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DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION
OF DELAY DIFFERENTIAL EQUATIONS WITH LAYER STRUCTURE

D. KUMARA SWAMY, M. ADILAXMI, AND G. B. S. L. SOUJANYA1

ABSTRACT. A difference scheme is presented for the numerical solution of delay
differential equations having layer structure. Firstly, the given delay differential
equation is replaced by singularly perturbed two-point boundary value problem
using Taylor’s expansion on delay/deviating term. Next, Liouville Green Trans-
formation is used to convert into regularly perturbed two-point boundary value
problem. This problem is solved efficiently by the finite difference scheme of
order four. The scheme presented here is implemented on four model prob-
lems for different values of perturbation and delay parameters. The numerical
solutions are compared with exact solutions and other results available in liter-
ature. To understand the impact of the parameters, the solution is also shown
in graphs.

1. INTRODUCTION

In the modelling of complex physical systems, differential-difference equa-
tions play a very important role. In particular, to get practical feedback models,
it is always important to have delaying effects, such as reaction time. These
problems occur in the modelling of many practical phenomena such as, in popu-
lation dynamics Kuang [9], in models for physiological processes [14], predator-
prey models [15] and in evaluating of the estimated time for the generation of
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an action potential in nerve cells by random synaptic inputs in dendrites [21].
For further analysis of mathematical details of these models, researchers can
refer to Derstine et al. [2], El’sgol’ts and Norkin [4]. Kokotovic et al. [7]. In
the last few years, the study of differential-difference equations with layer be-
haviour having small shifts has evolved rapidly. Most of the researchers solved
these equations by discretization using computational techniques. The analy-
sis and numerical approach of these problems are well documented in [1, 3,
7, 8, 17, 18]. Authors in [6], using a parameter-uniform differential scheme
with the use of Taylor approximation, solved a mathematical model resulting
from the neuronal variability model. In [10]. authors studied a second-order
class differential-difference equations that exhibit turning point behaviour and
in [11] concentrated on solutions that display layer behaviour at one or both
ends of the boundary and evaluated the layer behaviour for different values of
the shift parameter. The same authors in [12] expanded their analysis to prob-
lems with fast oscillation solutions and demonstrated that oscillatory solutions
are more prone to small delays than layer solutions using a simplified version
of the standard WKB process. In [13], a mixed difference method is suggested
to solve the equations with mixed shifts via domain decomposition as an in-
ner and outer region. Researchers in [16] proposed initial value method for
solving a class of differential-difference equations with mixed shifts, first chang-
ing the given problem into singular perturbation problem using Taylors series
and splitting it into two explicit initial value problems that are independent of
perturbation parameter and solved them numerically, Phaneendra et. al. [18]
derived a fitting factor finite difference method of fourth order to solve delay
problems with mixed shifts. In [22], a set of finite difference methods pro-
posed for convention-diffusion equations using triangular function theorem for
one-dimensional problems and the same is generalized for 2D problems with the
help AID technique. Ravi Kanth and Murali [19] presented a fitted spline scheme
for the solution of convection delay problems with a layer at left or right end of
the interval. Hussein Sahihi et. al. [5] used Reproducing Kernel Hilbert Space
Method based on collocation scheme is used without Gram-Schmidt orthogonal-
ization process for solving differential-difference equation with boundary layer
behavior and also oscillatory behavior with small delay. Kumara Swamy et. al.
[10] employed numerical integration with linear interpolation to get the solu-
tion of differential equations with layer or oscillatory structure. Reddy et al.
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[20] implemented Trapezoidal rule for the solution of layered behaviour differ-
ential equations.

2. DESCRIPTION OF THE PROBLEM

We consider the second order linear differential equation with delay argument

(2.1) εw′′(ϑ) + a(ϑ)w′(ϑ− δ) + b(ϑ)w(ϑ) = 0, 0 ≤ ϑ ≤ 1 ,

with the boundary conditions

w(ϑ) = α ,−δ ≤ ϑ ≤ 0 and w(1) = β ,

where 0 < ε << 1 is the perturbation parameter, 0 < δ < 1 and δ = o(ε)

is the delay argument, a(ϑ), b(ϑ) sufficiently differentiable in (0,1) and α, β
are constants. When a(ϑ) ≥ M > 0 in [0, 1], boundary layer will be in the
neighborhood of ϑ = 0 and when a(ϑ) ≤ M < 0 in [0, 1], boundary layer will
be in the neighborhood of ϑ = 1. Taylor series expansion gives us

(2.2) w
′
(ϑ− δ) ≈ w

′
(ϑ)− δw′′

(ϑ) .

Using equation (2.2) into equation (2.1), we obtain singularly perturbed equa-
tion as:

(2.3) −εw′′
(ϑ)+f(ϑ)w

′
(ϑ)+g(ϑ)w(ϑ) = 0

where f(ϑ) = a(ϑ)
τa(ϑ)−1 , g(ϑ) =

b(ϑ)
τa(ϑ)−1 , τ=

δ
ε
. Since 0 < δ < 1 the transition from

equation (2.1) to equation (2.3) is permitted. Justification for this is available
in Elsgolt’s and Norkin [4].

3. NUMERICAL SCHEME

Consider the equation (2.3)

(3.1) −εw′′
(ϑ) + f(ϑ)w

′
(ϑ) + g(ϑ)w(ϑ) = 0 , ϑ∈ [0, 1] .

The Liouville –Green transformation is given by:

(3.2) z = ϕ(ϑ) =
1

ε

∫
f(ϑ)dϑ= ϕ (ϑ)=

1

ε

∫
, f (ϑ) dϑ ,

φ(ϑ) = ϕ′(ϑ) =
1

ε
f(ϑ) .
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(3.3) l(z) = φ(ϑ)w(ϑ) .

According equation (3.3), we have

(3.4)
dw

dϑ
=

1

φ(ϑ)

dl

dz
z
′
(ϑ)− φ

′
(ϑ)

φ2(ϑ)
l(z) =

φ
′
(ϑ)

φ(ϑ)

dl

dz
− φ

′
(ϑ)

φ2(ϑ)
l(z),

(3.5)
d2w

dϑ2
=

1

φ(ϑ)

((
ϕ2(ϑ)

d2l

dz2
+

(
φ′′ − 2ϕ

′
(ϑ)φ

′
(ϑ)

φ(ϑ)

)
dl

dz

)
−
(
φ

′′
(ϑ)

φ(ϑ)
− 2ϕ

′2(ϑ)

φ2(ϑ)
l

))
.

From equation (3.1), equation (3.4)and equation (3.5), we obtain

−εϕ
′2

φ

d2l

dz2
+

(
2εϕ

′
φ

′

φ2
− εϕ

′′
(ϑ)

φ(ϑ)
+ f(s)

ϕ
′
(ϑ)

φ(ϑ)

)
dl

dz

+

(
εφ

′′
(ϑ)

φ2(ϑ)
− 2εϕ

′2(ϑ)

φ3(ϑ)
− f(ϑ)φ

′
(ϑ)

φ2
+
g(s)

φ

)
l(z) = 0,

i.e.,

d2l

dz2
+

1

ϕ′2

(
ϕ

′′
(ϑ)− 2ϕ

′
φ

′

φ
− f(ϑ)ϕ

′
(ϑ)

ε

)
dl

dz

− 1

ϕ′2

(
φ

′′
(ϑ)

φ(ϑ)
− 2φ

′2

φ2
− f(ϑ) φ

′
(ϑ)

εφ(ϑ)
+
g(ϑ)

ε

)
l(z) = 0 .

From equation (3.2), we have

d2l

dz2
−
(
ε
f

′
(ϑ)

f 2(ϑ)
+ 1

)
dl

dz
− 1

f 2(ϑ)

(
ε2
f

′′
(ϑ)

f(ϑ)
− 2ε2

f
′2(ϑ)

f 2(ϑ)
− εf ′

(ϑ) + εg(ϑ)

)
l(z) = 0,

d2l

dz2
−
(
ε
f

′
(ϑ)

f 2(ϑ)
+ 1

)
dl

dz
−ε
(
− f

′
(ϑ)

f 2(ϑ)
+

g(ϑ)

f 2(ϑ)

)
l(z) =

ε2

f 2(ϑ)

(
f

′′
(ϑ)

f(ϑ)
− 2

f
′2(ϑ)

f 2(ϑ)

)
l(z) ,

(3.6)
d2l

dz2
− p(ϑ) dl

dz
− εq(ϑ)l(z) = ε2

f 2(ϑ)

(
f ?(ϑ)

f(ϑ)
− 2

f
′2(ϑ)

f 2(ϑ)

)
l(z) ,

where p(ϑ) = ε f
′
(ϑ)

f2(ϑ)
+ 1, q(ϑ) = 1

f2(ϑ)

(
−f ′

(ϑ) + g(ϑ)
)
. Since ε is a small param-

eter (0 < ε << 1) , right hand side of equation (3.6) is sufficiently small on
[0, 1].

(3.7)
d2l

dz2
− p(ϑ) dl

dz
− εq(ϑ)l(z) = 0 .
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The boundary conditions for the problem equation (3.7) are given by equation
(3.3). We have the following difference approximations for l′i, l

′′
i :

(3.8) l
′′

i
∼=
li−1 − 2li + li+1

h2
− h2

12
l4(ξ) +R2 ,

(3.9) l
′

i
∼=
li+1−li−1

2h
−h

2

6
l(2)(η)+R1 ,

where ξ, η ∈ [ϑi−1, ϑi+1]R1 =
−2h4l(3.1)(ξ1)

120
R2 =

−2h4l(3.2)(ξ2)
240

li−1 − 2li + li+1

h2
− h2

12
l(2.3)(ξ) +R2 − pi

(
li+1 − li−1

2h

)
+
pih

2

6
l
′′′

i + piR1 − εqili = 0 .

Now differentiating both sides of equation (3.7), we have

l
′′′
= pl

′′
+ (p

′
+ εq)l

′
+ εq

′
l .

Using the above equations, we have:
(3.10)
li−1 − 2li + li+1

h2
−pi

(
li+1 − li−1

2h

)
+
pih

2

6

(
pil

′′

i + (p
′

i + εqi)l
′

i + εq
′

ili

)
−εqili+R = 0 .

where R = piR1 − h2

12
livi + R2. Now we approximate the converted error term

in equation (3.10) by using difference formulas for l′i, l
′′
i from equation (3.8)and

equation (3.9). Then we get(
1

h2
+
pi
2h

+
p2i
6
− pih

12
(p

′

i + εqi)

)
li−1 −

(
2

h2
+
p2i
3
− εpih

2

6
q
′

i + εqi

)
li

+

(
1

h2
− pi

2h
+
p2i
6

+
pih

12
(p

′

i + εqi)

)
li+1 + τi(l) = 0 ,

where τi(l) =
p2i h

2

6
R2− p2i h

4

6
livi −

pih
4

36
(p

′
i+εqi)l

′′′
i + pih

2

6
(p

′
i+εqi)R1+R . Simplifying

the above equation, we get the three term relation given by:

(3.11) Aili−1 −Bili + Cili+1 = Di, i= 1, 2, ...,N−1

where Ai = 1
h2

+ pi
2h

+
p2i
6
− pih

12
(p

′
i + εqi), Bi =

2
h2

+
p2i
3
− εpih

2

6
q
′
i + εqi

Ci =
1
h2
− pi

2h
+

p2i
6
+ pih

12
(p

′
i + εqi), Di = 0.

equation (3.11) is solved for the solution using tridiagonal solver algorithm.
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4. NUMERICAL EXPERIMENTS

Approach presented here is implemented on four model problems for differ-
ent values of ε and δ and our solutions are compared with exact solutions
available in literature. To understand the impact of the parameters the solution
is also shown in graph. Wherever the exact solution is not available, Error is
calculated using the double mesh principle given by EN = max

0≤i≤N

∣∣wNi − w2N
2i

∣∣ .
Problem 4-1. Consider a delay differential equation with left-end layer

εw
′′
(ϑ) + w

′
(ϑ− δ)− w(ϑ) = 0 ; ϑ∈ [0, 1] .

The exact solution is:

w(ϑ) =
((1−em2)em1ϑ + (em1 − 1)em2ϑ)

(em1 − em2)
,

where m1 =
−1−

√
1 + 4(ε− δ)

2(ε− δ)
and m2 =

−1 +
√

1 + 4(ε− δ)
2(ε− δ)

.

Maximum errors are compared in Table 1 and Table 2 using double mesh prin-
ciple.

Problem 4-2. εw′′
(ϑ) + e−0.5ϑw

′
(ϑ− δ)− w(ϑ) = 0 withw(0) = 1, w(1) = 1.

Maximum errors are compared in Table 3 and Table 4 using double mesh prin-
ciple.

Problem 4-3. Consider a delay differential equation with right-end layer

εw
′′
(ϑ)− w′

(ϑ− δ)− w(ϑ) = 0 withw(0) = 1, w(1) = −1 .

The exact solution is

w(ϑ) =
((1 + em2)em1ϑ − (em1 + 1)em2ϑ)

(em2 − em1)

where m1 =
−1−

√
1 + 4(ε− δ)

2(ε− δ)
and m2 =

−1 +
√

1 + 4(ε− δ)
2(ε− δ)

.

Maximum errors are compared in Table 5 and Table 6 using double mesh prin-
ciple.

Problem 4-4. εw′′
(ϑ)− eϑw′

(ϑ− δ)− ϑw(ϑ) = 0, with w(0) = 1, w(1) = 1.
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Maximum errors are compared in Table 7 and Table 8 using double mesh
principle.

5. CONCLUSION

This paper dealt with the delay differential equation having boundary layers.
The delay argument is dealt by Taylor’s series and a singularly perturbed prob-
lem is derived. Liouville Green Transformation and higher order finite difference
method is described for solving the resulting problem. Approach presented here
is implemented on four model problems for different values of ε and δ and our
solutions are compared with exact solutions and with the results available in
[20]. To understand the impact of the parameters the solution is also shown in
graphs.

Table 1. The maximum absolute errors in solution of Problem 1 with ε = 0.1

for different values of δ and grid size N .

N → 102 103 104 105

δ ↓ Proposed method
0.01 1.3798e− 04 1.3907e− 05 1.3887e− 06 1.5767e− 06

0.03 1.0765e− 04 1.0849e− 05 1.0600e− 06 3.1523e− 06

0.06 6.1798e− 05 6.2273e− 06 6.3164e− 07 3.1727e− 06

0.08 3.0995e− 05 3.1233e− 06 3.3537e− 07 1.5918e− 06

Results in [20]
0.01 0.01172504 0.00122562 1.2310e− 004 1.2280e− 05

0.03 0.01505997 0.00158944 1.5984e− 004 1.5998e− 05

0.06 0.02575368 0.00281263 2.8397e− 004 2.8449e− 05

0.08 0.04781066 0.00562948 5.7357e− 004 5.7357e− 004
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Table 2. The maximum absolute errors in solution of Problem 1 with ε = 0.01

for different values of δ and grid size N .

N → 102 103 104 105

δ ↓ Proposed method
0.01 1.5388e− 04 1.5487e− 05 1.5676e− 06 1.5953e− 06

0.03 1.1972e− 04 1.2049e− 05 1.2321e− 06 1.5919e− 06

0.06 6.8442e− 05 6.8883e− 06 7.2214e− 07 1.5895e− 06

0.08 3.4231e− 05 3.4452e− 06 3.6130e− 07 1.7706e− 09

Results in [20]
0.01 0.09073569 0.01228700 0.00127926 1.28459e− 04

0.03 0.10803507 0.01562216 0.00164450 1.65330e− 04

0.06 0.12777968 0.02630926 0.00287019 2.89704e− 04

0.08 0.10040449 0.04833890 0.00568876 5.79477e− 04

Table 3. The maximum absolute errors in solution of Problem 1 with ε = 0.1 for
different values of δ and grid size N .

N → 102 103 104

δ ↓ Proposed method
0.01 5.0306e− 05 4.9837e− 06 4.9792e− 07

0.03 3.8174e− 05 3.7549e− 06 3.7476e− 07

0.06 1.9104e− 05 1.7998e− 06 1.7879e− 07

0.08 4.3277e− 06 5.0732e− 07 5.1673e− 08

Results in [20]
0.01 0.00632996 0.000674268 6.7871e− 05

0.03 0.00815917 0.000882563 8.8986e− 05

0.06 0.01384760 0.001579726 1.6020e− 04

0.08 0.02477158 0.003173235 3.2602e− 04
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Table 4. The maximum absolute errors in solution of Problem 1 with ε = 0.01

for different values of δ and grid size N .

N → 102 103 104 105

δ ↓ Proposed method
0.01 5.2697e− 05 5.2414e− 06 2.3268e− 09 5.2312e− 07

0.03 3.9647e− 05 3.9249e− 06 3.4353e− 09 3.9256e− 07

0.06 1.9325e− 05 1.8582e− 06 7.7315e− 09 1.8664e− 07

0.08 3.4.5115e− 06 5.3175e− 07 1.9107e− 08 5.4691e− 08

Results in [20]
0.01 0.09092877 0.01562620 0.00127940 0.00012847

0.03 0.10836214 0.01562216 0.00164463 0.00016534

0.06 0.12845428 0.02631484 0.00287030 0.00028971

0.08 0.10149957 0.04834773 0.00568891 0.00057948

Table 5. The maximum absolute errors in solution of Problem 1 with ε = 0.1

for different values of δ and grid size N .

N → 102 103 104 105

δ ↓ Proposed method
0.01 4.9650e− 05 4.9729e− 06 4.9586e− 07 2.7422e− 10

0.03 5.8439e− 05 5.8534e− 06 5.8693e− 07 4.5744e− 07

0.06 7.1489e− 05 7.1607e− 06 7.2219e− 07 4.5575e− 07

0.08 8.0100e− 05 8.0235e− 06 8.0780e− 07 9.0628e− 07

Results in [20]
0.01 0.02281050 0.00236357 2.3722e− 004 2.3756e− 05

0.03 0.01954096 0.00201453 2.0208e− 004 2.0239e− 05

0.06 0.01609366 0.00165114 1.6554e− 004 1.6580e− 05

0.08 0.01439633 0.00147352 1.4770e− 004 1.4818e− 05
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Table 6. The maximum absolute errors in solution of Problem 1 with ε = 0.1

for different values of δ and grid size N .

N → 102 103 104 105

δ ↓ Proposed method
0.01 5.5816e− 05 5.5822e− 06 5.5361e− 07 7.6147e− 10

0.03 6.5938e− 05 6.5944e− 06 6.5969e− 07 4.5744e− 07

0.06 8.1106e− 05 8.1113e− 06 8.0942e− 07 9.3737e− 07

0.08 9.1208e− 05 9.1214e− 06 9.1528e− 07 4.6885e− 07

Results in [20]
0.01 0.16595983 0.02210942 0.00228566 2.29353e− 004

0.03 0.10803507 0.01562216 0.00164450 1.94192e− 004

0.06 0.12777968 0.02630926 0.00287019 2.89704e− 004

0.08 0.10040449 0.04833890 0.00568876 5.79477e− 004

Table 7. The maximum absolute errors in solution of Problem 1 with ε = 0.1

for different values of δ and grid size N .

N → 102 103 104

δ ↓ Proposed method
0.01 6.8368e− 07 5.9728e− 08 7.9893e− 09

0.03 4.7333e− 07 4.0201e− 08 5.9759e− 09

0.06 2.0459e− 07 1.5284e− 08 4.8387e− 11

0.08 4.4650e− 08 2.2655e− 09 1.9286e− 11

Results in [20]
0.01 0.00575975 0.00050842 5.0247e− 005

0.03 0.003932768 0.00036132 3.5838e− 005

0.06 0.002702569 0.00025507 2.5364e− 005

0.08 0.00224689 0.00021413 2.1313e− 005
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Table 8. The maximum absolute errors in solution of Problem 1 with ε = 0.1

for different values of δ and grid size N .

N → 102 103 104 105

δ ↓ Proposed method
0.0007 7.8866e− 08 6.9851e− 09 8.1822e− 11 6.3081e− 12

0.0015 6.8474e− 08 6.0053e− 09 2.8251e− 11 4.8875e− 12

0.0025 5.6994e− 08 8.1113e− 06 8.0942e− 07 7.0181e− 08

Results in [20]
0.0007 0.16595983 0.02210942 0.00301195 0.00030240

0.0015 0.12311973 0.01462776 0.00149178 0.00014948

0.0025 0.08096456 0.00911534 0.00092344 0.00009247

FIGURE 1. Solution of the Problem 4.1 for ε = 0.1 for different δ of o(ε)
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FIGURE 2. Solution of the Problem 4.1 for ε = 0.01 for different δ
of o(ε)

FIGURE 3. Solution of the Problem 4.2 for ε = 0.1 for different δ of o(ε)
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FIGURE 4. Solution of the Problem 4.2 for ε = 0.01 for different δ
of o(ε)

FIGURE 5. Solution of the Problem 4.3 for ε = 0.1 for different δ of o(ε)
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FIGURE 6. Solution of the Problem 4.3 for ε = 0.01 for different δ
of o(ε)

FIGURE 7. Solution of the Problem 4.4 for ε = 0.1 for different δ of o(ε)
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FIGURE 8. Solution of the Problem 4.4 for ε = 0.01 for different δ
of o(ε)
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