
ADV MATH
SCI JOURNAL

Advances in Mathematics: Scientific Journal 9 (2020), no.6, 4001–4013
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.6.81 Spec Issiue on ICAML-2020

FUNCTION CLONE REMOVAL USING REFACTORING TECHNIQUES

H. KAURR1 AND R. MAINI

ABSTRACT. Refactoring is an activity and a technique to improve maintenance,
performance and quality of software. Several studies in literature shed light
on code clone refactoring to support software maintenance. This paper illus-
trats the experience on clone refactoring with tools cloneDR and JDeodorant.
We investigated the impact of clone refactoring on detected clones in Jhot-
Draw variants (5.2, 6.0b1and 7.0.6) and JEdit-4.2 software. Clone detection
has been performed using cloneDR tool. Impact of refactoring has been ob-
served before and after refactoring on detected clones. Code clones have been
refactored using ExtractMethod, ExtractSuperClass and MoveMethod refactor-
ing techniques. After refactoring clones are reduced in JhotDraw 5.2, JhotDraw
6.0b1, JhotDraw 7.0.6 and Jedit-4.2. SLOC in all software systems has also re-
duced to a certain amount.

1. INTRODUCTION

The process that deals with improvement of source code without affecting the
external functionality of a program is known as refactoring. The term refactor-
ing has been originally confronted in PhD dissertation of William Opdyke, [20].
Software evolution and enhancements in real environment, modification and
adaptation to new emerging requirements, all these issues increases the com-
plexity of code and the program then drifts from its primary design, results in
lowering the software quality. Due to this, majority of software development

1corresponding author
2010 Mathematics Subject Classification. 68-04, 68N01.
Key words and phrases. code clone, function clone, refactoring.

4001

4002 H. KAURR AND R. MAINI

cost is devoted to software maintenance. To manage this maintenance issue,
there is an utmost need of methods and techniques that can lower down com-
plexity of software by continually improving the internal software quality. The
research area that addresses this issue is introduced as restructuring, [2,10] or,
it is also known as refactoring, [6, 10]. In software programs, programmers
replicate several code fragments for the software reuse. Usually, this type of
replication is known as code clones. Code clones also mean “duplicate code”,
which is a kind of bad smell as defined by [5]. Bad smells create many problems
in source code such as duplicates of code portions, maintenance cost and bug
propagation. Therefore, there is necessity to manage these code clones to im-
prove the quality and structure of code. Refactoring is an activity to restructure
the source code to remove code clones, [9]. In current research work, Clones
have been detected through cloneDR. Afterwards, refactoring of detected clones
will give view of any improvements to reduce the maintenance efforts of soft-
ware. Contribution of experimentation is as follows: • Code clone detection
has been performed using cloneDR (Clone Doctor) in three versions of open
source software JhotDraw (5.2, 6.0b1 and 7.0.6) and JEdit-4.2. Results re-
flected number of clones in selected input systems. • Analysis of refactoring of
code clones on detected clones has been assessed. For the purpose of refactor-
ing JDeodorant 5.0 plug-in of Eclipse has been used. Tremendous research has
been carried out to refactor code fragments, either these fragments can be func-
tions or statements, [3, 5, 8, 14, 16]. Some research has also been carried out
that returns function/method level clones [15,17,21]. Unlike other techniques
that detect clones with fixed number of lines, the techniques which identify
function/method level clones are suitable to architectural refactoring as they
represent a meaningful segment and most reusable part of code. Various tools
have been proposed in the literature for refactoring support, [11, 12, 18]. Be-
cause function/method clones are meaningful, so these are useful for software
maintenance and evolution phases. Hence, it boosted the researcher/scientists
to choose the granularity as function/method level, [15] and [17]. Main objec-
tive of current work is also to decrease clones in source code and to reduce size
of source code in terms of SLOC (Source Lines of Code) to improve readability,
structure, performance and maintainability based on function granularity.

FUNCTION CLONE REMOVAL USING REFACTORING TECHNIQUES 4003

TABLE 1. Software Systems under Investigation

System Size Files LOC Classes Total Functions
JHotdraw 5.2 5.72 MB 160 14,577 208 1037

JHotdraw 6.0 b1 14 MB 484 21,091 405 4256
JHotdraw 7.0.6 7.0 MB 310 32,447 350 2811

JEdit 4.2 25.5 571 132926 426 5418

The paper is organized through the following sections. Overall methodology
is represented in section 2. Section 3 briefly introduces the selected clone de-
tection and refactoring tool. In Section 3, the results on clone detection for
selected versions of two open source systems have been represented. In Section
4, the impact of clone refactoring on detected clones has been analyzed. Finally,
Section 5 concludes the research work.

2. RESEARCH METHOD

First, LOC (lines of code), number of classes and total number of functions in
open source softwares under consideration have been accessed. Function Clone
detection has been performed using automated tool cloneDR and results are fed
to next phase for clone refactoring using JDeodorant plug-in. Overall steps are
shown in figure 1. Detected clones are then analyzed, if can’t be refactored,
it is left as un-factored, otherwise suitable refactoring technique is applied. To
assess the impact of refactoring, clones are re-detected from the same input
(open source software here) after applying refactoring methods.

2.1. Input System Selection. Open source softwares JhotDraw, [22], (5.2, 6.0b1
and 7.0.6) and JEdit 4.2 have been considered for experimentation and have
been widely used by researchers [1, 2, 13–15, 23]. Table 1 shows details of all
the chosen systems for experimentation.

As the number of detected functions of JHotdraw versions 5.2, 6.0b1, 7.0.6
and JEdit 4.2 ranges 1037 to 5418. Therefore, it is very challengeable task to
detect function clones in such huge software. Stefan Bellon faced challenge to
develop an oracle for huge Source Lines of Code (SLOC) and manually evaluated
only 2% of total source code. Same investigation approach of Stefan Bellon in
[4]has been followed in current work also. Experimentation has been performed

4004 H. KAURR AND R. MAINI

FIGURE 1. Refactoring Methodology

TABLE 2. Functions with Varying LOC (Lines of Code)

System
Functions (Lines of Code)

Minimum Average Above Average Maximum
JhotDraw 5.2 2 6 >15 35

JhotDraw 6.0b1 2 6 >25 195
JhotDraw 7.0.6 2 8 >32 235

JEdit 4.2 4 8 >25 72

by considering only 10% detected functions of input systems to compute results.
Functions with varying LOC have been considered as represented in Table 2.

3. TOOL FOR CLONE DETECTION AND REFACTORING

In this section, clone detection tool and plug-in used for refactoring has been
discussed.

FUNCTION CLONE REMOVAL USING REFACTORING TECHNIQUES 4005

TABLE 3. SLOC and Clones reported before refactoring (first 10 samples)

Software System
Total Function
Clones Detected

Function clones
before refactoring
(in first 10 samples)

SLOC in
clones %

JhotDraw 5.2 122 18 10.6
JhotDraw 6.0b1 498 19 12.6
JhotDraw 7.0.6 309 21 22.4
JEdit 4.2 140 11 8.27

3.1. CloneDR and JDeodorant Plug-in. CloneDR is an automated tool to iden-
tify exactly similar and nearly-similar code portions in large software systems.
Baxter et al. discussed all technical background of cloneDR, the author used a
tree-based code clone detection technique. Various methods exist in literature
to detect code clones, [1, 7, 19, 23]. In present work, clones are identified us-
ing cloneDR tool. The reported results: total clones detected, function clones
and SLOC (source Lines of Code) in clones are shown in Table 3. It is not pos-
sible to show all results in this paper, therefore only first 10 samples reported
by cloneDR are considered here for refactoring purposes. JDeodorant 5.0 is a
plug-in to Eclipse used for refactoring purpose. In current work, it has been
used to refactor detected clones. A pairs of duplicated code fragments or du-
plicated methods are fed as input to JDeodorant and it determines if they can
be safely refactored. When two input clones have an identical structure, they
will be treated for refactoring opportunity. JDeodorant pictures the two clone
fragments/methods side-by-side to catch differences in those fragments, [18].

4. REMOVING FUNCTION CLONES USING REFACTORING TECHNIQUES

In this section, function clone refactoring techniques have been applied to
reduce function clones in the software systems under consideration. Results
of cloneDR for JHotdraw and JEdit have been imported in Eclipse. Following
subsection discusses refactoring methods applied on similar functions.

4.1. Extract SuperClass. When two classes perform similar tasks, then Extract
Superclass is applied to classes that already have a super class. Extract Super-
class creates a new Superclass on the basis of existing class or the original class

4006 H. KAURR AND R. MAINI

can be renamed to create new Superclass. Extract Superclass is also applicable
to duplicate functions/methods. Steps applied in JDeodorant:

(1) Open the clone groups with similar instances in the JDeodorant editor.
(2) Select Refactor or right click on the selected the duplicate highlighted

code to select Refactor option.
(3) Select option Extract—- Select option Superclass.
(4) In the opened dialog, mention a name for super class and class members

that are to be included to form new superclass Click Refactor. (Figure 2
represents ExtractSuperclass refactoring)

4.2. Extract Method. ExtractMethod is applied to those code fragments that
can be grouped together and move those in a new method. After refactor-
ing, duplicated code is replaced with a caller statement of the new method.
Clone Group 32 (Type-1 clone) (Extract Method) New method name: con-
tentRemovedExtracted(). Steps applied in JDeodorant: Select option Extract—
-Method—Refactor. Figure 3 represents ExtractMethod refactoring.

4.3. Move Method. When a function/method has been used more in one class
as compared to another. That method is then moved to more usable class. For
example in figure 4, method:handleKey(KeyEventTranslator.Key) is moved from
class:KeyEventWorkaround to class:DefaultInputHanldler.

5. RESULTS AND DISCUSSION

The motive of this research work is to assess the impact of refactoring on code
clones. Function clones are accessed using cloneDR before and after refactoring.
As described earlier, number of clones reported before refactoring are shown in
Table 3. After implementing refactoring methods, function clones are accessed
once more by running cloneDR. The results reported reduced number of clones
in selected systems under investigation. Table 4 shows refactoring opportunities
possible on the chosen systems. Last column of the table shows number of non-
refactorable cases. Table 5 shows the number of clone reported after refactoring.

As evaluation has been performed at 10% level, total number of functions in
all chosen input systems was 253,725, 481 and 295 in JHotDraw (5.2, 6.0b1,
7.0.6) and JEdit 4.2 respectively. Percentage of cloning has been computed

FUNCTION CLONE REMOVAL USING REFACTORING TECHNIQUES 4007

FIGURE 2. Refactoring using ExtractSuperclass

before and after refactoring in selected versions. Figure 5 depicts decrease in
percentage of cloning after applying possible refactoring opportunities.

It has been observed that percentage of cloning has been decreased from
48.22 to 41.11, 68.88 to 66.20, 64.24 to 62.57 and 47.45 to 42.37 percent
in JHotDraw (5.2, 6.0b1, 7.0.6) and JEdit 4.2 respectively. SLOC has also been

4008 H. KAURR AND R. MAINI

FIGURE 3. Refactoring using ExtractMethod

accessed using CloneDR before and after refactoring. Decrease in SLOC % has
been reported after refactoring as plotted in Figure 6.

FUNCTION CLONE REMOVAL USING REFACTORING TECHNIQUES 4009

FIGURE 4. Refactoring using Move Method

TABLE 4. Number of Refactoring Opportunities

Software System
Extract
Method

Extract
Super class

Move
Method

Non
Refactorable Clones

JhotDraw 5.2 3 3 2 6
JhotDraw 6.0b1 2 3 3 5
JhotDraw 7.0.6 4 2 2 9
JEdit 4.2 3 1 1 4

6. CONCLUSION

In this current experience of clone detection using cloneDR tool has been
demonstrated by analyzing open source systems. Impact of refactoring on func-
tion clones has also been assessed using JDeodorant 5.0 plug-in of Eclipse Mars.
Different refactoring opportunities have been assessed. Experimentation has
been performed on 4 open source projects and it has been noticed that number
of function clones has been reduced from 122 to 104, 498 to 480, 309 to 301

4010 H. KAURR AND R. MAINI

TABLE 5. SLOC and Clones reported after refactoring

Software System
Total Function
Clones Detected

Function clones
after refactoring
(in first 10 samples)

SLOC in %

JhotDraw 5.2 104 10 10.3
JhotDraw 6.0b1 480 11 12.2
JhotDraw 7.0.6 301 13 22.1
JEdit 4.2 125 6 8.11

FIGURE 5. Percentage of Cloning before and after Refactoring

FIGURE 6. Comparison of SLOC before and after Refactoring

FUNCTION CLONE REMOVAL USING REFACTORING TECHNIQUES 4011

and 140 to 125 in JhotDraw 5.2, JhotDraw 6.0b1, JhotDraw 7.0.6 and Jedit-4.2
respectively, after implementing refactoring opportunities. Another parameter,
SLOC has also been decreased from 10.6 to 10.3, 12.6 to 12.2, 22.4 to 22.1
and 8.27 to 8.11 percent in JHotDraw (5.2, 6.0b1, 7.0.6) and JEdit 4.2 respec-
tively, which shows the reduction in size of the software without affecting the
functionality of the system.

REFERENCES

[1] M. Ó. CINNÉIDE, L. TRATT, M. HARMAN, S. COUNSELL, I. H. MOGHADAM: Ex-
perimental assessment of software metrics using automated refactoring, Proceedings
of the ACM-IEEE international symposium on Empirical software engineering and
measurement, (2012), 49–58.

[2] R. S. ARNOLD: Tutorial on software restructuring, IEEE Computer Society Press,
1986.

[3] M. BADRI, L. BADRI, O. HACHEMANE, A. OUELLET: Measuring the effect of clone
refactoring on the size of unit test cases in object-oriented software: an empirical
study, Innovations in Systems and Software Engineering, 15(2) (2019), 117–137.

[4] S. BELLON, R. KOSCHKE, G. ANTONIOL, J. KRINKE, E. MERLO: Comparison and
evaluation of clone detection tools, IEEE Transactions on software engineering,
33(9) (2007), 577-591.

[5] S. BOUKTIF, G. ANTONIOL, E. MERLO, M. NETELER, A novel approach to optimize
clone refactoring activity, Proceedings of the 8th annual conference on Genetic and
evolutionary computation, Washington, USA, (2006), 1885–1892.

[6] F. M. T. CALEFATO, F. LANUBILE: Function clone detection in web applications: a
semiautomated approach, J. Web Eng., 3(1) (2004), 3–21.

[7] X. CHEN, A. Y. WANG, E.TEMPERO: A replication and reproduction of code clone
detection studies, Proceedings of the Thirty-Seventh Australasian Computer Science
Conference, 147 (2014), 105–114.

[8] Z. CHEN, Y. KWON, M. SONG: Clone refactoring inspection by summarizing clone
refactorings and detecting inconsistent changes during software evolution, Journal of
Software: Evolution and Process, 30(10) (2018), e1951.

[9] M. FOWLER, K. BECK, J. BRANT, W. OPDYKE, D. ROBERTS: Refactoring: Improving
the design of existing code addison-wesley professional, First edition, Addison Wesley
Longman, Inc., Berkeley, USA, 1999.

4012 H. KAURR AND R. MAINI

[10] W. G. GRISWOLD, D.NOTKIN: Automated assistance for program restructuring, ACM
Transactions on Software Engineering and Methodology (TOSEM), 2(3) (1993),
228–269.

[11] Y. HIGO, T. KUSUMOTO, S. INOUE, K. ARIES: Refactoring support environment
based on code clone analysis, Proceedings of the 8th IASTED International Confer-
ence on Software Engineering and Applications, (2004), 222–229.

[12] D. JEMEROV: Implementing refactorings in intellij idea, Proceedings of the 2nd
Workshop on Refactoring Tools, (2008), 1–2.

[13] M. A. A. KHAN, C. K. ROY, K. A. SCHNEIDER: Active clones: Source code clones at
runtime, Electronic Communications of the EASST, 63(2014), 1–18.

[14] E. KODHAI, S. KANMANI: Method-level code clone modification using refactoring
techniques for clone maintenance Advanced Computing: An International Journal,
4(2) (2013), 7–26.

[15] E. KODHAI, S. KANMANI: Method-level code clone detection through lwh (light
weight hybrid) approach, Journal of Software Engineering Research and Devel-
opment, 2(1) (2014), 12.

[16] J. KRÜGER, M. AL-HAJJAJI, S. SCHULZE, G. SAAKE, T. LEICH: Towards automated
test refactoring for software product lines, Proceedings of the 22nd International
Systems and Software Product Line Conference, 1 (2018), 143–148.

[17] B. LAGUE, D. PROULX, J. MAYRAND, E. M. MERLO, J. HUDEPOHL, Assessing the
benefits of incorporating function clone detection in a development process, Proceed-
ings International Conference on Software Maintenance, (1997), 314–321.

[18] D. MAZINANIAN, N. TSANTALIS, R. STEIN, Z. VALENTA: Jdeodorant: clone refac-
toring Proceedings of the 38th International Conference on Software Engineering
Companion, (2016), 613–616.

[19] A. F. MUBARAK-ALI, S. M. SYED-MOHAMAD, S. SULAIMAN: Enhancing generic
pipeline model for code clone detection using divide and conquer approach, Int. Arab
J. Inf. Technol., 12(5) (2015), 510–517.

[20] W. F. OPDYKE: Refactoring: A program restructuring aid in designing object-oriented
application frameworks, PhD Thesis, 1992.

[21] W. F. OPDYKE: Refactoring object-oriented frameworks, University of Illinois at
Urbana-Champaign, Department of Computer Science, 1992.

[22] J. SAVOLSKYTE: Review of the jhotdraw framework, Information and Media Tech-
nologies Matriculation No. 20668, 2004.

[23] M. WHITE, M. TUFANO, C. VENDOME, D.POSHYVANYK: Deep learning code frag-
ments for code clone detection, Proceeding of 31st IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), (2016), 87–98.

FUNCTION CLONE REMOVAL USING REFACTORING TECHNIQUES 4013

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

PUNJABI UNIVERSITY PATIALA

PUNJAB, INDIA

Email address: khasria.harpreet@gmail.com

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

PUNJABI UNIVERSITY PATIALA

PUNJAB, INDIA

Email address: research.raman@gmail.com

