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ON NUMERICAL RANGE AND NUMERICAL RADIUS OF
A SPECIAL PAIR OPERATOR MATRICES

NIRANJAN BORA

ABSTRACT. This paper considers Linear two-parameter eigenvalue problems in
terms of matrix operators. Generally, for spectral analysis two-parameter prob-
lem is reduced into a system of generalized eigenvalue problems using a special
pair of determinant operator matrices on tensor product space. In this work,
some inequalities on numerical range and numerical radius of this special pair
of operator matrices arising from two-parameter problem will be derived.

1. INTRODUCTION

In 1932 Marshall Stone [11] first coined about numerical range of a bounded
linear operator T over the complex Hilbert space H and is defined as

W (T ) := {〈Tx, x〉 : x ∈ H, ‖x‖ = 1}

where 〈., .〉 denotes standard inner product and ‖x‖ =
√
〈x, x〉 is the induced

norm. Confining this definition for finite dimensional case and we consider
numerical range of any n× n matrix A over C, i.e,

W (A) := {x∗Ax : x ∈ C, ‖x‖ = 1}

where ‖x‖ =
√
x∗x is the Euclidean length x ∈ Cn and x∗ is the transpose

conjugate of x. The quantity W (A) is useful to locate eigenvalues, to obtain
norm bounds, to deduce double algebraic and analytic properties of matrices
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and it also help to find dilutions with simple structure. It follows from celebrated
Toeplitz-Hausdorff Theorem that W (A) is convex and compact subset of the
complex plane [14]. Moreover, the spectrum of A are always lies in W (A) [13].
Numerical radius of A is denoted by w(A) and is defined as

w(A) := Max {|z| : z ∈ W (A)} .

Researcher have studied extensively on numerical range and numerical radius
for operators and matrices over the years. Various results of numerical range and
numerical radius for matrices have been found in [6, 7, 9, 12, 14, 16], and the
references therein. The rest of the paper is organized as follows: In Section 2 an
abstract formulation of linear two-parameter eigenvalue problem is presented.
In Section 3, some inequality of numerical radius of certain operator matrices
are derived. Section 4 contains concluding remarks.

2. LINEAR TWO-PARAMETER MATRIX EIGENVALUE PROBLEMS

Linear two-parameter eigenvalue problem [4] considered here is

(2.1)
W1(λ1, λ2)x1 := (B01 − λ1B11 − λ2B12)x1 = 0

W2(λ1, λ2)x2 := (B02 − λ1B21 − λ2B22)x2 = 0

where λ1, λ2 ∈ C are spectral parameters; xi ∈ Cni; and Bij are n1 × n2 over
C; i := 0 : 3; j := 1 : 2. Denote the problem (2.1) by W. If for some λ1, λ2 the
problem W has a solution xi 6= 0; i := 1 : 2, then the pair (λ1, λ2) is called eigen-
value and the corresponding tensor product x = x1⊗x2 is called the eigenvector,
where ⊗ stands for Kronecker product. An extensive analysis of the spectral the-
ory of W and its related classical results can be found in the books [2, 4] and
in the papers [8, 10, 15]. The standard method to study the spectrum of W by
transforming it into a commuting pair of operators matrices by considering the
following operator determinants

∆0 : = B11 ⊗B22 −B12 ⊗B21

∆1 : = B01 ⊗B22 −B12 ⊗B02; ∆2 := B11 ⊗B02 −B01 ⊗B21 .

Generally, for spectral analysis the problem W is considered as nonsingular i.e
when ∆0 is nonsingular. A nonsingular system (2.1) can be transformed into a
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system of joint generalized eigenvalue problems [4] of the form

(2.2) ∆ix = λi∆0x, i := 1 : 2 .

Denote Γi := ∆−1
0 ∆i; i := 1 : 2. For nonsingular W the operator matrices Γi

commute for i := 1 : 2 and all the eigenvalues of (2.1) are also the eigenvalues
of (2.2).

3. MAIN RESULTS

The numerical ranges and numerical radii for Γi, i := 1 : 2 becomes,

W (Γi) : = {x∗Γix : x ∈ Cn1 ⊗ Cn2 , x∗x = 1} ,

w(Γi) : = Max {|z| : z ∈ W (Γi)} .

Moreover for i := 0 : 3; j = 1 : 2,

W (∆i) := {x∗∆ix : x ∈ Cn1 ⊗ Cn2 , x∗x = 1} , W (Bij) := {x∗iBijxi : xi ∈ Cni , x∗ixi = 1} .

Here some results on W (Γi) and w(Γi) will be presented for i := 1 : 2.

Theorem 3.1. Let ‖xi‖ = 1 for i := 1 : 2. Then for the operator matrices ∆i, the
following results hold:

(i) W (∆0) = W (B11)W (B22)−W (B12)W (B21),

(ii) W (∆1) = W (B01)W (B22)−W (B12)W (B02),

(iii) W (∆2) = W (B11)W (B02)−W (B01)W (B21).

Proof. Let ‖xi‖ = 1 for i := 1 : 2. Then numerical range of ∆0 becomes,
W (∆0) = x∗(B11 ⊗B22 −B12 ⊗B21)x = x∗(B11 ⊗B22)x− x∗(B12 ⊗B21)x

= (x∗1B11x1)⊗ (x∗2B22x2)− (x∗1B12x1)⊗ (x∗2B21x2).

Since x∗iBijxi, i := 1 : 2 are scalars, so kronecker product appear in above
equation becomes ordinary multiplication. Thus
x∗(B11 ⊗B22 −B12 ⊗B21)x = x∗(B11 ⊗B22)x− x∗(B12 ⊗B21)x

= (x∗1B11x1)(x∗2B22x2)− (x∗1B12x1)(x∗2B21x2) = W (B11)W (B22)−W (B12)W (B21).
Second and third equation can be derived in a similar fashion. �

Theorem 3.2. Let K∆0 is the condition number of the operator matrix ∆0. Then

w(Γi) ≤ K∆0

‖∆i‖
‖∆0‖

; for i := 1 : 2
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Proof. It follows from Cauchy-Schwarz inequality that w(A) is bounded for any
matrix A. i.e., w(A) ≤ ‖A‖. Replacing Γi in place of A we get

w(Γi) ≤
∥∥∆−1

0 ∆i

∥∥ ≤ ∥∥∆−1
0

∥∥ ‖∆i‖ =
∥∥∆−1

0

∥∥ ‖∆0‖ ‖∆i‖ / ‖∆0‖ = K∆0

‖∆i‖
‖∆0‖

.

�

The following estimate [9] for w(Γi), i := 1 : 2 is automatically true.

(3.1) w(Γi) = w(∆−1
0 ∆i) ≤ 4w(∆−1

0 )w(∆i) .

But this estimate is not computationally friendly due to the involvement of ma-
trix operators with Kronecker structure of high dimension. If ∆0 and ∆i com-
mute for i := 1 : 2, then we have

∆i∆0 = ∆0∆i ⇒ ∆−1
0 ∆i = ∆i∆

−1
0

and it follows from Theorem 6.5 (a) [3] that

w(Γi) = w(∆−1
0 ∆i) ≤ 2w(∆−1

0 )w(∆i) .

Theorem 3.3. (Theorem 6.8, [3]) Let A and B be any two square matrices. Then

w(A⊗B) ≤Min {w(A) ‖B‖ , ‖A‖w(B)} ≤ 4w(A)w(B) .

Theorem 3.4. Let ∆0 and ∆i commute for i := 1 : 2. Then

(i) w(Γ1) ≤ 2(‖B01‖ ‖B22‖+ ‖B12‖ ‖B02‖)w(∆−1
0 ).

(ii) w(Γ2) ≤ 2(‖B11‖ ‖B02‖+ ‖B01‖ ‖B21‖)w(∆−1
0 ).

Proof. Let ∆0 and ∆1 commute, i.e., ∆i∆0 = ∆0∆i. Then it follows that ∆−1
0 ∆i =

∆i∆
−1
0 . Thus w(Γi) = w(∆−1

0 ∆i) = w(∆i∆
−1
0 ). For any two operator [1] is well

known that w(AB) ≤ 2 ‖A‖w(B). Now
w(Γ1) = w(∆1∆−1

0 ) ≤ 2 ‖∆1‖w(∆−1
0 )

⇒ w(Γ1) ≤ 2 ‖B01 ⊗B22 −B12 ⊗B02‖w(∆−1
0 )

≤ 2(‖B01 ⊗B22‖+ ‖B12 ⊗B02‖)w(∆−1
0 )

≤ 2(‖B01‖ ‖B22‖+ ‖B12‖ ‖B02‖)w(∆−1
0 )

which proves the first inequality. Second inequality can be proved in a similar
way. �

The above estimates can be refined more by imposing additional condition

Theorem 3.5. Let ∆0 and ∆i commute for i := 1 : 2 and ∆0 be such that
0 /∈ W (∆−1

0 ) . Then
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(i) w(Γ1) ≤
√

3(‖B01‖ ‖B22‖+ ‖B12‖ ‖B02‖)w(∆−1
0 ).

(ii) w(Γ2) ≤
√

3(‖B11‖ ‖B02‖+ ‖B01‖ ‖B21‖)w(∆−1
0 ).

Proof. To proof the first equation, let ∆0 and ∆1 commute. Then it follows that
w(Γi) = w(∆−1

0 ∆i) = w(∆i∆
−1
0 ).

Using (Corollary 1, [1]) we have
w(Γ1) ≤

√
3 ‖∆1‖w(∆−1

0 )

⇒ w(Γ1) ≤
√

3(‖B01‖ ‖B22‖+ ‖B12‖ ‖B02‖)w(∆−1
0 ).

Second equation can be proved in a similar way. �

Theorem 3.6. w2(Γi) ≤ ‖∆∗
i ‖
∥∥(∆−1

0 )∗
∥∥∥∥∆−1

0

∥∥ ‖∆i‖ for i := 1 : 2.

Proof. Using Kittaneh (Theorem 1, [5]) result on upper bound of numerical ra-
dius for any operator T, we have w2(T ) ≤ 1

2
‖T ∗T + TT ∗‖. Now,

w2(Γi) ≤ 1
2

∥∥(∆−1
0 ∆i)

∗∆−1
0 ∆i + ∆−1

0 ∆i(∆
−1
0 ∆i)

∗
∥∥

⇒ w2(Γi) ≤ 1
2

∥∥∆∗
i (∆

−1
0 )∗∆−1

0 ∆i + ∆−1
0 ∆i∆

∗
i (∆

−1
0 )∗

∥∥
⇒ w2(Γi) ≤ 1

2

(∥∥∆∗
i (∆

−1
0 )∗∆−1

0 ∆i

∥∥+
∥∥∆−1

0 ∆i∆
∗
i (∆

−1
0 )∗

∥∥)
⇒ w2(Γi) ≤ 1

2

(
2 ‖∆∗

i ‖
∥∥(∆−1

0 )∗
∥∥∥∥∆−1

0

∥∥ ‖∆i‖
)

⇒ w2(Γi) ≤ ‖∆∗
i ‖
∥∥(∆−1

0 )∗
∥∥∥∥∆−1

0

∥∥ ‖∆i‖ . �

Theorem 3.7. For all i := 1 : 2, the following estimates of w(Γi) are true:

(i)

w(Γ1) ≤ 4 w(∆−1
0 )(w(Min {w(B01) ‖B22‖ , ‖B01‖w(B22)}

+Min {w(B12) ‖B02‖ , ‖B12‖w(B02)})

≤ 16 w(∆−1
0 ) (w(B01)w(B22) + w(B12)w(B02))

(ii)

w(Γ2) ≤ 4 w(∆−1
0 )(w(Min {w(B11) ‖B02‖ , ‖B11‖w(B02)}

+Min {w(B01) ‖B21‖ , ‖B01‖w(B21)})

≤ 16 w(∆−1
0 ) (w(B11)w(B02) + w(B01)w(B21))

Proof. Using (3.1) we get
w(Γ1) ≤ 4w(∆−1

0 )w(∆1)

⇒ w(Γ1) ≤ 4w(∆−1
0 )(w(B01 ⊗B22) + w(B12 ⊗B02))

Using Theorem 3.3, we have
w(Γ1) ≤ 4w(∆−1

0 )(w(Min {w(B01) ‖B22‖ , ‖B01‖w(B22)}
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+Min {w(B12) ‖B02‖ , ‖B12‖w(B02)})
≤ 16w(∆−1

0 ) (w(B01)w(B22) + w(B12)w(B02))

Similarly, second inequality can be derived. �

4. CONCLUDING REMARKS

A unified framework for numerical range and numerical radius of operator
matrices arising from linear two-parameter eigenvalue problems is discussed.
Some upper bounds of numerical radii have also been estimated.
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