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THE LEAST MONOPOLY DISTANCE ENERGY OF FUZZY GRAPH
M. RAJESHWARI', R. MURUGESAN, AND K. A. VENKATESH

ABSTRACT. In this paper, we present monopoly fuzzy graph, size and cardinal-
ity. The idea of least monopoly distance energy of fuzzy graph was discussed
and also computed lower and upper bound. Some examples have been illus-
trated.

1. INTRODUCTION

The idea of fuzzy sets and fuzzy relations was introduced by L.A.Zadeh in
1965 [4] and it has found the applications in the analysis of cluster patterns. The
spectrum of a graph initially showed up in a paper by Collatz also, Sinogowitz
in 1957. The idea of fuzzy graph was presented by Rosenfeld [5] in 1975. The
energy of fuzzy graph of a matrix G is the sum of absolute value of eigenvalues.

In 2013 Khoshkhak et al presented the idea of monopoly in graphs. In 1978
I. Gutman presented the idea of energy of graph. A Study of Monopolies in
Graphs is presented by K. Khoshkhah, M. Nemati, H. Soltani, M. Zaker [1]. In
2015 [2,3] Ahmed Mohammed Naji and N. D. Soner described the The Mini-
mum Monopoly Energy of a Graph and also the Independent Monopoly Size in
Graphs. A graph G is represented by m edges and n vertices. Let G be a fuzzy
graph, a subset D of V is called monopoly fuzzy set in G if every vertex has at
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least neighbors in D. The size of monopoly is denoted by mo(G) and the least
cardinality of a monopoly fuzzy set among all monopoly fuzzy set in G.

2. LEAST MONOPOLY DISTANCE ENERGY OF FUZZY GRAPH

We followed the fuzzy graph as mentioned in [5].

Definition 2.1. The least monopoly distance fuzzy matrix of G is denoted by

(

1 ifi=jandv, e M
d(ei]’) if’Uﬂ)j ek

AM(G) =
min(d(e + d(ex;) if viv; ¢ E,vv, € Eand vpv; € E

\ 0 otherwise .

Example 1. Let vy, vo, v3 be the set of vertices in fuzzy graph G and D = vs is the
least monopoly set in G and the size of fuzzy monopoly is denoted by p(mo(G)) = 1.
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FIGURE 1. Fuzzy graph

0 0.7 0.2
Ay(G)=107 0 05
0.2 05 1

Spec((pi(G))) = 1.3812, —0.7288, 0.3476
E((py)) = 24576
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3. BOUNDS ON LEAST MONOPOLY DISTANCE ENERGY OF FUZZY GRAPH

Theorem 3.1. Let G be a connected fuzzy graph with n vertices and m edges. Then

V2m + 25 + p(mo(G)) < E(ui(G)) < /n(2m + 2s + p(mo(@G))) .

Proof. Examine the Cauchy schwartiz inequality

(B3 (G)))? = (i aiby)” < (0, ad) (20, )

Let a; = 1cmdbz = |Qj|, then:
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=n | u(mo(G)) + 2 Z d2(ai,aj)>

1<i<j<n

— n (u(mo(G)) + 2m + 2) ,

where s = )
Lower Bound:

d*(a;, a;) i.e,(E(uiji(Q)))* < n(p(mo(G) + 2m + 2s) .

i<j,d(a;,a;neql

(E(pii(G)))* = (Z \Cf)
- Z |C¢‘2
> u(mo(Q)) + 2m + 2s,
ie.,(E(ni;(G)))?* > u(mo(G) + 2m + 2s. O

Example 2. Let G be a fuzzy star graph with 5 vertices and 4 edges. D = {c} is the
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FIGURE 2. Fuzzy star graph

least monopoly set in G and the size of fuzzy monopoly is denoted by p(mo(G)) = 1.

0 05 02 0.3 06
05 0 03 04 0.7
A(pi(G) =102 03 1 0.1 04
03 04 01 0 05
06 0.7 04 05 0

Spec((p5(G))) = 1.8496, —0.7379, 0.6951, —0.5160, —0.2907 ,
E((1157)) = 4.0893.
The bounds of fuzzy graph is denoted as 3.5777 < 4.0893 < 8.

Example 3. Let G be a fuzzy double star graph with 8 vertices and 7 edges.
D = {c, d} is the least monopoly set in G and the size of fuzzy monopoly is denoted

0.1 0.4
0.3

FIGURE 3. Fuzzy double star graph
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by u(mo(G)) = 2

0 03 01 05 08 06 05 0.9
03 0 02 05 09 07 06 1
01 02 1 03 07 05 04 0.8
05 05 03 1 04 02 01 05
08 09 07 04 0 06 05 0.9
0.6 0.7 05 02 06 0 03 08
05 06 04 01 05 03 0 0.6
09 1 08 05 09 08 06 0

Spec((uij(G))) = 4.0127, —1.09826 + 0.1449i, —1.09826 — 0.1449i, 0.8465,
—0.65528, 0.5750, 0.3168, —0.2656
E((ji;)) = 8.8872.

The Bounds of fuzzy graph is denoted as 6.6483 < 8.8872 < 18.8042 .

A (G)) =

Example 4. Let G be a fuzzy double star graph with 9 vertices and 8 edges.
D = {b,c,d} is the least monopoly set in G and the size of fuzzy monopoly is

FIGURE 4. Fuzzy caterpillar graph

denoted by p(mo(G)) = 3.
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Spec((11;(G))) = 4.4855, —2.1090, 0.8653, 0.7285, —0.5862,

0.56046, —0.4639, —0.2806, —0.2

E((p7)) = 10.2794

The Bounds of fuzzy graph is denoted as 7.46993 < 10.2794 < 22.4098..

Example 5. Let G be a fuzzy double star graph with 8 vertices and 10 edges.
D = {b,c, f, g} is the least monopoly set in G and the size of fuzzy monopoly is

0.3 03

0.4 0.4

0.1 0.1

FIGURE 5. Fuzzy ladder graph

denoted by p(mo(G)) = 4.

0 03 07 08 02 05 09 1
03 1 04 05 05 02 06 0.7
07 04 1 01 09 06 02 0.3
08 05 01 0 1 07 03 0.2
02 05 09 1 0 03 07 0.8
05 02 06 07 03 1 04 05
09 06 02 03 07 04 1 0.1
1 07 03 02 08 05 01 0

Spec((11:;(G))) = 4.1176, —1.9488, 1,0.7403, —0.5403, 0.5248, 0.1063, —1.7064 x 1016
E((ju55)) = 8.9781
The Bounds of fuzzy graph is denoted as 7.26636 < 8.9781 < 20.55237 .
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4. CONCLUSION

In this paper, we presented the idea of independence monopoly size in fuzzy
graphs and also lower and upper bound of least monopoly distance energy of
fuzzy graph.
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