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VAGUE BI-INTERIOR IDEALS OF A Γ-SEMIRING

Y. BHARGAVI1, S. RAGAMAYI, T. ESWARLAL, AND G. JAYALALITHA

ABSTRACT. In this paper, we introduce and study the concept of vague bi-
interior ideal of a Γ-semiring as a generalization of vague bi-ideal and vague
interior ideal and we characterize the vague bi-interior ideal of Γ-semiring to
the crisp bi-interior ideals of Γ-semiring.

1. INTRODUCTION

In 1965, Zadeh, L.A. [18] introduced the study of fuzzy sets. Mathematically
a fuzzy set on a set X is a mapping µ into the interval [0, 1]; for x in X, µ(x)

is called the membership of x belonging to X. This membership function gives
only an approximation for belonging but it does not give any information of not
belonging. To counter this problem and obtain a better estimation and analysis
of data decision making, Gau, W.L. and Buehrer, D.J. [14] have initiated the
study of vague sets with the hope that they form a better tool to understand,
interpret and solve real life problems.

Further in 1995, Murali Krishna Rao, M. [15] introduced the concept of Γ-
semiring which is a generalization of Γ-ring, ternary semiring and semiring and
after that he introduced and studied the ideals of a Γ-semiring. Ideals play an
important role in advance studies and uses of algebraic structures. Generaliza-
tion of ideals in algebraic structures is necessary for further study of algebraic
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structures. Many mathematicians proved important results and characterization
of algebraic structures by using the concept and the properties of generalization
of ideals in algebraic structures. Murali Krishna Rao, M., [16, 17] introduced
the concept of left(resp. right) bi-quasi ideal, bi-interior ideal a Γ-semiring and
studied the properties of left bi-quasi ideals. However Bhargavi, Y. and Eswar-
lal, T. [1–11], [13] were developed the theory of vague sets on Γ-semirings.
This paper is a sequel to our study. In this paper, we introduce and study the
concept of vague bi-interior ideal of a Γ-semiring as a generalization of vague
bi-ideal and vague interior ideal and we characterize the vague bi-interior ideal
of Γ-semiring to the crisp bi-interior ideals of Γ-semiring.

2. PRELIMINARIES

In this section we recall some of the fundamental concepts and definitions,
which are necessary for this paper.

Definition 2.1. [15] Let E and Γ be two additive commutative semigroups. Then
R is called Γ-semiring if there exists a mapping R×Γ×R→ R image to be denoted
by aαb if it satisfies the following conditions: For all a, b, c ∈ R;α, β ∈ Γ.

(ΓSR1) aα(b+ c) = aαb+ aαc;

(ΓSR2) (a+ b)αc = aαc+ bαc;

(ΓSR3) a(α + β)b = aαb+ aβb;

(ΓSR4) aα(bβc) = (aαb)βc.

Definition 2.2. [17] A non-empty subset B of a Γ-semiring R is said to be bi-
interior ideal of R if B is a Γ-subsemiring of R and RΓBΓR ∩BΓRΓB ⊆ B.

Definition 2.3. [14] A vague set A in the universe of discourse X is a pair (tA, fA),
where tA : X → [0, 1], fA : X → [0, 1] are mappings such that tA(x) + fA(x) ≤ 1,
for all x ∈ X. The functions tA and fA are called true membership function and
false membership function respectively.

Definition 2.4. [14] The interval [tA(x), 1 − fA(x)] is called the vague value of x
in A and it is denoted by VA(x) i.e., VA(x) = [tA(x), 1− fA(x)].

Definition 2.5. [14] Let A = (tA, fA) and B = (tB, fB) be two vague sets of a
universe of discourse X.
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The intersection of A and B is defined as A ∩ B = (tA∩B, fA∩B), where tA∩B =

min{tA, tB} and fA∩B = max{fA, fB}.
The union of A and B is defined as A ∪ B = (tA∪B, fA∪B), where tA∪B =

max{tA, tB} and fA∪B = min{fA, fB}.
The product AΓB of A and B is defined as

VAΓB(x) =

{
sup{min{VA(y), VB(z)}/ x = yγz, where y, z ∈ R; γ ∈ Γ}
[0, 0], if for any y, z ∈ R; γ ∈ Γ, yγz 6= x .

A vague set A is contained in another vague set B, A ⊆ B if and only if
VA(x) ≤ VB(x) i.e., tA(x) ≤ tB(x) and 1− fA(x) ≤ 1− fB(x), ∀ x ∈ X.

Definition 2.6. [14] Let A = (tA, fA) be a vague set of a universe of discourse X.
For α, β ∈ [0, 1] with α ≤ β, the (α, β)- cut or vague cut of A is the crisp subset of X
is given by A(α,β) = {x ∈ X/ VA(x) ≥ [α, β]} i.e.,
A(α,β) = {x ∈ X/ tA(x) ≥ α and 1− fA(x) ≥ β}.

Definition 2.7. [14] For any subset S of a Γ-semiring R the vague characteristic
set of S is a vague set δS = (tδS , fδS) given by

VδS(x) =

{
[1, 1] if x ∈ S
[0, 0] if x /∈ S ,

i.e.,

tδS(x) =

{
1 if x ∈ S
0 if x /∈ S

and fδS(x) =

{
0 if x ∈ S
1 if x /∈ S .

.

Then δS is called the vague characteristic set of S in [0, 1].

Definition 2.8. [2] A vague set A = (tA, fA) of a Γ-semiring R is said to be vague
Γ-semiring of R if it satisfies the following conditions: For all x, y ∈ R; γ ∈ Γ,

(VI1) VA(x+ y) ≥ min{VA(x), VA(y)};
(VI2) VA(xγy) ≥ min{VA(x), VA(y)}.

If A is both left and right vague ideals of R, then A is called vague ideal of R.

Definition 2.9. [3] A vague set A = (tA, fA) of a Γ-semiring R is said to be
left (resp. right) vague ideal of R if it satisfies the following conditions: For all
x, y ∈ R; γ ∈ Γ,

(VI1) VA(x+ y) ≥ min{VA(x), VA(y)};
(VI2) VA(xγy) ≥ VA(y) (resp. VA(xγy) ≥ Vψ(x)).
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If A is both left and right vague ideals of R, then A is called vague ideal of R.

Definition 2.10. [4] A vague Γ-semiring A = (tA, fA) of a Γ-semiring R is said to
be vague bi-ideal if for all x, y, z ∈ R;α, β ∈ Γ, VA(xαyβz) ≥ min{VA(x), VA(z)},
i.e., tA(xαyβz) ≥ min{tA(x), tA(z)} and fA(xαyβz) ≤ max{fA(x), fA(z)}.

Definition 2.11. [13] A vague Γ-semiring ψ = (tψ, fψ) of R is said to be vague
interior ideal of R if forall x, y, z ∈ R;α, β ∈ Γ, Vψ(xαyβz) ≥ Vψ(y) i.e.,
tψ(xαyβz) ≥ tψ(y) and 1− fψ(xαyβz) ≥ 1− fψ(y).

3. VAGUE BI-INTERIOR IDEAL OF A Γ-SEMIRING

In this section, we introduce and study vague bi-interior ideal as a general-
ization of vague bi-ideal, vague interior ideal of a Γ-semiring and character-
ize the vague bi-interior ideals of a Γ-semiring to a crisp bi-interior ideals of a
Γ-semiring. Also, we prove that the intersection of vague bi-ideal and vague
interior ideal of a Γ-semiring is a vague bi-interior ideal.

Throughout this section R stands for a Γ-semiring and δ stands for the vague
characteristic set of R unless otherwise mentioned.

Now, we introduce the following.

Definition 3.1. A vague Γ-semiring A = (tA, fA) of R is called vague bi-interior
ideal if (δΓAΓδ) ∩ (AΓδΓA) ⊆ A.

Example 1. Let R be the set of negative integers and Γ be the set of negative even
integers. Then R,Γ are additive commutative semigroups.
Define the mapping R × Γ × R → R by xαy usual product of x, α, y, ∀ x, y ∈
R;α ∈ Γ. Then R is a Γ-semiring.

Let A = (tA, fA), where tA : R→ [0, 1] and fA : R→ [0, 1] defined by

tA(x) =


0.4 if x = −1

0.7 if x = −2

0.9 if x < −2

and fA(x) =


0.4 if x = −1

0.2 if x = −2

0.1 if x < −2

.

Then A is a vague bi-interior ideal of R.

Theorem 3.1. Every vague bi-ideal of R is a vague bi-interior ideal of R.
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Proof. Let A = (tA, fA) be the vague bi-ideal of R. Then A is a vague Γ-
semiring of R. Since A is vague bi-ideal, we have AΓδΓA ⊆ A. Now, (δΓAΓδ) ∩
(AΓδΓA) ⊆ AΓδΓA ⊆ A. Therefore (δΓAΓδ) ∩ (AΓδΓA) ⊆ A . Thus A is vague
bi-interior ideal of R. �

Theorem 3.2. Every vague interior ideal of R is a vague bi-interior ideal of R.

Proof. Let A = (tA, fA) be the vague interior ideal of R. Then A is a vague
Γ-semiring of R. Since A is vague interior ideal, we have δΓAΓδ ⊆ A. Now,
(δΓAΓδ) ∩ (AΓδΓA) ⊆ δΓAΓδ ⊆ A. Therefore (δΓAΓδ) ∩ (AΓδΓA) ⊆ A . Thus
A is vague bi-interior ideal of R. �

Theorem 3.3. Every left vague ideal of R is a vague bi-interior ideal of R.

Proof. Let A = (tA, fA) be the left vague ideal of R. Let x ∈ R. Now,

VδΓAΓδ(x) = sup{min{V(δΓA)(pαq), Vδ(r)}, where x = pαqβr;

p, q, r ∈ R and α, β ∈ Γ}

= sup{min{V(δΓA)(pαq)}} = sup{min{Vδ(p), VA(q)}}

= sup{VA(q)} ≤ sup{VA(pαq)}

≤ sup{VA(x)} = VA(x)

That implies δΓAΓδ ⊆ A. Also,

VAΓδΓA(x) = sup{min{VA(p), VδΓA(qβr)},

where

x = pαqβr; p, q, r ∈ R and α, β ∈ Γ} ≤ sup{min{VA(p), VA(qβr)}} = VA(x).

That implies AΓδΓA ⊆ A. Therefore

V(δΓAΓδ)∩(AΓδΓA)(x) = min{V(δΓAΓδ)(x), V(AΓδΓA)(x)} ≤ VA(x).

Thus A is a vague bi-interior ideal of R. �

Theorem 3.4. Every right vague ideal of R is a vague bi-interior ideal of R.

Proof. Proof is similar to the above theorem. �

Corollary 3.1. Every vague ideal of R is a vague bi-interior ideal of R.

Theorem 3.5. A vague set A = (tA, fA) is a vague bi-interior ideal of R if and only
if its vague cut A(α,β) is a bi-interior ideal of R.
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Proof. SupposeA = (tA, fA) is a vague bi-interior ideal ofR. Let x ∈ (RΓA(α,β)ΓR)∩
(A(α,β)ΓRΓA(α,β)). This implies x ∈ RΓA(α,β)ΓR and x ∈ A(α,β)ΓRΓA(α,β), i.e.,
x = aγpηb = qζcεr, where a, b, c ∈ R; p, q, r ∈ A(α,β); γ, η, ζ, ε ∈ Γ. Now,

VδΓAΓδ(x) = sup{min{VδΓA(aγp), Vδ(b)}}
= VδΓA(aγp) = sup{min{Vδ(a), VA(p)}}
= VA(p) ≥ [α, β]

Also,

VAΓδΓA(x) = sup{min{VAΓδ(qζc), VA(r)}}

= sup{min{sup{min{VA(q), Vδ(c)}}, VA(r)}}

≥ min{VA(q), VA(r)} ≥ [α, β].

Since A is vague bi-quasi ideal of R, we have (δΓAΓδ) ∩ (AΓδΓA) ⊆ A. This
implies, VA(x) ≥ V(δΓAΓδ)∩(AΓδΓA)(x) = min{VδΓAΓδ(x), VAΓδΓA(x)} ≥ [α, β], i.e.,
x ∈ A(α,β).

Therefore (RΓA(α,β)ΓR) ∩ (A(α,β)ΓRΓA(α,β)) ⊆ A. Hence A(α,β) is bi-interior
ideal of R.

Conversely, suppose that A(α,β) is a bi-interior ideal of R. Obviously A is vague
Γ-semiring of R. Suppose if possible (δΓAΓδ)∩(AΓδΓA) 6⊆ A. That implies there
exist x ∈ R such that VA(x) < V(δΓAΓδ)∩(AΓδΓA)(x). Let [α, β] ∈ [0, 1] such that

(3.1) VA(x) < [α, β] < V(δΓAΓδ)∩(AΓδΓA)(x).

Now, suppose for any a, b, c, p, q, r ∈ R and γ, ζ, η, ε ∈ Γ, x = aγpζb = qηcεr

such that p, q, r /∈ A(α,β). This implies that VA(p) < [α, β], VA(q) < [α, β], VA(r) <

[α, β]. Now,

V(δΓAΓδ)∩(AΓδΓA)(x) = min{VδΓAΓδ(x), VAΓδΓA(x)

= min{sup{min{VδΓA(aγp), Vδ(b)}},

sup{min{VAΓδ(qηc), VA(r)}}}

= min{VδΓA(aγp), sup{min{VAΓδ(qηc), VA(r)}}}

= min{sup{min{Vδ(a), VA(p)}}, sup{min{

sup{min{VA(q), Vδ(c)}}}}, VA(r)}

= min{VA(p), VA(q), VA(r)}

< [α, β]
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That implies V(δΓAΓδ)∩(AΓδΓA)(x) < [α, β], which is a contradiction to (3.1). There-
fore, there exist a, b, c, p, q, r ∈ R and γ, ζ, η, ε ∈ Γ, x = aγpζb = qηcεr such
that p, q, r ∈ A(α,β). Now, aγpζb ∈ RΓA(α,β)ΓR and qηcεr ∈ A(α,β)ΓRΓA(α,β).
Hence, x ∈ (RΓA(α,β)ΓR) ∩ (A(α,β)ΓRΓA(α,β)). This implie x ∈ A(α,β). But
x /∈ A(α,β), which is a contradiction to A(α,β) is bi-interior ideal of R. Hence,
(δΓAΓδ) ∩ (AΓδΓA) ⊆ A. Thus, A is a vague bi-interior ideal of R. �

Theorem 3.6. Let B be a non-empty subset of R and δB = (tδB , fδB) be the vague
characteristic set of R. Then B is bi-interior ideal if and only if δB is vague bi-
interior ideal of R.

Proof. Suppose B is bi-interior ideal of R. Obviously δB is a vague Γ-semiring
of R. Since B is bi-interior ideal, we have (RΓBΓR) ∩ (BΓRΓB) ⊆ B. Now,
(δΓδBδ) ∩ (δBΓδΓδB) = δRΓBΓR ∩ δBΓRΓB = δ(RΓBΓB)∩(BΓRΓB) ⊆ δB. Thus, δB is a
vague bi-interior ideal of R.

Conversely, suppose that δB is a vague bi-interior ideal of R. Then clearly
x + y ∈ B, for all x, y ∈ I. Since δB is a vague bi-interior ideal of R, we
have (δΓδBΓδ) ∩ (δBΓδΓδB) ⊆ δB. This implies δRΓBΓB ∩ δBΓRΓB ⊆ δB, i.e.,
δ(RΓBΓR)∩(BΓRΓB) ⊆ δB.

Therefore, (RΓBΓR)∩ (BΓRΓB) ⊆ B. Thus, B is a bi-interior ideal of R. �

Theorem 3.7. If A = (tA, fA) and B = (tB, fB) are vague bi-interior ideals of R,
then A ∩B is a vague bi-interior ideal of R.

Proof. Let A and B be a vague bi-interior ideals of R. Then A ∩ B is a vague
Γ-semiring of R. Let x ∈ R. Now,

VδΓ(A∩B)(x) = sup{min{Vδ(y), VA∩B(z), x = yαz, where y, z ∈ R;α ∈ Γ}}

= sup{min{Vδ(y),min{VA(z), VB(z)}}}

= sup{min{min{Vδ(y), VA(z)},min{Vδ(y), VB(z)}}

= min{sup{min{Vδ(y), VA(z)}}, sup{min{Vδ(y), VB(z)}}}

= min{VδΓA(x), VδΓB(x)} = V(δΓA)∩(δΓB)(x)

That implies δΓ(A ∩B) = (δΓA) ∩ (δΓB). Also,
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V(A∩B)ΓδΓ(A∩B)(x) = sup{min{VA∩B(y), VδΓ(A∩B)(z), x = yαz, where y, z ∈ R;α ∈ Γ}}

= sup{min{VA∩B(y), V(δΓA)∩(δΓB)(z)}}

= sup{min{min{VA(y), VB(y)},min{VδΓA(z), VδΓB(z)}}}

= sup{min{min{VA(y), VδΓA(z)},min{VB(y), VδΓB(z)}}}

= min{sup{min{VA(y), VδΓA(z)}, sup{min{VB(y), VδΓB(z)}}}

= min{VAΓδΓA(x), VBΓδΓB(x)}

= V(AΓδΓA)∩(BΓδΓB)(x)

That implies (A ∩ B)δΓ(A ∩ B) = (AΓδΓA) ∩ (BΓδΓB). Similarly we can prove
δΓ(A ∩B)Γδ = (δΓAΓδ) ∩ (δΓBΓδ). Therefore

[δΓ(A ∩B)Γδ] ∩ [(A ∩B)δΓ(A ∩B)]

= (δΓAΓδ) ∩ (δΓBΓδ) ∩ (AΓδΓA) ∩ (BΓδΓB) ⊆ A ∩B.
Thus A ∩B is a vague bi-interior ideal of R. �

Theorem 3.8. The intersection of vague bi-ideal and vague interior ideal of R is a
vague bi-interior ideal of R.

Proof. Let A = (tA, fA) and B = (tB, fB) be a vague bi-ideal and vague interior
ideal of R respectively. Obviousely A ∩ B is a vague Γ-semiring of R. Now,
(A ∩ B)ΓδΓ(A ∩ B) ⊆ AΓδΓA ⊆ A and δΓ(A ∩ B)Γδ ⊆ B. Therefore [(A ∩
B)ΓδΓ(A∩B)]∩ [δΓ(A∩B)Γδ] ⊆ A∩B. Thus A∩B is a vague bi-interior ideal
of R. �

Theorem 3.9. If A = (tA, fA) is right vague ideal and B = (tB, fB) is left vague
ideal of R, then A ∩B is a vague bi-interior ideal of R.

Proof. Proof is clear from Theorem 3.3, 3.4 and 3.11. �

Theorem 3.10. If A = (tA, fA) is minimal left vague ideal and B = (tB, fB) is
minimal right vague ideal of R, then C = AΓB is a minimal vague bi-interior
ideal of R.

Proof. Suppose A is minimal left vague ideal and B is minimal right vague ideal
of R. Let x ∈ R. Now,

V(δΓCΓδ)∩(CΓδΓC)(x) = min{VδΓCΓδ(x), VCΓδΓC(x)} ≤ VδΓCΓδ(x)

= V(δΓ(AΓB)Γδ)(x) ≤ VAΓB(x) = VC(x).
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That implies (δΓCΓδ) ∩ (CΓδΓC) ⊆ C. Hence C is a vague bi-interior ideal of
R.

Let G be a vague bi-interior ideal of R such that G ⊆ C. Now, δΓG ⊆ δΓC =

δΓAΓB ⊆ B.
Similarly, we can prove GΓδ ⊆ A. Since A and B are minimal, we have

δΓG = B and GΓδ = A. Also, C = AΓB = GΓδΓδΓG ⊆ GγδG and C = AΓB =

AΓδΓG ⊆ δΓG ⊆ δΓGΓδ. Therefore C ⊆ (GΓδΓG)∩ (δΓGΓδ) ⊆ G. That implies
C = G. Thus C is a minimal vague bi-interior ideal of R �

Theorem 3.11. The intersection of vague bi-interior ideal and a vague Γ-semiring
of R is also a vague bi-interior ideal of R.

Proof. Let A = (tA, fA) be a vague bi-interior ideal and B = (tB, fB) be a vague
Γ-semiring of R. Let x ∈ R. Now,

VδΓ(A∩B)Γδ(x) = sup{min{Vδ(p), V(A∩B)Γδ(qβr),

x = pαqβr, where p, q, r ∈ R;α, β ∈ Γ}}

= sup{min{Vδ(p), sup{min{VA∩B(q), Vδ(r)}}}}

= sup{min{Vδ(p), sup{min{min{VA(q), VB(q)}, Vδ(r)}}}}

≤ sup{min{Vδ(p), sup{min{VA(q), Vδ(r)}}}}

= VδΓAΓδ(x) .

That implies δΓ(A ∩B)Γδ ⊆ δΓAΓδ. Also,

V(A∩B)ΓδΓ(A∩B)(x) = sup{min{V(A∩B)(p), sup{min{Vδ(q), VA∩B(r)}},

x = pαqβr, where p, q, r ∈ R;α, β ∈ Γ}}

= sup{min{min{VA(p), VB(p)}, sup{min{Vδ(q),

min{VA(r), VB(r)}}}}}

≤ sup{min{VA(p), sup{min{Vdelta(q), VA(r)}}}}

= VAΓδΓA(x) .
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That implies (A∩B)ΓδΓ(A∩B) ⊆ AΓδΓA. So, [δΓ(A∩B)Γδ]∩ [(A∩B)ΓδΓ(A∩
B)] ⊆ (δΓAΓδ) ∩ (AΓδΓA) ⊆ A. Moreover

V(A∩B)ΓδΓ(A∩B)(x) = sup{min{V(A∩B)(p), VA∩B(q), x = pαq, where p, q ∈ R;α ∈ Γ}}

= sup{min{min{VA(p), VB(p)},min{VA(q), VB(q)}}}

≤ sup{min{VB(p), VB(q)}}

≤ sup{VB(x)}

= VB(x) .

That implies [δΓ(A ∩B)Γδ] ∩ [(A ∩B)ΓδΓ(A ∩B)] ⊆ (A ∩B)ΓδΓ(A ∩B) ⊆ B.
Therefore [δΓ(A ∩B)Γδ] ∩ [(A ∩B)ΓδΓ(A ∩B)] ⊆ (A ∩B)ΓδΓ(A ∩B) ⊆ A ∩B
Thus A ∩B is a vague bi-interior ideal of R. �

ACKNOWLEDGMENTS

The authors are grateful to Prof. K. L. N. Swamy for his valuable suggestions
and discussions on this work.

REFERENCES

[1] Y. BHARGAVI, T. ESWARLAL: Fuzzy Γ-semirings, International Journal of Pure and Ap-
plied Mathematics, 98(3) (2015), 339-349.

[2] Y. BHARGAVI, T. ESWARLAL: Vague Γ-semirings, Global Journal of Pure and Applied
Mathematics, 11(1) (2015), 117–127.

[3] Y. BHARGAVI, T. ESWARLAL: Vague ideals and normal vague ideals in Γ-semirings, Inter-
national Journal of Innovative Research and Development, 4(3) (2015), 1–8.

[4] Y. BHARGAVI, T. ESWARLAL: Vague Bi-ideals and Vague Quasi Ideals of a Γ-semirings,
International Journal of Science and Research, 4(4) (2015), 2694–2699.

[5] Y. BHARGAVI, T. ESWARLAL: Vague Prime Ideals in Γ-Semirings, International Journal of
Applied Engineering Research, 10(9) (2015), 21793–21811.

[6] Y. BHARGAVI, T. ESWARLAL: Vague magnified translation in Γ-semirings, International
Journal of Pure and Applied Mathematics, 106(2) (2016), 453–460.

[7] Y. BHARGAVI, T. ESWARLAL: Application of vague set in medical diagnosis, International
Journal of Chemical Sciences, 14(2) (2016), 842–846.

[8] Y. BHARGAVI, T. ESWARLAL: Vague semiprime ideals of a Γ-semirings, Afrika Matematika,
29(3-4) (2018), 425–434.

[9] Y. BHARGAVI: Vague filters of a Γ-semiring, International Journal of Mechanical and Pro-
duction Engineering Research and Development, 8 (2018), 421–428.



VAGUE BI-INTERIOR IDEALS OF A Γ-SEMIRING 4435

[10] Y. BHARGAVI: A study on translational invariant vague set of a Γ-semiring, Afrika Matem-
atika, DOI.10.1007/s13370-020-00794-1.

[11] Y. BHARGAVI, S. RAGAMAYI, N. KONDAREDDY: Cartesian Product on Vague Bi-ideals
and Vague Interior Ideals of a Γ-semiring, Test Engineering and Management, 83 (2020),
2682–2686.

[12] Y. BHARGAVI, T. ESWARLAL, S. RAGAMAYI: Cartesian Product on Fuzzy ideals of a
Ternary Γ-semigroup, Advances in Mathematics: Scientific Journal, 9(3) (2020), 1197–
1203.

[13] Y. BHARGAVI, T. ESWARLAL: Vague Interior Ideals of a Γ-semiring, Communicated to Thai
Journal of Mathematics.

[14] W. L. GAU, D. J. BUEHRER: Vague Sets, IEEE Transactions on systems, man and cyber-
netics, 23(2) (1993), 610–613.

[15] M. MURALI KRISHNA RAO: Γ-semiring1, Southeast Asian Bulletin of Mathematics, 19
(1995), 49–54.

[16] M. MURALI KRISHNA RAO, B. VENKATESWARLU, R. NOOR BHASHA: Left Bi-Quasi
ideals of Γ-semirings, Asia Pacific Journal of Mathematics, 4(2) (2017), 144–153.

[17] M. MURALI KRISHNA RAO: Bi-interior ideals of Γ-semirings, Discussiones Mathematicae,
38 (2018), 239–254.

[18] L. A. ZADEH: Fuzzy sets, Information and Control, 8 (1965), 338–353.

DEPARTMENT OF MATHEMATICS, KONERU LAKSHMAIAH EDUCATION FOUNDATION, VADDESWARAM,
GUNTUR

ANDHRA PRADESH, INDIA-522502
Email address: yellabhargavi@gmail.com

DEPARTMENT OF MATHEMATICS, KONERU LAKSHMAIAH EDUCATION FOUNDATION, VADDESWARAM,
GUNTUR, ANDHRA PRADESH, INDIA-522502

Email address: sistla.raaga1230@gmail.com

DEPARTMENT OF MATHEMATICS, KONERU LAKSHMAIAH EDUCATION FOUNDATION, VADDESWARAM,
GUNTUR , ANDHRA PRADESH, INDIA-522502

Email address: eswarlal@kluniversity.in

DEPARTMENT OF MATHEMATICS, KONERU LAKSHMAIAH EDUCATION FOUNDATION, VADDESWARAM,
GUNTUR, ANDHRA PRADESH, INDIA-522502

Email address: jayalalitha.yerrapothu@gmail.com


