduced by Akers and Krishnamurthy [1]. The vertex set of S_n is the set of all n! permutations of $\{1,2,\ldots,n\}$ and two vertices α and β are adjacent if and only if $\alpha(1) \neq \beta(1)$ and $\alpha(i) \neq \beta(i)$ for exactly one i, $i \neq 1$. In this paper we find the signed domination number for odd and even n of S_n . We also obtain lower bound of signed domination number of the complement S_n and sum and product of signed domination number of S_n and its complement. Let G=(V,E) be a graph. For a real valued function $f: V \to R$, the weight of f is $w(f) = \sum_{v \in V} f(v)$ and for $S \subseteq V$ we define $f(S) = \sum_{v \in S} f(v)$. So w(f) = f(V). A signed dominating function is defined as a function $f: V \to \{-1,1\}$ such that $\sum_{u \in N[v]} f(u) \geq 1$, for all $v \in V$.

¹corresponding author

²⁰¹⁰ Mathematics Subject Classification. 05C69.

Key words and phrases. Signed Dominating Function, Signed Domination Number, n-star graph.

The signed domination number for a graph G is $\gamma_{s(G)} = min\{w(f)| \text{ f is a signed dominating function on G}\}$. The upper signed domination number for a graph $\Gamma_{s(G)} = max\{w(f)| \text{ f is a signed dominating function on G}\}$, [2,4].

Theorem 1.1. [4] For every k-regular graph G of order n, $\gamma_s(G) \geq n/(k+1)$.

Theorem 1.2. [4] For every k-regular graph G of order n, with k odd,

$$\gamma_s(G) \ge 2n/(k+1)$$
.

2. Main Results

Theorem 2.1. For n-star graph, with n odd the signed domination number $\gamma_s(S_n) = (n-1)!$.

Proof.

Case 1: For n = 1.

Since there is only one vertex say v(1) define $f: V(S_1) \to \{-1, 1\}$, such that $f(v_1) = 1$. Then f is the only signed dominating function. The signed domination number of S_1 is 1 = (1 - 1)!. Therefore $\gamma_s(S_n) = (n - 1)!$, for n = 1.

Case 2: For n > 1 and odd.

 S_n is a (n-1) regular graph. Since n is odd, (n-1) is even. We have for every k-regular graph G of order n, $\gamma_s(G) \geq n/(k+1)$. Therefore S_n ,

$$\gamma_s(S_n) \ge n!/(n-1+1) = (n-1)!n/n = (n-1)!.$$

Let $A_i = \{\alpha \in V(S_n) | \alpha(1) = 1, \alpha(1) = 2, \dots \alpha(1) = i, \text{ where } \mathbf{i} = (n-1)/2\}.$ Define a function $f: V(S_n) \to \{-1, 1\}$ such that

$$f(\alpha) = \begin{cases} -1 & \text{for } \alpha \in A_i \\ 1 & \text{for } \alpha \notin A_i \end{cases}.$$

Then f is a signed dominating function for S_n .

Now for finding the weight of signed dominating function for S_n , there are (n-1)! elements in each $\alpha(1)=i, i=1,2,\ldots,n$. Hence there are $\frac{(n-1)}{2}(n-1)!$ vertices for which $f(\alpha)=-1$. Therefore there are $n!-[\frac{(n-1)}{2}(n-1)!]$ vertices for which $f(\alpha)=1$. Then weight of the signed dominating function f is

$$w(f) = \left[\frac{(n+1)}{2}(n-1)!\right] - \left[\frac{(n-1)}{2}(n-1)!\right] = \left[\frac{(n+1)}{2} - \frac{(n-1)}{2}\right](n-1)! = (n-1)!.$$

Hence we get a signed dominating function f of S_n with weight (n-1)!. But $\gamma_s(S_n) \geq (n-1)!$.

Therefore
$$\gamma_s(S_n) = (n-1)!$$
.

Theorem 2.2. For n-star graph, the signed domination number, $\gamma_s(S_n) = 2(n-1)!$ where n is even.

Proof.

Case 1: n=2.

There are two vertices in S_2 . Define $f:V(S_1)\to \{-1,1\}$, such that $f(v_1)=1$ and $f(v_2)=1$. Then f is the only signed dominating function. The signed domination number of S_2 is 2=2(2-1)!. Therefore $\gamma_s(S_n)=2(n-1)!$, for n=2.

Case 2: n > 2 and even.

 S_n is a (n-1) regular graph. Since n is even, (n-1) is odd. We have for every k-regular graph G of order n, with k odd, $\gamma_s(G) \geq 2n/(k+1)$. Therefore for n-star graph,

$$\gamma_s(S_n) \ge 2n!/(n-1+1) = 2(n-1)!n/n = 2(n-1)!.$$

Let $A_i = \{\alpha \in V(S_n) | \alpha(1) = 1, \alpha(1) = 2, \dots, \alpha(1) = i, \text{ where } i = \frac{n}{2} - 1\}$. Define a function $f: V(S_n) \to \{-1, 1\}$, such that

$$f(\alpha) = \begin{cases} -1 & \text{for } \alpha \in A_i \\ 1 & \text{for } \alpha \notin A_i \end{cases}.$$

Then f is signed dominating function of S_n .

Now for finding the weight of signed dominating function for S_n , there are (n-1)! elements in each $\alpha(1)=i, i=1,2,\ldots,n$.

Hence there are $(\frac{n}{2}-1)(n-1)!$ vertices for which $f(\alpha)=-1$. Therefore there are $n!-[(\frac{n}{2}-1)(n-1)!]=(\frac{n}{2}+1)(n-1)!$ vertices for which $f(\alpha)=1$. Then weight of the signed dominating function f is

$$w(f) = \left[\left(\frac{n}{2} + 1 \right)(n-1)! \right] - \left[\left(\frac{n}{2} - 1 \right)(n-1)! \right] = \left[\left(\frac{n}{2} + 1 \right) - \left(\frac{n}{2} - 1 \right) \right](n-1)! = 2(n-1)!.$$

Hence we get a signed dominating function f of S_n with weight 2(n-1)!. But $\gamma_s(S_n) \geq 2(n-1)!$.

Hence
$$\gamma_s(S_n) = 2(n-1)!$$
.

Theorem 2.3. The complement $\overline{S_n}$ of n-star graph is n! - n regular.

Proof. Any two vertices of $\overline{S_n}$ is adjacent if it is not adjacent in S_n . Clearly S_n is (n-1) regular. Also since there are n!-1 vertices other than a vertex v_i in $\overline{S_n}$, each vertex v_i in $\overline{S_n}$ is adjacent with (n!-1)-(n-1)=n!-n vertices. Hence $\overline{S_n}$ is n!-n regular.

Theorem 2.4. The signed domination number $\gamma(\overline{S_n}) \ge 2n!/(n!-n+1)$ if n is odd and $\gamma(\overline{S_n}) \ge n!/(n!-n+1)$ if n is even.

Proof. $\overline{S_n}$ is n!-n regular. Also if n is odd, then n! - n is odd. We have for every k-regular graph G of order n, with k odd $\gamma(\overline{S_n}) \geq 2n/(k+1)$.

Therefore for the complement of n-star graph $\gamma(\overline{S_n}) \geq 2n!/(n!-n+1)$.

Also if n is even, then (n!-n) is even. We have for every k-regular graph G of order $n, \gamma(\overline{S_n}) \ge n/(k+1)$.

Therefore for the complement of n-star graph $\gamma(\overline{S_n}) \geq n!/(n!-n+1)$.

Theorem 2.5. The sum of the signed domination number of S_n and its complement $\overline{S_n}$ is

$$\gamma(S_n) + \gamma(\overline{S_n}) \ge \frac{(n-1)!(n!+n+1)}{(n!-n+1)},$$

for odd n.

Proof. By theorem 2.1, $\gamma(S_n) = (n-1)!$. Also by theorem 2.4, $\gamma(\overline{S_n}) \geq 2n!/(n!-n+1)$, if n is odd. Hence it follows that

$$\gamma(S_n) + \gamma(\overline{S_n}) \ge (n-1)! + 2n!/(n! - n + 1)$$

$$= \frac{(n-1)!(n! - n + 1) + 2(n-1)!n}{(n! - n + 1)} = \frac{(n-1)![n! - n + 1 + 2n]}{(n! - n + 1)}$$

$$= \frac{(n-1)!((n! + n + 1))}{(n! - n + 1)}.$$

Hence $\gamma(S_n) + \gamma(\overline{S_n}) \geq \frac{(n-1)!(n!+n+1)}{(n!-n+1)}$, for n odd.

Theorem 2.6. The sum of the signed domination number of n-star graph and its complement $\overline{S_n}$ is

$$\gamma(S_n) + \gamma(\overline{S_n}) \ge \frac{(n-1)!(2n! - n + 1)}{(n! - n + 1)},$$

for even n.

Proof. By theorem 2.2, $\gamma(S_n) = 2(n-1)!$. Also by theorem 2.4, $\gamma(\overline{S_n}) \geq n!/(n!-n+1)$. Hence it follows that

$$\gamma(S_n) + \gamma(\overline{S_n}) \ge 2(n-1)! + n!/(n! - n + 1)$$

$$= \frac{2(n-1)!(n! - n + 1) + (n-1)!n}{(n! - n + 1)} = \frac{(n-1)![2n! - 2n + 1 + n]}{(n! - n + 1)}$$

$$= \frac{(n-1)!(2n! - n + 1)}{(n! - n + 1)}.$$

Hence
$$\gamma(S_n) + \gamma(\overline{S_n}) \ge \frac{(n-1)!(2n!-n+1)}{(n!-n+1)}$$
 for n even.

Theorem 2.7. The product of the signed domination number of n-star graph and its complement is

$$\gamma(S_n)\gamma(\overline{S_n}) \ge \frac{(n-1)!2n!}{(n!-n+1)},$$

for n odd and

$$\gamma(S_n)\gamma(\overline{S_n}) \ge \frac{2(n-1)!n!}{(n!-n+1)},$$

n even.

Proof. By theorem 2.1, $\gamma(S_n)=(n-1)!$ and by theorem 2.4, $\gamma(\overline{S_n})\geq 2n!/(n!-n+1)$ for odd n. Hence it follows that $\gamma(S_n)\gamma(\overline{S_n})\geq (n-1)!2n!/(n!-n+1)$, for odd n. Also by theorem 2.2, $\gamma(S_n)=2(n-1)!$ and by theorem 2.5, $\gamma(\overline{S_n})\geq n!/(n!-n+1)$ for even n. Hence it follows that for even n

$$\gamma(S_n)\gamma(\overline{S_n}) \ge \frac{2(n-1)!n!}{(n!-n+1)}.$$

REFERENCES

- [1] S. B. AKERS, B. KRISHNAMURTHY: A group theoretic model for symmetric interconnection networks, Proc. Int. Conf. Parallel Processing. (1986), 216–223.
- [2] S. ARUMUGAM, R. KALA: Domination Parameters Of Star Graph, Ars Combinatoria, 44 (1996), 93–96.
- [3] F. HARARY: Graph Theory, Addison Wesley, Reading Mass, 1969.
- [4] T. W. HAYNES, S. T. HEDETNIEMI, P. J. SLATER: Fundamentals of Domination of Graphs, Marcel Dekker. INC, 1998.

DEPARTMENT OF MATHEMATICS
SCOTT CHRISTIAN COLLEGE, NAGERCOIL
MANONMANIAM SUNDARANAR UNIVERSITY
TIRUNELVELI, TAMILNADU, INDIA
Email address: shekihenrymatz@gmail.com

DEPARTMENT OF MATHEMATICS
SCOTT CHRISTIAN COLLEGE, NAGERCOIL
MANONMANIAM SUNDARANAR UNIVERSITY
TIRUNELVELI, TAMILNADU, INDIA
Email address: irinesheela@gmail.com